『壹』 大数据如何作用于”舆情“
大数据如何作用于”舆情“
随着互联网技术的迅速发展,信息量大、类型繁多、价值密度低、速度快、时效高的大数据吸引了越来越多的关注目光,大数据带来的信息风暴正在改变我们的生活、工作和思维。毋庸讳言,舆情服务在进行行业规范和整合的同时,正面临着大数据的挑战。
大数据时代,对信息的“加工”是基础。据 互联网专家介绍,大数据体量巨大,非结构化数据的超大规模和增长分别占总数据量的80%至90%,比结构化数据增长快10到50倍。从舆情产品服务的角度 看,浓缩海量信息,抵抗“数据爆炸”已成舆情工作基本要求。故此,掌握数据抓取能力与舆情解读能力,通过“加工”实现数据的“增值”,将是未来舆情分析的 必备技能。目前,国内很多舆情服务机构甚至没有专门的数据管理、分析部门和专业分析团队,分析人员对信息的鉴别力、萃取力、掌控力仍有待提高。在信息广度 上大作文章的同时,未来需要一批有较高学习能力、分析能力、知识水平的数据从业人员占据舆情服务重镇。
大数据时代,对数据的解释是关键。目 前,数据的可获得度已经空前提高,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,实现真正的大数据挖掘和分析。数据的海量、 及时、动态、开放,有利于我们完善分析的效度和深度。同时,大数据也有价值密度低、传播速度快等特点,数据分析的模式是否科学,这将直接影响数据分析的质 量。大数据的异构和多样性,需要舆情分析人员对一些危机事件进行高质量的数据解释。基于数据分析,能否提炼出独到、高质量的观点,在凌乱纷繁的数据背后找 到更符合客户要求的舆情产品和服务,并进行针对性的调整和优化,这是大数据时代舆情最大的变量。
大数据时代,对趋势的研判是目标。大 数据的核心和目标就是预测,具体到舆情服务,舆情工作人员从互联网浩如烟海的数据中挖掘信息、判断趋势、提高效益,虽然获得广泛且实际的应用,但还远远不 够。舆情分析人员要不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,跟踪关联舆情,不再局限于危机解决,还 要辅之以决策参考,从注重“静态收集”向注重“动态跟踪”拓展,从致力“反映问题”向致力“解决问题”拓展,使舆情产品和服务“更高、更快、更强”(视点 高、预警快、处置强)。
大数据时代,分众服务是方向。数 据的互通互联,改变了数据库、应用软件和用户界面等系统之间的“孤岛”状态。舆情服务机构应树立大舆情观念,对数据进行生产、分析和解读,探索一条为用户 提供分众化服务的信息增值之路,使舆情服务的主体和边界形成一条完整的“舆情闭环”。在这个认识基础上,舆情服务机构需把握未来几年大数据在公共及企业管 理领域发展的重要方向:横向看,将服务主体延伸至政府、企业和社会的各领域,通过搭建关联领域的数据库、舆情基础数据库等,充分整合政府和企业的数据资 产;纵向看,将产品内容延伸至包括舆情抓取、预警到决策、评估等在内的各环节,协助客户丰富和完善决策参考体系。
大 舆情,强调大数据的关联性。发展和利用好数据资源,充分反映数据爆发背景下的数据处理与应用需求,这是大数据时代最大的舆情变革。目前,国内经济社会转型 发展环境压力加大,社会周期结构性突发舆情因素增多,舆情工作者尤其需要树立前瞻意识,提高媒介素养,加强互联网“大数据”分析研判,获取情报,抓住机 遇,为长远发展打下良好的基础。
『贰』 大数据和情报的区别
大数据(Big Data)和情报搭亩(Intelligence)是两个相关但不同的概念。它们在数据处理、分析和应用方面有一定的重叠,但扰洞各自关注领域和目标有所不同。
大数据:大数据是指规模庞大、类型繁多、处理速度快的数据集合。这些数据通常来自各种来源,包括互联网、社交媒体、传感器等。大数据的核心挑战在于如何有效地收集、存储、处理和分析这些数据,以便从中提取有价值的信息和洞察。大数据技术,如分布式计算、数据挖掘和机器学习等,可以帮助我们更好地理解和利用这些数据。
情报:情报是指从各种途径收集、分析和评估的信息,旨在为决策者提供有关国家安全、经济、社会等方面的有用见解。情报可能来自多种来源,包括人员间谍活动、公开来源的信息、商业竞争等。情报分析的目的是发现缓枝枯潜在的威胁、机会和其他重要信息,以支持政策制定和战略规划。情报分析通常涉及对数据的深入挖掘、模式识别和预测等技术。
总之,大数据主要关注数据的规模、速度和多样性,而情报则关注从各种来源收集、分析和评估信息的过程。尽管两者在某些方面有重叠,但它们的目标和方法有所不同。
『叁』 为破局而生,情报分析师决胜大数据
大数据时代,谁拥有数据,谁也就拥有财富。
数据服务产业的发展,提高数据的应用水平,所离不开的关键核心都是专业的情报分析师。
通常所说的大数据分为三种,企业数据、公权机构数据和开源网络数据。前两种可供挖掘和应用的价值有限,目前世界上各国所重视的都是开源网络数据。
挖掘大数据价值,获取目标对象(人物、事件、机构、项目等)精确可靠的信息,需要经由情报分析师充分利用自身的技术、方法、经验和手段,建立和理清调查任务内在的逻辑关系,通过综合研判,才能从纷繁冗余的数据中找出价值。
大数据是座挖不完的“钻石矿”,随着科学技术的发展,每个人的生活都与大数据息息相关,同时随着国家政策对于大数据等前沿技术的愈发重视,大数据行业已逐步形成了一个万亿级别的市场。
截至2018年底,致力于打造“中国数谷”的贵州省会贵阳正推动大数据与相关领域深度融合,全国人大代表、贵阳市市长陈晏表示,贵阳建成大数据产业园10个,大数据企业1632家,全年企业主营业务收入1000亿元人民币。在推动大数据与实体经济、社会治理等方面,贵阳市“融”出了新动能、新前景、新生活、新效率。贵阳市政府数据已实现100%共享交换,向社会免费开放618余万条数据。
基于大数据对各个行业的深入影响,近几年,美国、欧盟、日本等主要发达经济体都积极推进各自的大数据战略。2009年,美国科学家委员会(NSTC)就发布了《开发数字数据的威力》报告,初步提出发展大数据的框架,奥巴马政府亦对大数据行业大力支持,帮助美国取得世界领先地位。参考《大数据白皮书(2016)》,2016年全球大数据核心产业规模约为300亿美元,预计2020年有望达到近600亿美元。
中国亦将大数据视为新经济的重要支撑。2014年“大数据”首次出现在《政府工作报告》,奠定了行业快速发展的政策基础。2017 年,工信部印发了《大数据产业发展规划(2016-2020 年)》,全面部署“十三五”时期大数据产业发展工作。发改委、工信部及农业部、运输部等部委先后颁布相关后续政策,推动大数据产业发展。预计未来将有更多部门出台相应具体政策,推动大数据行业的发展。
根据中国信通院数据显示,2017年中国大数据产业规模(包括数据资源建设、大数据软硬件产品的开发、销售和租赁活动,以及相关信息技术服务)为4700亿元人民币,同比增长30%,且预计2020年这一规模有望赶超1万亿,年均复合增速近30%。其中,大数据核心产业规模2017年为234亿元,同比增长39%,预计2018年为329亿元。
目前中国金融数据体量位居全球第一,其中金融行业数据量是数据的重要贡献和使用机构,互联网金融占据相当大的比重,活跃的交易账户和交易事项为金融领域贡献了大量可供挖掘的有价数据。
受互联网金融的影响,金融行业大数据也迎来了迅速发展,大数据在金融行业正实现全面普及应用。大数据在金融行业的应用,除了传统的风险管理、运营管理及业务创新外,近年金融行业大数据应用呈现新的趋势,主要包括高频金融交易、小额信贷、P2P放款审核、客户管理、精准营销等。
随着大数据发展和应用的持续推进,未来金融大数据行业中的机构和企业将围绕建立新的金融环境而竞争,主要表现在围绕生态圈、战略和产品三个层面的竞争,并由此确定金融行业企业的市场地位及竞争力。因此,金融机构、互联网企业都不会局限于某一个层面的发展,更倾向于多维度、多层面的布局。
此外,A股上市公司在大数据产业的各个领域布局广泛,目前A股大数据概念板块中,有118个标的,但是在各个子版块中有较强变现能力的龙头企业的数量却很少,对于一些概念炒作,没有核心技术能力的公司,很容易因为一些市场环境的变化,产生大幅下跌,让投资者蒙受损失。
由此可见,大数据进一步发展急切需要综合解决方案提供商,专注于利用当代最先进的IT技术推动企业和政府部门在管理和商业模式上的创新发展,提供综合解决方案,包括运营支撑、大数据、移动互联网解决方案等。最终形成电信+政府+金融的大数据全面布局。
内生外延布局金融大数据,业务协同发展。在公共安全、运营商等传统大数据业务将大数据平台和应用技术研发落地,继而可将经验快速复制到金融、农业等其他领域。形成强协同效用。
大数据是未来的发展趋势,现今人人也都可以谈一点大数据,任何行业都可以直接间接的与大数据相关联,但是真正专业应用大数据技术的公司却也屈指可数,更难辨别出真正具有大数据业务变现能力的企业。
身处信息爆炸的时代,要想透过大数据去发现背后的真相,也并不是一件易事。
术业有专攻,作为企业方需要有意识培养大数据技术和情报分析师等专业人才,而作为个人也要有意识培养情报分析师思维,如此才能真正将大数据为己所用,如此也才能在未来市场的角逐中不被淘汰出局。
未来,每一个人都离不开对于数据的分析。
『肆』 大数据时代如何贯彻情报主导警务
大数据时代通过情报贯彻情报主导警务。情报主导国家安全我国正处于发展与改革的深水区及攻坚阶段,境内外针对我国的暴力恐怖等破坏国家安全的重大事件时有发生。要想从根本上打击、防范针对国慧哪家安全的恐怖活动,就必须重视、发挥公安情报的前森码作用。安情报分析响应速度必须符春御合秒级定律,要求在秒级范围内给出分析结果,时间过长将失去情报。
『伍』 如何用大数据做威胁情报
通过信息采集技术可以实现。
信息采集的特点概括为:
♦ 对目标网站进行信息自动抓取,支持HTML页面内各种数据的采集,如文本信息,URL,数字,日期,图片等
♦ 用户对每类信息自定义来源与分类
♦ 可以下载图片与各类文件
♦ 支持用户名与密码自动登录
♦ 支持命令行格式,可以Windows任务计划器配合,定期抽取目标网站
♦ 支持记录唯一索引,避免相同信息重复入库
♦ 支持智能替换功能,可以将内容中嵌入的所有的无关部分如广告去除
♦ 支持多页面文章内容自动抽取与合并
♦ 支持下一页自动浏览功能
♦ 支持直接提交表单
♦ 支持模拟提交表单
♦ 支持动作脚本
♦ 支持从一个页面中抽取多个数据表
♦ 支持数据的多种后期处理方式
♦ 数据直接进入数据库而不是文件中,因此与利用这些数据的网站程序或者桌面程序之间没有任何耦合
♦ 支持数据库表结构完全自定义,充分利用现有系统
♦ 支持多个栏目的信息采集可用同一配置一对多处理
♦ 保证信息的完整性与准确性,绝不会出现乱码
♦ 支持所有主流数据库:MS SQL Server, Oracle, DB2, MySQL, Sybase, Interbase, MS Access等
『陆』 大数据时代的技术资源物联网云计算可视化会对景物情报工作产生哪些影响
云岁歼袭计算并不是一种新型的科学技术!云计算就是让用户通过互联网去使用在云端的应用、数据,或服务。资源的整合,软件化分配!有利于提高效率。人们开发软件或者使用硬件、享受某种服务都变得很简单!
大数据的存在让淘宝、广告、信息流等的推荐更加算法化。数据可以去猜人的喜好、洞悉用户的方方面乎兄面,人们作为个体在大数据面前没有秘密。大数据对市场的把控、疫病的分析、经济的解读等各方面存在影响。
物联网,顾名改侍思义,万物物联。人们可以控制冰冷的机器设备,一切都变得智能化起来,车可以自动驾驶,空调可以用手机打开,灯光可以语音调节等等。
人工智能是给机器赋予了机器“语言”,深度学习,通过编程让机器有了类似“人”的功能。比如通过代码的输入,机器可以和人进行简单的语言交流,替人类工作等等
『柒』 如何在大数据时代的背景下将高新科技与情报信息工作相结合
随着学科的深入交叉融合及社会发展、经济发展与科技发展一体化程度的增强,情报研究正从单一领域分析向全领域分析的方向发展。
首先,表现在各领域中的情报研究从视角、方法上的相互借鉴。从方法上看,社交网络分析方法、空间信息分析等其他学科的分析方法,广泛应用于军事情报、科技情报等领域,心理学等领域的理论也用于情报分析的认知过程,以指导情报分析及其工具的研发。同时,情报学中的引文分析等文献计量方法也被借鉴用于网站影响力评估。从技术上看,可视化、数据挖掘等计算机领域的技术,为情报研究提供了有力的技术视角,情报研究获得的知识反过来又给予其他技术领域的发展以引导。可见,无论从思想上、方法上、技术上,各领域之间的交叉点越来越多,虽然这种相互借鉴早就存在,但现在意识更强、手段更为综合。 其次是分析内容的扩展,这也是最为重要和显著的变化。在情报研究过程中,不仅仅局限于就本领域问题的分析而分析,而将所分析的内容置于一个更大的情景下做通盘考虑,从而得出更为严谨的结论。联合国的创新倡议项目GlobalPulse在其白皮书“BigDataforDevelopment:Opportunities&Challenges”[7]中指出,情境是关键,基于没有代表性样本而获得的结论是缺乏外部合法性的,即不能反映真实的世界。在情报研究领域,一些数据往往因为一些不可抗力的原因而不完整,如早期的科技数据,可能由于国际形势等外部因素,导致一些国家的科技信息无法获取,基于这样缺失的分析样本来评估该国的科技影响力,如果仅就数据论数据,无疑是会得“正确”的错误结论,这时应针对这样的异常情况,将研究问题放置在当时的时代背景下,揭示背后的原因,从其他方面收集信息来补充,才能得出符合实际的结论。也就是说,必须要考察不同时间戳下的相关信息,再对分析内容加以扩充,这实质是一种基于时间轴的扩展。另外,将内容扩展至本领域的上下游则是一种更为重要的扩展。例如,考察某项技术的发展前景,如果仅就该技术本身来讨论,可能会得出正面的结论,但如果结合特定地区人们对该技术的态度、当地的技术水平、物理条件、发展定位等,却可能会得出相反的结论。这就说明,在很多领域中,环境不同,发展程度不同,要解决的问题也就不同。一些地区当前关注的问题不一定就是其他地区要关注的问题,某些欠发达地区当前不一定就必须照搬另一些所谓发达地区的当前做法。这需要通盘考察,分析相关思想、观点和方法产生的土壤、使用的条件,结合当前环境再做出判断,否则可能会对决策者产生误导。
『捌』 为什么要考虑大数据环境下企业竞争情报研究的机遇和挑战
市场竞争大要考虑大数据环境下企业竞争情报研究的机遇和挑战。在解析失数据的基本内涵和多元价值基础上,从数据的属性角度剖析大数据给企业竞争情报工作带来的机遇。
『玖』 大数据背景下的信息安全问题探讨
大数据背景下的信息安全问题探讨
大数据具有体量巨大、类型繁杂、处理速度快、价值密度低四大特点,因此,对于个人来说,难以处理极其庞大的数据,只有国家和大型企业等组织或集团才有可能获取到各种敏感信息;大数据所搜集提取的个人信息可能连本人都不完全知晓,比如个人的行为特征、语言风格、爱好兴趣等。在大数据时代如何保护个人敏感信息或隐私,必将成为高难度的世界课题。
2013年6月,美国前中情局雇员斯诺登曝光了始于2007年小布什时期美国国家安全局和联邦调查局启动的代号为“棱镜”的秘密项目。美国国家安全局通过接入雅虎、谷歌、微软、苹果等9家美国互联网公司中心服务器,对邮件、图片、视频、电话等10类数据进行监控,以搜集情报,监视民众的网络活动。“棱镜”项目缘于2004年美国政府的“星风”监视计划。但是,当时小布什政府由于法律程序等敏感问题而做出让步,美国本土的监听项目有所缩减。为了“星风”计划的继续进行,小布什政府通过司法程序将“星风”监视计划分拆成由国家安全局执行的4个监视计划,包括“棱镜”、“主干道”、“码头”和“核子”,均交由美国家安全局执掌。“棱镜”项目用于监视互联网个人信息。“主干道”和“码头”项目负责存储和分析通信和互联网上数以亿兆计的“元数据”。元数据主要指通话或通信的时间、地点、使用设备、参与者等,不包括电话或邮件等的内容。“核子”项目负责内容信息的获取,截获电话通话者对话内容及关键词,通过拦截通话以及通话者所提及的地点,来实现日常的监控。由此可见,斯诺登不仅揭露了美国的大规模窃听计划,更揭示了大数据时代国家信息安全保护问题。大数据的分析与使用,无论对个人(如跟踪健康状况防范疾病)、对企业(如了解市场偏好以有效安排产品设计生产营销)乃至对国家(如防范疫情或恐怖主义)显然都有巨大的好处,从商业用途来说,谷歌、微软、雅虎等互联网公司,完全可以通过它们掌握到的数以百万计、千万计甚至亿万计的数据,经由“超级计算”,准确推断消费者的爱好及习惯、商品的销售额、疾病疫情的发展趋势。商业如此,在政治、经济、军事等方面亦存在诸多的用途和潜在利益。像“棱镜”计划里涉及的谷歌、雅虎、苹果、微软等大网站,人们每天由于各种业务需要,会把大量个人信息输入其中,但常常并不被事先告知数据的用途。而这些数据会被企业或政府用来进行一些特殊的计算或分析,如通过对大数据的分析预测来对人们尚未实施的行为进行惩罚。比如“大数据之父”舍恩伯格曾披露过一个例子:在美国有一个计划名为“预测式配警”,通过对大数据分析来预测美国某个城市的某条街道的某个时段是犯罪高峰时段,然后在那个位置部署更多的警力。从此该地区居民将长时间被监控,这是一种变相的侵犯或惩罚。他们不是因为做错事,而是因为某个计算机的算法预测他们可能做错事而被惩罚了,显然这是不公平的。美国国安局拥有的正是类似的一套基于“大数据”的新型情报收集系统,这套名为“无界爆料”的系统,以30天为周期,从全球网络系统中接收到970亿条讯息,再通过比对信用卡或者通讯记录等方式,能几近真实地还原个人的实时状况。当然,像谷歌这样的商业组织也有可能掌握同样量级的信息而进行商业预测分析。因此,必须建立一套规则予以规范和约束对大数据的收集和使用。第一,虽然这些信息储存在不同的服务器上,但这些数据是用户的资产,拥有权属于用户自己而不是这些公司,这是必须明确的,就像财产所有权一样,个人隐私数据也应该有所有权。第二,利用大数据、云计算技术给用户提供信息服务的公司或企业,需要把收集到的用户数据进行安全存储和传输,这是企业的责任和义务。第三,如果企业或政府要使用用户的信息,一定要让用户有知情权和选择权,泄露用户数据甚至牟利,不仅要被视作不道德的行为,而且是非法行为。大数据时代的数据存储和应用方式是跨地域甚至是跨国界的。作为国家层面要将大数据上升为国家战略,奥巴马政府在2012年3月将“大数据战略”上升为最高国策,像陆权、海权、空权一样,将对数据的占有和控制作为重要的国家核心能力。我国也应从国家高度重视大数据,在对其进行安全保护、政策制定需要重视三个方面:一是要正视数据霸权,要清醒认识到我国在网络控制权、关键技术和高端设备等方面,还受制于西方。二是要明确主权,数据作为一种重要的战略资源,无论是个人拥有还是国家拥有,都要纳入到主权范围里面来考虑。三是要有治权,因为有主权不一定能够管治。比如:数据存到国外,云计算跨越国境,可能不在你的主权范围之内。要区别对待不同的数据,对确需保护的数据,必须有切实可靠的手段进行有效管理。如果做不到对数据的有效管理,大数据就必然面临失控的危险。政策界定安全责任问题。大数据的安全问题涉及政府、相关企业、网络运营商、服务提供者,以及数据产生者、使用者等方方面面,必须对各自的安全责任有明晰的政策界定。信息安全风险存在于数据的全生命周期之中,从技术思路、产品开发、用户使用、服务管理,各个环节均要分担相应的安全责任。监管保障基础设施安全问题。大数据的发展离不开电信网络甚至工控系统等关键基础设施,其安全可靠同样依赖于这些基础设施,受供应链全球化、产业私有化的影响,网络与关键基础设施间的安全日趋复杂,一国的大数据可能存放在别国的网络中,一国的基础设施可能同时服务于多个国家,高度的全球相互依赖性,挑战着原有的国家主权观念。所以,关键基础设施的安全监管体系十分重要,我国需要尽快确立对供应链的实质性国家安全审查和对基础网络的常态化安全监管。
网络空间冲突管理问题。大数据的资源价值越来越高,围绕大数据的争夺和冲突就越来越激烈。大数据的生成、处理和利用方式,将极大改变各种冲突的表现方式和破坏烈度。通过立法与国际合作应对包括知识产权的保护、网络犯罪的处置、网络破坏活动特别是网络恐怖主义的打击以及网络战争的威胁。
『拾』 大数据在军事领域有哪些应用
在军事上,用小数据时代的理念和技术,很难与大数据时代的思维和技能相对抗。面对大数据时代的军事机遇和挑战,要么主动进击,要么被动跟进,难以置之度 外。其间的取舍与成败,首先有赖于思维变革,其要求全体军事人员尤其是指挥员,更加具备基于体系作战的系统思维、基于数据模型的精确思维及基于对战争进行 科学预设的前瞻思维。
大数据创新了军事管理方法,且这种创新是全方位的--除了可以提高包含阅兵在内的军事训练水平,还可以:
1.提高军事管理水平
管理大师戴明与德鲁克都曾提出:“不会量化就无法管理”。数据的根本价值之一,就是可作为管理依据。大数据应用的特点是强调分析与某事物相关的总体数据, 而不是抽取少量的数据样本;大数据关注事物的混杂性,而不追求事物的精确性;大数据注重事物的相关关系,而不探求其间的因果关系。
将大数据应用于军事领域,意味着军事管理将更加刚性,基本不受人为因素的影响,且更加自动化。所以说,大数据强军的内涵,本质上是军事管理科学化程度的提 高,即与小数据比起来,由于有了大数据,军事管理活动量化程度更高了,工具更加先进了,边界更加宽广了,管理质量、效率会随之更高。
2.丰富军事科研方法
通常人们研究战争机理、找寻战争规律的方法有三种,又称为三大范式:实验科学范式,在战前通过反复的实兵对抗演习来论证和改进作战方案;理论科学范式,采用数学公式描述交战的过程,如经隐段典的兰彻斯特方程;计算科学范式,基于计算机开发出模拟系统来模拟不同作战单元之间的交战场景。
但是,上述研究范式只能使人们感知交战的过程和结果,并未有效提高对海量数据的管理、存储和分析能力。
以大数据为核心技术的辩携拿数据挖掘模式被称为第四战争研究范式。人 们可以有效利用大数据,探寻信息化战争的内在规律,而不是被淹没在海量数据中一筹莫展。大数据研究范式由软件处理各种传感器或模拟实验产生的大量数据,将 得到的信息或知识存储在计算机中,基于数据而非已有规则编写程序,再利用包括量子计算机在内的各种高性能计算机对海量信息进行挖掘,由计算机智能化寻找隐 藏在数据中的关联,从而发现未知规律,捕获有价值的情报信息。
例如,在第一次海湾战争前,美军就利用改进的“兵棋”,对战争进程、结果及伤亡人数进行了推演,推演结果与战争的实际结果基本一致。而在伊拉克战争前,美 军利用计算机兵棋系统进行演携搭习,推演“打击伊拉克”作战预案。随后美军现实中进攻伊拉克并取得胜利的行动,也和兵棋推演的结果几乎完全一致。
作战模拟早已经从人工模式转变为计算机模式,再加上大数据,战前的模拟推演,从武器使用、战争打法到指挥手段,都可以清晰地显现,是非常好的战时决策依据。一旦发现作战计划有问题,可以及时调整,以确保实战伤亡最小并取得胜利。
3.加速型武器装备面世
大数据在武器装备上的广泛应用,意味着武器装备建设将从重视研发信息系统到重视数据处理与应用的转变,从注重信息系统的互联互通到注重信息系统的透明性互 操作的转变。当前武器装备的信息化程度越来越高,装备体系内各个节点之间的信息共享也越来越方便、可靠,但由此也带来了一些突出问题,如原始信息规模过 大、价值不够高、直接提取所需信息的难度增加等,从而使得武器装备体系在信息获取效率上大打折扣。在这种背景下产生的大数据为解决上述问题提供了有效方 法。
需要说明的是:大数据应用不仅意味着人们要以创新方式使用海量数据,还意味着人们要采用人工智能技术来处理自然文本和进行知识表述,以替代目前依赖专家和技术人员昂贵而又耗时的信息处理方式。
大数据与人工智能是一而二、二而一的关系。受益于大数据技术,武器装备体系将从战场上的信息使用者升级为高度智能化和自主化的系统。其具体流程为:经 过智能处理后的高价值信息进入战场网络链路后,与战场网络融为一体的武器装备体系能实时自动感知面临的有关威胁,各装备节点自动感知包括我情和敌情在内的 战场态势,在作战人员的有限参与下高度自主地分解作战任务,确定作战目标和行动方案,经过适当的审批流程后执行相关的作战行动。
在这方面走在前列的仍然是美军。美军大数据研究的第一个重要目标是通过大数据创建真正能自主决策、自主行动的无人系统。这一点已在无人机领域实现。美军希 望无人机可以完全摆脱人的控制而实现自主行动。美军2013年试飞的X-47B就是这一系统的代表,它已经可以在完全无人干预的情况下自动在航母上完成起 降并执行作战任务。
4.提升情报分析能力
19世纪初,军事战略家克劳塞维茨以人的认知局限为由,提出了“战争迷雾”概念。显然,“战争迷雾”即“数据迷雾”。信息战首先得消除“战争迷雾”。信息 战是体系对体系的战争,而这一体系是一个超级复杂的巨大系统,仅诸军兵种庞杂的武器装备和作战环境数据,就足以大到使普通的信息处理能力捉襟见肘;而敌我 对抗的复杂化,更是让数据量呈爆炸式增长,从而带来比传统战争更多的“数据迷雾”。可以说,信息化战争的机制深藏在“数据迷雾”中。
消除“战争迷雾”会提高指挥员的情报分析与军情预测能力。过去,由于可以掌握的数据不足,战争的不确定性很高,指挥员很容易陷在“战争迷雾”之中。而大数据最重要的价值之一是预测,即把数据算法运用到海量的数据上来预测事情发生的可能性。
具体而言,未来完全可能依托大数据分析处理技术和建构模型,通过数据挖掘模式,从海量数据中挖掘出有价值的信息,及时准确掌握敌方的战略企图、作战规律和 兵力配置,真正做到“知己知彼”,使战场变得清晰透明,从而拨开“战争迷雾”,达成运筹于帷幄之中、决胜于千里之外的作战目的。
对此趋势,很多国家及其军队都极为看重。例如,美军明确提出,要通过大数据将其情报分析能力提高100倍以上。如果这一目标实现,那么在这一领域其他国家 与美军的差距,将难以用简单的“代差”来描述。美军通过多年的发展,已拥有全球最先进的情报侦察系统,因为对海量情报数据的分析,曾是美军情报侦察能力的 瓶颈,而大数据正好能够帮助美军突破这一瓶颈。
大数据时代,往往不要求准确知道每一个精确的细节,只需了解事物的概略全貌即可。通过相关数据信息的大量积累,而不是对某个具体数据的精确分析,大数据技 术可以为我们提炼出事物运行的规律,并判断其发展趋势。例如,2011年美军击毙本·拉登的“海神之矛”行动,就有赖上千名数据分析员长达10年数据积累 的支撑。换言之,是大数据抓住了本·拉登。
5.引领指挥决策方式变革
管理的核心是决策。大数据带来的重要变革之一,是决策的思维、模式和方法的变革。建立在小数据时代基于经验的决策,将让位于大数据时代基于全样本数据的决策。
决策是进行数据分析、行动方案设计并最终选择行动方案的过程。军事决策建立在对敌情的正确分析预测之上,其目的是通过合理分配兵力兵器,优选打击目标,设计完成任务的最佳行动方法与步骤。
以往的战争,做出作战决策时缺少足够数据支持,甚至数据本身的真实性、准确性也难以保证。目前信息化条件下的战争,各种条件都变成了数据,这就要求指挥人 员必须掌握分析海量数据的工具和能力。以往,指挥人员更多的是依靠经验进行相对概略或粗放式决策。大数据的出现必将要求指挥人员以全新的数据思维来进行指 挥决策。这种决策将有几个特点:
一是准确。只要提供的数据量足够庞大真实,通过数据挖掘模式,就可以较为准确地把握敌方指挥员的思维规律,预测对手的作战行动,掌控战场态势的发展变化等。
二是迅速。大数据相关技术所提供的高速计算能力有助于指挥员更加迅速地设计行动方案。
三是自动化。针对特定的作战对手和作战环境,大数据系统可以自动对己方成千上万、功能互补的作战单 元或平台进行模块化编组,从而实现整体作战能力的最优化;面对众多性质不同、防护力不同且威胁度各异的打击目标,大数据系统可以自动对有限数量、有限强度 和有限精度的火力进行分配,以收获最大作战效益。
在大数据时代的战争中,军事专家、技术专家的光芒会因为统计学家、数据分析家的参与而变暗,因为后者不受旧观念的影响,能够聆听数据发出的“声音”。
总之,基于数据的定量决策将和基于经验的定性决策同样重要,基于经验的决策将很大程度上让位给全样本决策,基于大数据的决策手段将从辅助决策的次要地位上升到支撑决策的重要地位。
对此,美军的认识是最到位的。美军发布的《2013-2017年国防部科学技术投资优先项目》就将“从数据到决策”项目排在了第一位,凸显了大数据对其指挥决策方式的巨大影响。
6.优化作战指挥流程
网络日益普及的情况下,信息的流通与共享已不是难题,人们开始关注对信息的认识,及将信息转化为知识的能力。
与之相适应,军事信息技术也从关注“T”(Technology)的阶段,向关注“I”(Information)的阶段转变;从建设指挥自动化系统 (C4ISR),即指挥、控制、通信、计算机、情报及监视与侦察等信息系统,整体管理“战场信息的获取、传递、处理和分发”的全信息流程;发展至重视大数 据处理应用,综合集成数据采集、处理平台和分析系统,统一优化管理“战场数据采集、传递、分析和应用”的全数据流程。即通过对海量数据进行开发处理,大幅 度提高从中提取高价值情报的能力,从而实现对战场综合态势的实时感知、同步认知,进一步压缩“包以德循环”(OODA Loop),即观察-调整-决策-行动的指挥周期,缩短“知谋定行”时间,提高快速反应能力。
随着数据挖掘技术、大规模并行算法及人工智能技术的不断完善并广泛应用在军事上,情报、决策与作战一体化将取得快速进展。在武器装备上,将特别注重各作战 平台的系统融合和无缝链接,以保证战场信息的实时快速流转,缩短从“传感器到射手”的时间差,实现“发现即摧毁”的作战目标。
比如近几年迅速发展的无人机作战平台,其本质就是一个智能系统。其可以成建制地对实时捕获的重要目标进行“发现即摧毁”式的精确打击,还能通过融合情报的 前端和后端,使数据流程与作战流程无缝链接并相互驱动,构建全方位遂行联合作战的“侦打一体”体系,从而实现了体系化的“从传感器到射手”的重大突破。
7.推动战争形态的演变
大数据可以改变未来的战争形态。美军一直追求从传感器到平台的实时打击能力,追求零伤亡。
由大数据支撑的拥有自主能力的无人作战平台,将使得这些追求成为可能。例如,目前全世界最先进的无人侦察机“全球鹰”,能连续监视运动目标,准确识别地面 的各种飞机、导弹和车辆的类型,甚至能清晰分辨出汽车轮胎的类型。现今,美空军的无人机数量已经超过了有人驾驶的飞机,或许不久的将来,美军将向以自主无 人系统为主的,对网络依赖度逐渐降低的“数据中心战”迈进。
无人机能否做到实时地对图像进行传输非常关键。
目前,美国正使用新一代极高频的通讯卫星作为大数据平台的支撑。未来,无人机甚至有可能摆脱人的控制实现完全的自主行动。美军试验型无人战斗机X-47B就是这一趋势的代表,它已经可以在完全无人干预的情况下,自动在航母上完成起降并执行作战任务。
总之,基于大数据的实时、无人化作战,将彻底改变人类几千年来以有生力量为主的战争形态。
8.引导军事组织形式变革
大数据即大融合,它有望打破军种之间的壁垒,解决军队跨军种、跨部门协作的问题,真正实现一体化作战。
就组织形态而言,扁平结构、层次简捷、高度集成、体系融合应该更符合大数据时代的要求。军事方面的相关趋势有:
(1)网状化。军队的指挥体系逐步发展为“指挥网”,原先的“树状结构”变为 “网状结构”。一个师的指挥系统一旦被打垮,师以下各级可通过“网”与上级或其他作战单元联系。这就改变了传统军事指挥体系由“树干、树枝、树叶”编成的 组织形态,避免了机械化战争时期“打断一枝、瘫痪一片”的指挥弊端,有效提高了局部战争中的指挥效能。
(2)小型化。发达国家的陆军多由军、师、团、营体制向军、旅、营制转变,使作战集团更加轻便灵活,机动性更强。 根据部队的不同功能优化组合,基本作战单位不需要加强补充就能实施多种作战,从而全面提高应对多种安全威胁,完成多样化军事任务的能力。将营作为基本战术 “模块”,将旅作为基本合成单位,以搭积木方式进行编组,战时根据需要临时编组,看迅速生成担负不同作战任务的部队。
世界各主要国家都非常重视军队组织形态变革,并致力于发展新兴军兵种,及时设计和建设新型部队。
2009年,美国国防部宣布组建网络战司令部。2013年3月,美国网络战司令部司令亚力山大宣布,美国将增加40支网络战部队。美国、俄罗斯等国都在积极筹划或正在建设能在太空进行作战的“天军”部队、“机器人”部队。
随着新兴军兵种的建立,军队的组织形态将出现新面貌,未来战争的触角不断延伸,网络、电磁频谱领域的争夺方兴未艾,太空不再是寂寞世界,天战也不再遥远。
(3)一体化。军队信息化必然要求一体化,信息化程度越高,一体化特征越明显。适应新形势下强军目标的要求,我军必须对战斗力要素进行一体化整合,推进武装力量一体化、军队编成一体化、指挥控制一体化、作战要素一体化,提高整体效益。
9.大数据将使体系作战能力大幅提升
从作战手段角度看,大数据及其支撑的新型武器装备的应用,将丰富军队的作战体系;从作战效能角度看,大数据下的作战行动循环(包以德循环)所耗时间将大为缩短,更符合“未来战争不是大吃小,而是快吃慢”的制胜规律。相关变革的结果,将是军队体系作战能力大幅提升。
10.提升军队的信息化建设水平
大数据给了各国军队(尤其是像我军这样的信息化发展水平参差不齐的军队)一个契机,可以牵引、拉动自身的信息化建设向更高层次发展,同时拉齐整体水平,因为大数据意味着“整体”。
具体来说,应以提高决策速度、反应速度和联合作战能力为目标,以数据为中心,以搜索分析处理数据为中枢架构,自上而下建设军事“数据网络”;加快组建云计 算中心,把对大数据分析处理作为军事信息化建设的重中之重,努力建构精确分析处理大数据的硬件系统、软件模型,实现大数据“从数据转化为决策”的智能化和 瞬时化。
同时,也要抓好末端的单兵及单件武器装备的数据采集、存储设备设计,从而为海量数据的挖掘和整合奠定基