A. 大数据特点包括哪些
大数据技术是指从各种各样海量类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据具备以下4个特点:
一是数据量巨大。例如,人类生产的所有印刷材料的数据量仅为200PB。典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
二是数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。
三是处理速度快。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是价值密度低。以视频为例,一小时的视频,在不间断的测试过程中,可能有用的数据仅仅只有一两秒。
更多关于大数据特点包括哪些,进入:https://m.abcgonglue.com/ask/51ec1e1615833767.html?zd查看更多内容
B. 大数据的特点有哪些
根据《大数据时代》大数据的特点主要分为以下四点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)
一、Volume(大量)
大数据的特征其实是我们现在理解的海量数据。“大数据”在互联网行业是必备项:互联网公司在日常运营中生成、累积的用户网络行为的数据。比如社交电商平台每天的产生订单, 各个短视频、论坛、社区发布的帖子、评论及小视频, 每天发送的电子邮件, 以及上传的图片、视频与音乐,等等, 这些无数个体产生的数据规模很庞大,数据体量早已达到了PB级别以上,大数据的大量就是我们说的海量数据。
二、Velocity(高速)
随着网络传输速率不断攀升,从传统的百兆到千兆万兆网络,移动网络也已经逐步升级到了5G时代,数据的产生和传输都越来越高速。所以客户越来越强调实时反馈,就是无论是在线看电影还是在线直播、刷视频都要求低延时,对于传输、存储、播放都要求高度,人们和企业都越来越依赖互联网,网上的实时交易、在线培训、社交等都与每个人息息相关,云计算平台大数据平台担负着高质量的服务功能,运营方还是服务商对于海量数据,谁能提供更快的速度,谁就能获得更多的用户和订单!
三、Variety(多样)
数据多样性其种类包括文字、图片、视频、语音、地图定位信息、网络日志信息等等,正是多样化的数据形式决定了大数据的更高价值。对于数据挖掘和数据资产越来越受到企业的重视,多类型的数据对数据的存储和处理能斗做力都提出了更高的要求。目前应用最广泛的就是智能推荐系统,如今日头条,网络、抖音等,这些平台都会通过对用户的行为进行分析,从而智能地推荐用户喜欢的内容页面。
四、Value(低价值密度)
随着物联网的广泛应用,往往人们需要从仿销脊海量的数据中提取相关联的有用的信息,所以对于大数据的机器学习深度学习算法可以发挥巨大作用。大数据最大的价值备渗在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识。
C. 大数据的四个基本特征
大数据的四个基本特征如下:
1、数据量大(Volume)
大数据的显而易见的特征就是其庞大的数据规模。随着信息技术的发展,互联网规模的不断扩大,每个人的生活都被记录在了大数据之中,由此数据本身也呈爆发性增长。其中大数据的计量单位也逐渐发展,现如今对大数据的计量已达到EB了。
2、类型多样(Variety)
在数量庞大的互联网用户等因素的影响下,大数据的来源十分广泛,因此大数据的类型也具有多样性。大数据由因果关系的强弱可以分为三种,即结构化数据、非结构化数据、半结构化数据,它们统称为大数据。资料表明,结构化数据在整个大数据中占比较大,高达百分之七十五,但能够产生高价值的大数据却是非结构化数据。
3、价值密度(Value)
大数据所有的价值在大数据的特征中占核心地位,大数据的数据总量与其价值密度的高低关系是成反比的。同时对于任何有价值的信息,都是在处理海量的基础数据后提取的。在大数据蓬勃发展的今天,人们一直探索着如何提高计算机算法处理海量大数据,提取有价值信息的的速度这一难题。
4、高速(Velocity)
大数据的高速特征主要体现在数据数量的迅速增长和处理上。与传统媒体相比,在如今大数据时代,信息的生产和传播方式都发生了巨大改变,在互联网和云计算等方式的作用下,大数据得以迅速生产和传播,此外由于信息的时效性,还要求在处理大数据的过程中要快速响应,无延迟输入、提取数据。
大数据的重要性
(一)大数据是推动数字经济发展的关键生产要素
发展数字经济是实现经济高质量发展、构建现代化经济体系的必由之路。推进经济社会数字化转型实际上就是从工业经济时代向数字经济时代的转变。在这一转变过程中,数据发挥着至关重要的作用。
党的十九届四中全会首次将数据作为生产要素参与收益分配,是一次重大理论创新,标志着数据从技术要素中独立出来成为单独的生产要素。数据在提高生产效率、实现智能生产、提升要素配置效率、激发新动能、培育新业态方面具有巨大应用潜力,成为推动数字经济发展的创新动力源。
(二)大数据是重塑国家竞争优势的重大发展机遇
世界各国都已充分认识到大数据对于国家的战略意义,并早早开始布局。国家间的竞争将从资本、土地、资源的争夺转变为技术、数据、创新的竞争。
我国是数据资源大国,2010年我国数据占全球比例为10%,2013年占比为13%,2020年占比将达20%。大力发展大数据有利于将我国数据资源优势转化为国家竞争优势,实现数据规模、质量和应用水平同步提升,发掘和释放数据资源的潜在价值,有效提升国家竞争力。
D. 互联网大数据的五个特征是什么
规模大、速度快、多样性、价值性、融合性
E. 大数据有什么特点
1、 大量
随着信息技术的飞速发展,数据开始爆发式增长。社交网络、移动网络和各种智能工具已经成为数据的来源。近4亿淘宝会员每天产生约20tb的商品交易数据。因此,迫切需要智能算法、强大的数据处理平台和新的数据处理技术来实时统计、分析、预测和处理此类大规模数据。
2、 高速
是通过算法对数据进行逻辑处理的速度非常快。1秒法则能够快速地从各种类型的数据中获取高价值的信息,这与传统的数据挖掘技术有着本质的区别。而这些数据需要及时处理,因为花费大量资金来存储影响较小的历史数据并不划算。
3、 多样性
如果只有一个数据,那么这些数据就没有价值。广泛的数据源决定了大数据形式的多样性。任何形式的数据都可以发挥作用。目前应用最广泛的推荐系统是淘宝、网易云音乐、今日头条等,这些平台会分析用户的日志数据,进一步推荐用户喜欢的内容。
4、 价值
这也是大数据的核心特征。在现实世界中产生的数据中,有价值的数据只占很小的比例。如果你拥有中国所有20-35个年轻人的1PB以上的在线数据,自然会有商业价值。例如,通过分析这些数据,我们可以了解他们的爱好,并指导产品的发展方向。如果我们有中国数百万患者的数据,我们可以通过分析这些数据来预测疾病的发生。这些就是大数据的价值。
关于大数据有什么特点,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
F. 大数据的特点 大数据的特点有什么
1、大数据有4个特点,为别为:Volume(大量)、Variety(多样)、Velocity(高速)、Value(价值),一般我们称之为4V。
2、大量。大数据的特征首先就体现为“大”,从先Map3时代,一个小小的MB级别的Map3就可以满足很多人的需求,然而随着时间的推移,存储单位从过去的GB到TB,乃至现在的PB、EB级别。随着信息技术的高速发展,数据开始爆发性增长。社交网络(微博、推特、脸书)、移动网络、各种智能工具,服务工具等,都成为数据的来源。淘宝网近4亿的会员每天产生的商品交易数据约20TB;脸书约10亿的用户每天产生的日志数据超过300TB。迫切需要智能的算法、强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据。
3、多样。广泛的数据来源,决定了大数据形式的多样性。任何形式的数据都可以产生作用,目前应用最广泛的就是推荐系统,如淘宝,网易云音乐、今日头条等,这些平台都会通过对用户的日志数据进行分析,从而进一步推荐用户喜欢的东西。日志数据是结构化明显的数据,还有一些数据结构化不明显,例如音频、视频等,这些数据因果关系弱,就需要人工对其进行标注。
4、高速。大数据的产生非常迅速,主要通过互联网传输。生活中每个人都离不开互联网,也就是说每天个人每天都在向大数据提供大量的资料。并且这些数据是需要及时处理的,因为花费大量资本去存储作用较小的历史数据是非常不划算的,对于一个平台而言,也许保存的数据只有过去几天或者一个月之内,再远的数据就要及时清理,不然代价太大。基于这种情况,大数据对处理速度有非常严格的要求,服务器中大量的资源都用于处理和计算数据,很多平台都需要做到实时分析。数据无时无刻不在产生,谁的速度更快,谁就有优势。
5、价值。这也是大数据的核心特征。现实世界所产生的数据中,有价值的数据所占比例很小。相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识,并运用于农业、金融、医疗等各个领域,从而最终达到改善社会治理、提高生产效率、推进科学研究的效果。
G. 大数据的五大特点是什么
IBM提出了大数据”5V”特点:
一、Volume:数据量大,包括采集、存储和计算的量都非常大。大数据的枯迅中起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
二、Variety:种类和来源多样化。包括结构化、半结构化和非结构化数昌宽据,具体表现为网络日志、音频、视频、图片、没山地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
三、Value:数据价值密度相对较低,或者说是浪里淘沙却又弥足珍贵。随着互联网以及物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何结合业务逻辑并通过强大的机器算法来挖掘数据价值,是大数据时代最需要解决的问题。
四、Velocity:数据增长速度快,处理速度也快,时效性要求高。比如搜索引擎要求几分钟前的新闻能够被用户查询到,个性化推荐算法尽可能要求实时完成推荐。这是大数据区别于传统数据挖掘的显著特征。
五、Veracity:数据的准确性和可信赖度,即数据的质量。
————————————————
版权声明:本文为CSDN博主「arsaycode」的原创文章.........