❶ 大数据主要学习什么呢
大数据技术与应用专业旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。
大数据技术与应用专业的学生需要学习的内容有面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、java编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。
2大数据技术专业的就业方向
1、互联网电商方向
作为当前最热门的风口,互联网电商是互联网领域应用于实践最多的地方,也是积累技术资源最丰富、资金最雄厚、人才需求量最大的部分。大数据技术与应用专业毕业生可以从事互联网电商运营维护、日常管理、消费大数据分析、金融数据风控管理等相关技术工作。目前大到已经上市的头部电商平台小到社区电商,这些技术人才的缺口都比较大。
2、零售金融方向
零售金融与互联网电商虽然同属于消费大范畴领域,但是具体而言,零售电商的范围要小于互联网电商,比互联网电商更需要精准对接消费群体和消费群体的爱好、收入等特征。大数据技术与应用专业毕业生可以从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融等领域的数据分布式程序开发、大数据集成平台的应用、开发等方面的工作。适合在零售金融企业承担相关技术服务工作,也可在IT领域从事计算机应用工作。
❷ 大数据专业主要学什么
“大复数据”简单来说,就是一些制把我们需要观察的对象数据化,然后把数据输入计算机,让计算机对这些大量的数据进行分析之后,给出我们一些结论。
①JavaSE核心技术
②Hadoop平台核心技术、Hive开发、HBase开发
③Spark相关技术、Scala基本编程
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习
⑤大数据项目开发实战,大数据系统管理优化
⑥云平台开发技术
整体来说,大数据课程知识点多,课程难度较大。虽然是0基础入门,但企业对大数据人才招聘要求高,至少需要本科学历,建议本科及以上学历同学报名。
南京北大青鸟祝你学有所成!
北大青鸟中博软件学院小班教学实拍
❸ 大数据主要学什么
静态网页基础(HTML+CSS)
主要技术包括:html常用标签、CSS常见布局、样式、定位等、静态页面的设计制作方式等。
JavaSE+JavaWeb
主要技术包括:java基础语法、java面向对象(类、对象、封装、继承、多态、抽象类、接口、常见类、内部类、常见修饰符等)、异常、集合、文件、IO、MYSQL(基本SQL语句操作、多表查询、子查询、存储过程、事务、分布式事务)、JDBC、线程、反射、Socket编程、枚举、泛型、设计模式。
前端框架
主要技术包括:Java、Jquery、注解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Maven、easyui。
企业级开发框架
主要技术包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬虫技术nutch,lucene,webService CXF、Tomcat集群和热备 、MySQL读写分离
初识大数据
主要技术包括:大数据前篇(什么是大数据,应用场景,如何学习大数据库,虚拟机概念和安装等)、Linux常见命令(文件管理、系统管理、磁盘管理)、Linux Shell编程(SHELL变量、循环控制、应用)、Hadoop入门(Hadoop组成、单机版环境、目录结构、HDFS界面、MR界面、简单的SHELL、java访问hadoop)、HDFS(简介、SHELL、IDEA开发工具使用、全分布式集群搭建)、MapRece应用(中间计算过程、Java操作MapRece、程序运行、日志监控)、Hadoop高级应用(YARN框架介绍、配置项与优化、CDH简介、环境搭建)、扩展(MAP 端优化,COMBINER 使用方法见,TOP K,SQOOP导出,其它虚拟机VM的快照,权限管理命令,AWK 与 SED命令)
大数据数据库
主要技术包括:Hive入门(Hive简介、Hive使用场景、环境搭建、架构说明、工作机制)、Hive Shell编程(建表、查询语句、分区与分桶、索引管理和视图)、Hive高级应用(DISTINCT实现、groupby、join、sql转化原理、java编程、配置和优化)、hbase入门、Hbase SHELL编程(DDL、DML、Java操作建表、查询、压缩、过滤器)、细说Hbase模块(REGION、HREGION SERVER、HMASTER、ZOOKEEPER简介、ZOOKEEPER配置、Hbase与Zookeeper集成)、HBASE高级特性(读写流程、数据模型、模式设计读写热点、优化与配置)
实时数据采集
主要技术包括:Flume日志采集,KAFKA入门(消息队列、应用场景、集群搭建)、KAFKA详解(分区、主题、接受者、发送者、与ZOOKEEPER集成、Shell开发、Shell调试)、KAFKA高级使用(java开发、主要配置、优化项目)、数据可视化(图形与图表介绍、CHARTS工具分类、柱状图与饼图、3D图与地图)、STORM入门(设计思想、应用场景、处理过程、集群安装)、STROM开发(STROM MVN开发、编写STORM本地程序)、STORM进阶(java开发、主要配置、优化项目)、KAFKA异步发送与批量发送时效,KAFKA全局消息有序,STORM多并发优化
SPARK数据分析
主要技术包括:SCALA入门(数据类型、运算符、控制语句、基础函数)、SCALA进阶(数据结构、类、对象、特质、模式匹配、正则表达式)、SCALA高级使用(高阶函数、科里函数、偏函数、尾迭代、自带高阶函数等)、SPARK入门(环境搭建、基础结构、运行模式)、Spark数据集与编程模型、SPARK SQL、SPARK 进阶(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA与SOCKET、编程模型)、SPARK高级编程(Spark-GraphX、Spark-Mllib机器学习)、SPARK高级应用(系统架构、主要配置和性能优化、故障与阶段恢复)、SPARK ML KMEANS算法,SCALA 隐式转化高级特性
❹ 大数据技术主要学什么
大数据技术专业以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等。
3、大数据技术与应用研究方向是将大数据分析挖掘与处理、移动开发与架构、软件开发、云计算的前沿技术相结合的“互联网+"前沿科技专业。该专业毕业生可从事大数据项目实施工程师、大数据平台运维工程师、大数据平台开发工程师之类的工作。
4、本专业旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。
❺ 大数据主要学什么
大数据主要学数学分析、高等代数、普通物理数学与信息科学概论等。
大数据结构:
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成键斗为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。
大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
❻ 大数据专业主要学什么
大数据专业一般指大数据采集与管理专业。 大数据采集与管理专业是从大数据应用的数据管理、系统开发、海量数据分析与挖掘等层面系统地帮助企业掌握大数据应用中的各种典型问题的解决办法的专业。
❼ 大数据技术专业学什么
大数据技术专业主要包括以下方面的学习内容:
数据库乱并绝技术: 数据库是存储和管理数据的关键技术。大数据技术专业需要学习SQL和NoSQL等不同类型的数据库技术,以及如何优蔽梁化数据库性能和处理海量数据的技术。
数据挖掘和机器学习: 数据挖掘和机器学习是大数据处理的核心技术。学习数据挖掘和机器学习技术可以帮助专业人员处理和分析大规模的数据集,发现数据中的模式和规律。
大数据存储和管理: 大数据需要用分布式存储和管理系统来存储和管理数据。需要学习Hadoop、Spark、Hive、HBase、Cassandra等分布式存储和管理系统的使用和优化技术。.
数据可视化和分析: 数据可视化和分析可以帮助专业人员将大数据转化为易于理解的信息。需要学习数据可视化和分析工具,例如Tableau、Power BI等。
大数据安全: 大数据安全是大数据技术中的一个重要问题。需要学习数据安全策略、数据加密技术、身份认证和访问控制等安全技术。
云计算和容器化技术: 云计算和容器化技术可以帮助专业人员管理和部署大规模的应用程序和服务。需要学习云计算和容器化技术,例如Docker、Kubernetes、AWS、Azure等云计算平台和服务。
综上所述,大数据技术专业需要学习的知识涵盖数据库技术、数据挖掘和机器学习、大数据存储和管理、数据可视化和分析、大数据安全、云计算和容器化技术等方面。通过掌握这些技术,可以更好地处哗姿理和分析大规模的数据集,为企业提供更好的数据决策和业务价值。
想要系统学习,你可以考察对比一下开设有相关专业的热门学校免费获取资料好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。
祝你学有所成,望采纳。
北大青鸟中博学生课堂实录
❽ 大数据专业主要学什么
首先,大数据是一个比较典型的交叉学科,选择大数据专业需要学习三大块内容,包括数学、统计学和计算机,所以整体的知识量还是比较大的,而且也有一定的学习难度,如果数学基础比较薄弱,选择大数据专业还是要慎重一些。
大数据专业在专业课的设置上会涉及到很多计算机课程,包括程序设计、数据结构、算法设计、机器学习等内容,不同高校还会结合自身的实际情况,增加一些与大数据相关的课程,比如财经类大学往往还会设置一些经济、金融类与大数据相结合的课程。
对于本科阶段选择大数据专业的同学来说,要想提升自身的就业竞争力,可以从以下几个方面入手:
第一:选择一个主攻方向。大数据专业虽然学习的内容比较多,但是本科阶段的专业性并不算太强,如果学生没有一个主攻方向,很容易导致知识面广但是却不精的情况,这对于就业会产生较大的影响。对于本科生来说,在选择主攻方向的时候,可以结合自身的能力特点和兴趣爱好,同时也要重点考虑一下学校的优势领域。
第二:重视程序开发能力的提升。当前大数据领域正在陆续释放出很多开发岗位,相信随着工业互联网的发展,未来大数据开发岗位的人才需求量依然有较大的提升空间,所以重视程序开发能力会在一定程度上提升自身的就业竞争力。
第三:考研。当前大数据技术正处在落地应用的初期,所以行业领域更关注以研究生为代表的高端人才,而且未来产业领域也会需要大量的高端应用型人才(专硕),所以大数据专业的本科生,如果想有更大的发展空间,可以考虑读一下研究生。
❾ 大数据具体学什么
大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术等。
主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。
大数据旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。
大数据岗位:
1、大数据系统架构师
大数据平台搭建、系统设计、基础设施。
技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。
2、大数据系统分析师
面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。
技能:人工智能、机器学习、数理统计、矩阵计算、优化方法。
3、hadoop开发工程师
解决大数据存储问题。
4、数据分析师
不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员,在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
5、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等,经常会用到的语言包括Python、Java、C或者C++。