导航:首页 > 网络数据 > 大数据分析平台案例

大数据分析平台案例

发布时间:2023-05-27 09:51:07

『壹』 大数据和智慧交通有哪些应用的案例

智慧交通的应用案例

根据ITS114的不完全统计,截至2015年12月31日,包括城市智慧交通和高速公路机电市场的全年千万项目统计规模为182.5亿,其中主要分为四大市场1.交通管控市场千万项目规模为84.24亿。2.智慧交通/智能运输市场千万项目规模为20.33亿。3.高速公路机电市场千万项目规模为75.8亿。4.平安城市千万项目规模为56.6亿。以上四个市场都有着很多的智慧交通方面的应用案例。

具体的在交通管控市场方面, 当前各个省积极构建的交通运行监测与应急指挥系统,还有围绕着视频、图像分析,从而实现在治安、交通、工业制造、汽车、人工智能等等诸多领域的应用亦是智慧交通的典型案例。如深圳榕享的"交通仿真与智能管控机器人"可实时采集视频检测数据与线圈检测数据,将采集的交通流数据、信号配时等数据输入到建立的仿真路网模型中,进行实时的交通系统仿真。通过一体化交通仿真模型,机器人能快速找出路网拥堵点以及分析路网的常发性拥堵点,并对交通流运营状况的演变进行预测和分析。在交通仿真与智能管控机器人平台上,还可对城市的任意交叉口的交通环境进行设置,周边居民可将相关建议"告知"机器人,实时模拟交叉口改良效果,实现全民参与、全民实践、全民创新的交通管理新模式。

智慧交通/运输方面各种“专车”“快车”“拼车”“代驾”平台类和软件数据类的实例比比皆是,如我们都熟知的“滴滴快递”“uber"“e代驾”等app应用。

交通工具新型技术案例方面:如无人驾驶、自动驾驶、智能车等等;在2015年12月互联网大会上李彦宏展示的无人车,李书福展现的自动驾驶技术都体现了当前智能交通工具的发展。 更近一点的是,汽车电子标识、ETC、车路协同。2015年的新能源客车市场呈爆发性增长,新能源客车销量达到37363辆,同比增长213.19%,同时2015年国务院印发《新能源公交车推广应用考核办法(试行)》、《电动汽车充电基础设施发展指南》等等政策文件,可预见的是新能源汽车将会造就一个巨大的市场,建立在新能源汽车之上的车联网也将搭上顺风车。

平安城市也有很多已经成型的智慧交通案例。平安城市是基于GIS数字地图技术,高度整合治安监控、智能交通、数字城管、应急指挥等子系统,改变传统的静态管理和单点管理,实现实时、动态的联动管理新模式,实现了整个城市的治安、交通、城管、应急联动等各个职能部门的联动,建立了高效的城市部门联动机制,提高了城市的集成化、智慧化管理水平。根据高清视频监控系统的特点和应用需求,结合当前与今后一定时期内图像监控系统与图像应用系统的发展需要,建设一套先进的平安城市综合应用平台,为指挥调度、调查取证、应急处置、交通管理等多种后台应用提供及时、可靠的视频图像信息,服务于实战。市面上常见的平安城市系统具备的主要功能大部分都有:人脸卡口功能;交通事件检测功能;智能检索功能;道路违法抓拍功能;车辆稽查布控功能;非现场执法;分析研判功能;交通事态监控功能;视频质量检测功能;智能应用管理功能;数据格式及通信功能;远程控制功能;指挥调度功能;勤务管理功能; 设备运行状态监测功能。

大数据方面的应用案例

在医疗方面,纽约的mountsinai医院利用数千名患者的数据、历年汇报的流感爆发数据等数据与病毒的变异过程做交叉比对。通过这种工作,科学家和医生可以预测病毒如何传播,以及对抗这些病毒的最佳途径;甚至有可能使用预测分析来判断病毒的传播方式,然后采取行动来限制这一传播。据说这家医院有望在未来阻止流感的发生。

在交通方面,浙江某城市与英特尔合作,安装了1000个数字监控设备,100个智能监测点系统,超过300个检查点的电子警察,和500多个视频监控系统。通过更有效地监测交通和拥堵数据,改善交通流量,减少道路交通事故。

在废物处理方面, 英国曼彻斯特垃圾处理局有一套系统,能够利用数据使得产生的垃圾被尽可能多的再次利用。通过对来自不同地区的卡车进出加工厂时进行称重,能够了解每个地区所产生的垃圾数量。这些数据帮助当局出台了相应的政策,鼓励那些特定的社区更好的垃圾回收和垃圾减量。

在建筑方面, 住房慈善机构hact从400,000座住房中持续不断地收集数据,并进行了各种数据分析。通过数据来发现设计、建造、布局中存在的潜在问题,进而在建造新的楼宇时优化相关的参数,避免这些问题,改进政府保障房的的维修,规划空间合理使用。

智能应用服务,Google提供的大数据分析智能应用包括客户情绪分析、交易风险(欺诈分析)、产品推荐、消息路由、诊断、客户流失预测、法律文案分类、电子邮件内容过滤、政治倾向预测、物种鉴定等多个方面。据称,大数据已经给Google每天带来2300万美元的收入。例如,一些典型应用如下:

(1)基于Map Rece,Google的传统应用包括数据存储、数据分析、日志分析、搜索质量以及其他数据分析应用。

(2)基于Dremel系统, Google推出其强大的数据分析软件和服务 — BigQuery,它也是Google自己使用的互联网检索服务的一部分。Google已经开始销售在线数据分析服务,试图与市场上类似亚马逊网络服务(Amazon Web Services)这样的企业云计算服务竞争。这个服务,能帮助企业用户在数秒内完成万亿字节的扫描。

(3)基于搜索统计算法,Google推出搜索引擎的输写纠错、统计型机器翻译等服务。

(4)Google的趋势图应用。通过用户对于搜索词的关注度,很快的理解社会上的热点是什么。对广告主来说,它的商业价值就是很快的知道现在用户在关心什么,他们应该在什么地方投入一个广告。据此,Google公司也开发了一些大数据产品,如“Brand Lift in Adwords”、“Active GRP”等,以帮助广告客户分析和评估其广告活动的效率。

(5)Google Instant。输入关键词的过程,Google
Instant 会边打边预测可能的搜索结果。

谷歌的大数据平台架构仍在演进中,追去的目标是更大数据集、更快、更准确的分析和计算。这将进一步引领大数据技术发展的方向。

在竞选方面,直到2012年,奥巴马的数据团队对数以千万计的选民邮件进行了大数据挖掘,精确预测出了更可能拥护奥巴马的选民类型,并进行了有针对性的宣传,从而帮助奥巴马成为了美国历史上唯一一位在竞选经费处于劣势下实现连任的总统。只要数据量够大,够及时,挖掘够深刻,就可以洞悉每个选民的投票几率。

在教育方面,"以物联网、云计算等综合技术的成熟为基础,在学生管理数据库中挖掘出有价值的数据,经过过程性和综合性的考虑,找到学生各种行为之间的内在联系,考量背后的逻辑关系,并作出恰当的教学决策。以某集团最新出版的全球少儿美语旗舰课程为例,引入了首款应用于少儿英语学习领域的MyEnglishLab在线学习辅导系统(以下简称MEL),应用大数据技术全程实时分析学生个体和班级整体的学习进度、学情反馈和阶段性成果,从而及时找到问题所在对症下药,实现对学习过程和结果的动态管理。

『贰』 大数据攻略案例分析及结论

大数据攻略案例分析及结论

我们将迎来一个“大数据时代”。与变化相始终的中国企业,距离这场革命还有多远?而追上领先者又需要多快的步伐?

{研究结论}

■大数据营销的本质是一个影响消费者购物前心理路径的问题,而这在大数据时代前很难做到。

■对于传统企业而言,要打通线上与线下营销,实现新的商业模式,如O2O等,离不开大数据。

■虽然大数据应用往往集中于大数据营销,但对于一些企业,大数据的应用早已超越了营销范畴,全面进入了企业供应链、生产、物流、库存、网站和店内运营等各个环节。

■对于大部分企业,由于数据分析人员与业务人员之间的彼此视角与思考方向不同,大数据分析和运营之间存在脱节情况,这是大数据无法用于企业运营最大的阻力

■对于大多数互联网公司来说,大数据量、大用户量是一个相互促进,强者越强的循环过程。

■对于大型互联网平台,大数据已经成为其生态循环中的血液,对于这些企业,最重要

的不是如何利用大数据改进自身运营,而是利用大数据更好地繁荣平台生态。

■对于平台企业,它们的大数据策略正逐渐从大数据运营,向运营大数据转变,前者和

后者的差别在于,前者只是运营改进的动力,而后者则成为企业实现未来战略的核心资源。

我们都已被反复告知:我们将迎来一个“大数据时代”。

大数据应用,将和云计算、3D打印这些技术变革一样,颠覆既有规则,并成为先行企业的制胜关键。

与变化相始终的中国企业,距离这场革命还有多远?而追上领先者又需要多快的步伐?

来自于互联网、移动互联网、物联网传感器、视频采集系统的数据正海量增长,汇成大数据的海洋,相伴的是海量数据存储、分析技术的突破性发展,所有这一切都给企业的应用带来了无限可能性。

中国企业家研究院对当前中国企业大数据应用的状况进行了归纳分类,以帮助企业了解实际应用大数据时的困局难点,并提供领先企业的典型案例以资借鉴。

表1

表2

大数据运营—企业提升效率的助推力

对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量辩笑亏数据扑面而至。于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。大数据运营应用中,大数据的应用分为三类:用于企业外部营销、用于内部运营,以及用于领导层决策。

一、大数据营销

大数据营销的本质是影响目标消费者购物前的心理路径,它主要应用在三个方面:1、大数据渠道优化,2、精准营销信息推送,3、线上与线下营销的连接。在消费者购物前,通过各种方式,直接介入其信息收集和决策过程。而这种介入,是建立在对于线上与线下海量用户数据分析的基础之上。相比传统狂轰滥炸或等客上门的营销,大数据营销无论在主动性和精准性方面,都有非常大的优势。它是目前主要的大数据应用领域。

大数据营销不仅仅是用大数据找出目标顾客,向其发布促销信息,它还可以做到:

实现渠道优化。根据用户的互联网痕迹进行渠道营销效果优化,就是根据互联网上顾客的行为轨迹来找出哪个营销渠道的顾客来源最多,哪个来源顾客实际购买量最多,是否是目标顾客等等,从而调整营销资源在各个渠道的投放。例如东风日产,它利用对顾客来源的追踪,来改进营销资源在各个网络渠道如门户网站、搜索和微博的投放。

精准营销信息携神推送。精准建立在对海量消费者的行为分析基础之上,消费者网络浏览、搜索行为被网络留下,线下的购买和查看等行为可以被门店的POS机和视频监控记录,再加上他们在购买和注册过程中留下的身份信息,在商家面前,正逐渐呈现出消费者信息的海洋。

一些企业通过收集海量的消费者信息,然后利用大数据建模技术,按消费者属升猛性(如所在地区、性别)和兴趣、购买行为等维度,挖掘目标消费者,然后进行分类,再根据这些,对个体消费者进行营销信息推送。比如孕妇装品牌十月妈咪通过对自己微博上粉丝评论的大数据分析,找出评论有“喜爱”相关关键词的粉丝,然后打上标签,对其进行营销信息推送。京东商城副总经理李曦表示:“用大数据找出不同细分的顾客需求群,然后进行相应的营销,是京东目前在做的事情。”小也化妆品将自身网站作为收集消费者信息的雷达,对不同消费者推荐相应的肌肤解决方案,创始人肖尚略希望在未来,大数据营销能替代网站的作用,真正成为面向顾客的前端。

打通线上线下营销。一些企业将互联网上海量消费者的行为痕迹数据与线下购买数据打通,实现了线上与线下营销的协同。比如东风日产,线上与线下的协同营销方式为:其门户网站带来订单线索,而通过这些线索,服务人员进行电话回访,从而推动顾客在线下交易。在此过程中,东风日产记录了消费者进入、浏览、点击、注册、电话回访和购买各个环节的数据,实现了一个横跨线上线下,以大数据分析为支持的,营销效果不断优化的闭环营销通路。而国双科技,衡量某一地区线下促销活动的效果,就是看互联网上,来自这个地区对于促销内容的搜索量。一些企业,通过鼓励线下顾客使用微信和Wi-Fi等可追踪消费者行为和喜好的设备,来打通线上与线下数据流,银泰百货计划铺设Wi-Fi,鼓励顾客在商场内使用,然后根据Wi-Fi账号,找出这个顾客,再通过与其它大数据挖掘公司合作,以大数据的手段,发掘这个顾客在互联网的历史痕迹,来了解这个顾客的需求类型。

二、大数据用于内部运营

相比大数据营销,大数据在内部运营中的应用更深入,对于企业内部的信息化水平,以及数据采集和分析能力的要求更高。本质上,是将企业外部海量消费者数据与企业内部海量运营数据联系起来,在分析中得到新的洞察,提升运营效率。(详见P96表5:大数据在内部运营中的应用)

表5

三、大数据用于决策

在大数据时代,企业面对众多新的数据源和海量数据,能否基于对这些数据的洞察,进行决策,进而将其变成一项企业竞争优势的来源?同大数据营销和大数据内部运营相比,运用大数据决策难度最高,因为它需要一种依赖数据的思维习惯。

已有少数企业开始尝试。比如国内一些金融机构在推出一个金融产品时,会广泛分析该金融产品的应用情况和效果、目标顾客群数据、各种交易数据和定价数据等,然后决定是否推出某个金融产品。

但是,中国企业家研究院在调研中发现,目前中国企业当中,大数据决策的应用非常之少,许多企业领导者进行决策时,仍习惯于凭借历史经验和直觉。

大数据产品——企业利润滋长的新源泉

大数据除了用于运营外,还能够与企业产品结合,成为企业产品背后竞争力的核心支持或者直接成为产品。提供大数据产品的企业分为两类,直接提供大数据产品的企业,以及将大数据作为产品和服务核心支撑的企业。前者主要为大数据产业链中提供数据服务的参与者,包括数据拥有者、存储企业,挖掘企业、分析企业等,后者则主要是那些以大数据为产品核心支撑的企业,它们大多是互联网企业,其产品和服务先天就有大数据基因,这些企业包括搜索引擎、在线杀毒、互联网广告交易平台以及众多植根于移动互联网之上,为用户提供生活和资讯服务的APP等。

表3

表4

一、大数据作为产品核心支持

它们主要在以下几方面使用大数据:

1、提供信息服务。很多互联网企业通过对海量互联网信息和线下信息的整合和分析,为个人和企业提供信息服务,典型的如网络、去哪儿、一淘、高德地图、春雨医生等等。在美国,一些互联网企业甚至根据大数据提供更深度的预测信息服务,美国科技创新公司farecast,通过分析特定航线机票的价格,帮助消费者预测机票价格走势。

2、分析用户的个性化需求,借此提供个性化产品和服务,或者实现更精准的广告。典型的有移动社交工具陌陌、网络、腾讯、广告交易平台品友互动以及一些互联网游戏商。这种应用往往先是收集海量用户的互联网行为数据,将用户分类,根据不同类型的用户,提供个性化的产品,或者提供个性化的促销信息。比如网易等门户网站推出了订阅模式,让使用者按照个人喜好方便地定制和整合不同来源的信息。

3、增强产品功能。对于很多互联网产品,如杀毒软件、搜索引擎等等,海量数据的处理能够让产品变得更聪明更强大,如果没有大数据,产品的功能就大大减弱。比如奇虎360公司的360杀毒软件,凭借每天海量的杀毒处理,建立了庞大的病毒库,这使它能够更快地发现病毒,而一些小的杀毒软件公司则无法做到这一点。

4、掌控信用状况,提供信贷服务。阿里巴巴上汇集了海量中小企业的日常资金与货品往来,通过对这些往来数据的汇总与分析,阿里巴巴能发现单个企业的资金流与收入情况,分析其信用,找出异常情况与可能发生的欺诈行为,控制信贷风险。

5、实现智能匹配。婚恋网站、交易平台等,利用大数据可以进行精准而高效的配对服务。网易花田会挖掘用户行为数据,比如点击哪些异性的页面,发表什么样的评论,建立用户兴趣模型,从而挖掘到用户所期待另一半的类型,然后主动推荐与对方匹配度比较高的人选。2010年,阿里巴巴尝试性地推出“轻骑兵”服务,由阿里巴巴将中国各产业集群地的供应商与海外买家的个性采购需求进行快速匹配,所凭借的,就是对供应商的海量交易数据信息的整合与挖掘。

二、大数据直接作为产品

对一些企业,大数据直接成为了产品,这些产品包括海量数据、分析、存储与挖掘的服务等,目前大数据产业链正在形成过程中,出现了一批开放、出售、授权大数据和提供大数据分析、挖掘的公司和机构,前者主要是一些拥有海量数据的公司,将数据服务作为新的盈利来源。如大型的互联网平台、民航、电信运营商、一些拥有大数据的政府机构等等,后者主要包括一些能够存储海量数据或者将海量数据与业务场景结合,进行分析和挖掘,或者提供相关产品的公司,如IBM、SAP、拓而思、天睿公司。它们为大数据应用者们提供海量数据存储、数据挖掘、图像视频、智能分析等服务以及相关系统产品。

大数据平台——企业群落繁荣的滋养剂

而网络已建成了包括网络指数、司南、风云榜、数据研究中心和网络统计在内的五大数据体系平台,帮助其营销平台上的企业了解消费者行为、兴趣变化,以及行业发展状况、市场动态和趋势、竞争对手动向等信息。

为解决这些问题,各个平台在积极地努力。比如阿里巴巴建立了数据委员会,在统一数据格式标准、从源头上保证数据的质量,采集和加工出精细化的数据,确保其能符合平台企业的应用场景等方面,不遗余力地尝试。尤其在大数据精细化方面,阿里巴巴更是作为其大数据战略的重点。这方面,腾讯目前也在加快步伐。比如新版腾讯网出现了“一键登录”的提示,用户可以在上面通过一些细分标签,订阅自己关注的内容。实际上,这也是腾讯收集更精细化的用户兴趣数据的一个有效手段。

Tips

大数据实战手册

将大数据应用于内部运营中时,企业会遇到一些常见问题

1企业如何获取与分析数据?

互联网是大数据的一个主要来源,一些线下的传统企业很难获得。但它们可以:

a和拥有或能抓取海量数据的平台、企业以及政府机构合作。比如淘宝上的电商就购买淘宝收集的海量数据中与自身运营相关的部分,用于自身业务。再如卡夫通过与IBM合作,在博客、论坛和讨论版的内容中抓取了47.9万条关于自己产品的讨论信息,通过大数据分析出消费者对卡夫食品的喜爱程度和消费方式。

b建立自己在互联网上的平台,比如朝阳大悦城利用自己的微信、微博等平台收集消费者评论数据。

c许多传统企业没有分析海量数据的能力,此时它们可以和大数据分析和挖掘公司合作,目前市场上已经有天睿公司、IBM、百分点、华胜天成等一批提供大数据分析和挖掘服务的公司,它们是传统企业进行大数据分析可以借助的力量。

2如何避免大数据应用时的部门分割?

对于许多企业,其信息流被各部门彼此分割,数据难以互通,对于这种情况下,大数据的共享和汇集就只是一个泡影,更难以实现大数据的深度应用。

要打通部门之间信息分割的局面,首先要建立统一的、集中的数据系统。就像立白信息与知识总监王永红所说的,“要真正用好大数据,企业要采用大集中的信息系统。”从更深入的角度来谈,企业信息流的部门分割,更在于企业部门之间的分割,比如有一些企业的营销按照渠道分割,导致对于顾客的大数据收集和分析效果大打折扣。

IBM智慧商务技术总监杨旭青认为,“很多时候由于组织结构问题,大数据分析有效性大大降低了。”这就需要组织与流程层面的重新设计,在这方面,阿里巴巴的部门负责人轮岗制度,对于打破部门壁垒无疑是一剂好药。而一些企业为了打破部门分割,建立了矩阵型的组织结构,强化部门间的横向合作,这些无疑为大数据的汇集、共享与应用创造了良好条件。

3如何让业务人员重视大数据的应用?

解决这个问题,一方面在于一把手对整个企业数据文化的倡导,比如1号店董事长于刚就要求业务人员无论在开会,还是汇报工作时,都以数据说话,而马云更是将大数据提升到了战略高度。

另一方面,也在于数据部门的带动,阿里巴巴数据委员会负责人车品觉分享了经验,“因为运营部门的业务人员很难看到大数据的潜力,可以首先从一些对业务见效快,见效显著的数据项目出发,通过一两个项目的成功,调动对方的积极性,然后再逐步一个个地引导。”

4为何大数据工作与运营需求脱节?

这往往是由于数据人员与业务人员视角、专业知识不同而导致的。大数据人员做了很多努力,但是业务人员却认为这些努力无关痛痒。如何解决这个问题?

有的企业从组织设计上发力,将大数据纳入业务分析部门的管理之下,用业务统驭数据。对于朝阳大悦城,由主要负责战略和经营分析的部门来管理大数据工作,其中的大数据分析人员则作为支持人员。在负责人张岩看来,大数据要靠商业法则指导,关键是找到业务需求的点,然后由数据分析和挖掘人员实现。在具体操作中,大悦城对微信的数据挖掘,挖掘什么样的关键词,由业务分析人员确定,而具体挖掘则由数据部门做;有的企业从流程设计上着手,推动业务部门与数据部门人员之间的沟通,建立数据人员工作与效果挂钩的考核机制。

例如阿里巴巴根据数据挖掘的成效(比如带来的商品转化率的提升)来考核数据挖掘师,考核数据分析师则看其分析结果能否出现在经营负责人的报告中。从数据部门自身角度则需要降低运营部门使用数据的障碍和门槛,比如立白集团的数据人员会努力尝试向运营部门提供更易懂、更生动的图形化数据分析界面,在立白老板办公室上,就有一份“客户运营健康体检表”,让老板对全国经销商的当月销售情况一目了然。再如阿里巴巴开发的无线Bi,让经营人员在手机上也可以看到大数据分析结果,拿车品觉的话说,“以数据之氧气包围经营人员。”

『叁』 有哪些大数据分析案例

如下:

1. 大数据应用案例之:医疗行业

1)Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。

在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。

它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。

2)大数据配合乔布斯癌症治疗

乔布斯是世界上第一个对自身所有DNA和肿瘤DNA进行排序的人。为此,他支付了高达几十万美元的费用。他得到的不是样本,而是包括整个基因的数据文档。医生按照所有基因按需下药,最终这种方式帮助乔布斯延长了好几年的生命。

2. 大数据应用案例之:能源行业

1)智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。

通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。

因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。

2)丹麦的维斯塔斯风能系统(Vestas Wind Systems)运用大数据,系统依靠的是BigInsights软件和IBM超级计算机,分析出应该在哪里设置涡轮发电机,事实上这是风能领域的重大挑战。在一个风电场20多年的运营过程中,准确的定位能帮助工厂实现能源产出的最大化。

为了锁定最理想的位置,Vestas分析了来自各方面的信息:风力和天气数据、湍流度、地形图、公司遍及全球的2.5万多个受控涡轮机组发回的传感器数据。这样一套信息处理体系赋予了公司独特的竞争优势,帮助其客户实现投资回报的最大化。

3. 大数据应用案例之:通信行业—通过大数据分析挽回核心客户

法国电信-Orange集团旗下的波兰电信公司Telekomunikacja Polska是波兰最大的语音和宽带固网供应商,希望有效的途径来准确预测并解决客户流失问题。

他们决定进行客户细分,方法是构建一张“社交图谱”- 分析客户数百万个电话的数据记录,特别关注 “谁给谁打了电话”以及“打电话的频率”两个方面。“社交图谱”把公司用户分成几大类,如:“联网型”、“桥梁型”、“领导型”以及“跟随型”。

这样的关系数据有助电信服务供应商深入洞悉一系列问题,如:哪些人会对可能“弃用”公司服务的客户产生较大的影响?挽留最有价值客户的难度有多大?运用这一方法,公司客户流失预测模型的准确率提升了47%。

4、大数据应用案例之:零售业—大数据帮零售企业制定促销策略

北美零售商百思买在北美的销售活动非常活跃,产品总数达到3万多种,产品的价格也随地区和市场条件而异。由于产品种类繁多,成本变化比较频繁,一年之中,变化可达四次之多。

结果,每年的调价次数高达12万次。最让高管头疼的是定价促销策略。公司组成了一个11人的团队,希望透过分析消费者的购买记录和相关信息,提高定价的准确度和响应速度。

定价团队的分析围绕着三个关键维度:

1)数量:团队需要分析海量信息。他们收集了上千万的消费者的购买记录,从客户不同维度分析,了解客户对每种产品种类的最高接受能力,从而为产品定出最佳价位。

2)多样性:团队除了分析了购买记录这种结构化的数据外,他们也利用社交媒体发帖这种新型的非结构化数据。由于消费者需要在零售商专页上点赞或留言以获得优惠券,团队利用情感分析公式来分析专页上消费者的情绪,从而判断他们对于公司的促销活动是否满意,并微调促销策略。

3)速度:为了实现价值最大化,团队对数据进行实时或近似实时的处理。他们成功地根据一个消费者既往的麦片购买记录,为身处超市麦片专柜的他/她即时发送优惠券,为客户带来便利性和惊喜。

透过这一系列的活动,团队提高了定价的准确度和响应速度,为零售商新增销售额和利润数千万美元。

5、大数据应用案例之:网络营销行业(SEM)

很多企业在做SEM的过程中,都有这样的感触:每年都会花费大量的预算在SEM推广中,但是因为关键词投入产出无法可视化,常常花了很多钱却不见具体的回报。

在竞争如此激烈的SEM市场中,企业需要一个高效的数据分析工具来尽可能地帮企业优化SEM推广,例如BDP,来帮企业节省不必要的支出,提升整体的经营绩效。

企业可借助数据平台提供的网络营销整合解决方案,打通各个搜索引擎营销(SEM)、在线客服系统和CRM系统,营销竞价人员无需掌握复杂的编程技术,简单拖拽即可生成报表,观察每一个关键词的投入和产出,分析每一个页面的转化,有效降低投放成本。

通过BDP实况分析数据,可以快速洞悉对手关键词的投放时段、地域及排名,并对其进行可视化的分析,实时监控自己和竞争对手的投放情况,了解对手的投放策略,支持自定义设置数据更新的时间点、监控频次和时段,及时调整策略。知已知彼,才能百战不殆。

6、大数据应用案例之:电商行业

意料之外:胸部最大的是新疆妹子。曾经淘宝平台显示,中国女性购买最多的文胸尺码为B罩杯。B罩杯占比达41.45%,其中又以75B的销量最好,其次是A罩杯,购买占比达25.26%,C罩杯只有8.96%。

虽然淘宝数据平台不能代表一切,但是结合现实来看,这个也具有普遍的代表性,只能感慨中国女性普遍size。在文胸颜色中,黑色最为畅销,黑色绝对是百搭,每个女性必备。

从省市排名,胸部最大的是新疆妹子。这些数据都对于文胸店铺而言是很好的参考,为店铺的库存、定价、款式选择等策略都有奠定数据基础。

7、大数据应用案例之:娱乐行业

微软大数据成功预测奥斯卡21项大奖。2013年,微软纽约研究院的经济学家大卫•罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。

今年罗斯柴尔德再接再厉,成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个,继续向人们展示现代科技的神奇魔力。

总的来说,大数据的终极目标并不仅仅是改变竞争环境,而是彻底扭转整个竞争环境,带来新机遇,企业需要应势而变。企业只有认识到这一点,使用合适的数据分析产品、聪明地使用和管理数据,才能在长期竞争中成为终极赢家。

『肆』 企业大数据实战案例

企业大数据实战案例

一、家电行业

以某家电公司为例,它除了做大家熟知的空调、冰箱、电饭煲外,还做智能家居,产品有成百上千种。在其集团架构中,IT部门与HR、财务等部门并列以事业部形式运作。

目前家电及消费电子行业正值“内忧外患”,产能过剩,价格战和同质化现象严重;互联网企业涉足,颠覆竞争模式,小米的“粉丝经济”,乐视的“平台+内容+终端+应用”,核心都是经营“用户”而不是生产。该公司希望打造极致产品和个性化的服务,将合适的产品通过合适的渠道推荐给合适的客户,但在CPC模型中当前只具备CP匹配(产品渠道),缺乏用户全景视图支持,无法打通“CP(客户产品)”以及“CC(客户渠道)”的匹配。

基于上述内外环境及业务驱动,该公司希望将大数据做成所有业务解决方案的枢纽。以大数据DMP作为企业数据核心,充分利用内部数据源、外部数据源,按照不同域组织企业数据,形成一个完整的企业数据资产。然后,利用此系统服务整个企业价值链中的各种应用。

那么问题来了,该公司的数据分散在不同的系统中,更多的互联网电商数据分散在各大电商平台,无法有效利用,怎么解决?该公司的应对策略是:1)先从外部互联网数据入手,引入大数据处理技术,一方面解决外部互联网电商数据利用短板,另一方面可以试水大数据技术,由于互联网数据不存在大量需要内部协调的问题,更容易快速出效果;2)建设DMP作为企业统一数据管理平台,整合内外部数据,进行用户画像构建用户全景视图。

一期建设内容:技术实现上通过定制Spark爬虫每天抓取互联网数据(主要是天猫、京东、国美、苏宁、淘宝上的用户评论等数据),利用Hadoop平台进行存储和语义分析处理,最后实现“行业分析”、“竞品分析”、“单品分析” 三大模块。

该家电公司大数据系统一期建设效果,迅速在市场洞察、品牌诊断、产品分析、用户反馈等方面得到体现。

二期建设目标:建设统一数据管理平台,整合公司内部系统数据、外部互联网数据(如电商数据)、第三方数据(如外部合作、塔布提供的第三方消费者数据等)。

该公司大数据项目对企业的最大价值是将沉淀的数据资产转化成生产力。IT部门,通过建设企业统一的数据管理平台,融合企业内外部数据,对于新应用快速支持,起到敏捷IT的作用;业务部门,通过产品、品牌、行业的洞察,辅助企业在产品设计、广告营销、服务优化等方面进行优化改进,帮助企业进行精细化运营,基于用户画像的精准营销和个性化推荐,帮助企业给用户打造极致服务体验,提升客户粘性和满意度;战略部门,通过市场和行业分析,帮助企业进行产品布局和战略部署。

二、快消行业

以宝洁为例,在与宝洁中国市场部的合作中发现,并不是一定要先整合内外部数据才能做用户画像和客户洞察。宝洁抓取了主流网站上所有与宝洁评价相关的数据,利用语义分析和建模,掌握不同消费群体的购物喜好和习惯,仅仅利用外部公开数据,快速实现了客户洞察。

此外,宝洁还在渠道管理上进行创新。利用互联网用户评论数据进行社群聆听,监控与宝洁合作的50个零售商店相关的用户评论,通过线上数据进行渠道/购物者研究并指导渠道管理优化。

实现过程:

1、锁定微博、大众点评等互联网数据源,采集百万级别消费者谈及的与宝洁购物相关内容;

2、利用自然语言处理技术,对用户评论进行多维建模,包括购物环境、服务、价值等10多个一级维度和50个二级维度,实现对用户评论的量化;

3、对沃尔玛、屈臣氏、京东等50个零售渠道进行持续监控,结果通过DashBoard和周期性分析报告呈现。

因此,宝洁能够关联企业内部数据,更有效掌握KA渠道整体情况,甚至进一步掌握KA渠道的关键细节、优势与劣势,指导渠道评级体系调整,帮助制定产品促销规划。

三、金融行业

对于消费金融来说,家电、快消的案例也是适用的,尤其是精准营销、产品推荐等方面。这里主要分享征信风控方面的应用。显然,互联网金融如果对小额贷款都像银行一样做实地考察,并投入大量人力进行分析评判的话,成本是很高的,所以就有了基于大数据的批量的信用评分模型。最终目的也是实现企业画像和企业中的关键人物画像,再利用数据挖掘、数据建模的方法建立授信模型。宜信的宜人贷、芝麻信用等本质上就是这个架构。

在与金融客户的接触中发现,不论银行还是金融公司,对外部数据的需求都越发迫切,尤其是外部强特征数据,比如失信记录、第三方授权后的记录、网络行为等。

以上是小编为大家分享的关于企业大数据实战案例的相关内容,更多信息可以关注环球青藤分享更多干货

『伍』 大数据有哪些具体的应用案例

大数据有具体的应用案例还是很多的,比如 :

1、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
2. Tipp24 AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。
3. 沃尔玛的搜索。自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。
4. 快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。
5. Morton牛排店的品牌认知。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。
6. PredPol Inc.。PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。
7. Tesco PLC(特易购)和运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。
8. American Express(美国运通,AmEx)和商业智能。以往,AmEx只能实现事后诸葛式的报告和滞后的预测。“传统的BI已经无法满足业务发展的需要。”Laney认为。于是,AmEx开始构建真正能够预测忠诚度的模型,基于历史交易数据,用115个变量来进行分析预测。该公司表示,对于澳大利亚将于之后四个月中流失的客户,已经能够识别出其中的24%。

『陆』 什么是大数据,大数据的典型案例有哪些

随着大数据时代的到来,大数据早已被逐步的运用在我们生活中的方方面面,那么除了之前众所周知的大数据杀熟事件,对于大数据你还了解多少呢?科学运用案例你又知道多少?今天就跟随千锋小编一起来看看。
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
……
种种的案例实在是太多,或许我们永远说不完一样,所以我们就来看一看大数据被科学运用的一个经典案例:

“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
其实大数据,其影响除了以上列举的方面外,它同时也能在经济、政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。

『柒』 目前大数据在哪些行业有案例或者说应用

大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
大数据应用案例之:通信行业
XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。
大数据应用案例之:零售业
"我们的某个客户,是一家领先的专业时装零售商,通过当地的百货商店、网络及其邮购目录业务为客户提供服务。公司希望向客户提供差异化服务,如何定位公司的差异化,他们通过从 Twitter 和 Facebook 上收集社交信息,更深入的理解化妆品的营销模式,随后他们认识到必须保留两类有价值的客户:高消费者和高影响者。希望通过接受免费化妆服务,让用户进行口碑宣传,这是交易数据与交互数据的完美结合,为业务挑战提供了解决方案。"Informatica的技术帮助这家零售商用社交平台上的数据充实了客户主数据,使他的业务服务更具有目标性。
零售企业也监控客户的店内走动情况以及与商品的互动。它们将这些数据与交易记录相结合来展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助某领先零售企业减少了17%的存货,同时在保持市场份额的前提下,增加了高利润率自有品牌商品的比例。

『捌』 有哪些大数据分析案例

三个领域大数据应用案例分析
1、无人驾驶汽车。汽车非常昂贵,然而在欧洲,人们只有4%的时间在使用汽车,96%的时间把车停在停车场,这是非常不高效的系统。如果未来普及了无人驾驶的汽车,我们就可以过上另一种生活。
我们将只需要在手机上点一个按键,车就会自己开过来,把我们带去目的地。这种车就像没有驾驶员的出租车,可以被反复使用,效率和可持续性都得到了提升,也避免了资源浪费。
有研究发现,如果自动机动车得到普及,可以减少25%的交通拥堵,减少30%的城市停车场面积。如果北京减少30%的停车场需求,城市生活将大不一样。
2、医疗行业。我们的寿命现在都比较长了,但仍然希望能够更长。现在,我们的医疗水平并不是很好,由于我们忽视了每一个人的个体差异,医生会用通常的方法治疗每一个人。然而,基于大数据,我们可以做精确医疗,通过大数据分析每个人的差异,进行精确的治疗、剂量、用量,让患者更快恢复健康。
3、教育行业。我们要让下一代有能力了解这个世界。然而,因为没有数据,我们难以做到因材施教,所有孩子获得同样的教学,学习同样的书本。低效率的教学就是在浪费脑力、知识和我们解决问题的能力。
如果我们用大数据去分析孩子在发展学习能力时遇到的问题,就可以进行个性化的学习,就可以释放知识和理解力的力量,让每一个孩子充分开发潜能。
-

『玖』 大数据时代的案例分析

个案一
你开心他就买你焦虑他就抛
华尔街“德温特资本市场”公司首席执行官保罗·霍廷每天的工作之一,就是利用电脑程序分析全球3.4亿微博账户的留言,进而判断民众情绪,再以“1”到“50”进行打分。根据打分结果,霍廷再决定如何处理手中数以百万美元计的股票。
霍廷的判断原则很简单:如果所有人似乎都高兴,那就买入;如果大家的焦虑情绪上升,那就抛售。
这一招收效显著——当年第一季度,霍廷的公司获得了7%的收益率。
个案二
国际商用机器公司(IBM)估测,这些“数据”值钱的地方主要在于时效。对于片刻便能定输赢的华尔街,这一时效至关重要。曾经,华尔街2%的企业搜集微博等平台的“非正式”数据;如今,接近半数企业采用了这种手段。
●“社会流动”创业公司在“大数据”行业生机勃勃,和微博推特是合作伙伴。它分析数据,告诉广告商什么是正确的时间,谁是正确的用户,什么是应该发表的正确内容,备受广告商热爱。
●通过乔希·詹姆斯的Omniture(著名的网页流量分析工具)公司,你可以知道有多少人访问你的网站,以及他们呆了多长时间——这些数据对于任何企业来说都至关重要。詹姆斯把公司卖掉,进账18亿美元。
●微软专家吉拉德喜欢把这些“大数据”结果可视化:他把客户请到办公室,将包含这些公司的数据图谱展现出来——有些是普通的时间轴,有些像蒲公英,有些则是铺满整个画面的泡泡,泡泡中显示这些客户的粉丝正在谈论什么话题。
●“脸谱”数据分析师杰弗逊的工作就是搭建数据分析模型,弄清楚用户点击广告的动机和方式。
处理和分析工具
用于分析大数据的工具主要有开源与商用两个生态圈。
开源大数据生态圈:
1、Hadoop HDFS、HadoopMapRece, HBase、Hive 渐次诞生,早期Hadoop生态圈逐步形成。
2、. Hypertable是另类。它存在于Hadoop生态圈之外,但也曾经有一些用户。
3、NoSQL,membase、MongoDb
商用大数据生态圈:
1、一体机数据库/数据仓库:IBM PureData(Netezza), OracleExadata, SAP Hana等等。
2、数据仓库:TeradataAsterData, EMC GreenPlum, HPVertica 等等。
3、数据集市:QlikView、 Tableau 、 以及国内的Yonghong Data Mart 。

『拾』 大数据应用案例不可不看的7大领域

大数据应用案例不可不看的7大领域

在当前的互联网领域,大数据的应用已经十分广泛,尤其以企业为主,企业成为大数据应用的主体。大数据真能改变企业的运作方式吗?答案毋庸置疑是肯定的。随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。大数据的应用已广泛深入我们生活的方方面面,涵盖医疗、交通、金融、教育、体育、零售等各行各业。
健康医疗 温情暖意
同仁医院通过与IBM合作,同仁医院建立起了强大的分析能力和体系,包括对临床、运营、科研、考核等信息的分析,实现智慧的医院管理与考核;同时也能看到医疗设备的平均故障间隔周期,从而降低了设备的故障率、平均维修时间。这一切都让工作效率稳步提升,也缓解了病人看病难的问题,提高了患者就医满意度。
未来的医疗片段:由“可穿戴设备”或其他终端收集到人体生理数据,自动传入云端,进行数据分析与处理,再将其结果发给医生,后者给出诊断或康复建议。例如日常的健康监督、运动及饮食指导,或对高血压、糖尿病等慢性病进行日常管理,甚至有望为每个人定制出自己的健康全纪录。
智能交通 路路畅通
杭州诚道科技采用英特尔Apache Hadoop发行版,使得海量图像和视频数据不但实现了可靠和高性能的存储,而且还能被大量的使用者快速地访问和使用。浙江省某市可保存的历史违法数据从3个月延长到24个月,从24亿条过车数据中完成机动车的号牌精确查询和行车轨迹查询,仅需不到1秒的时间。
未来的交通片段:无人驾驶将释放驾驶者的双手,提前预知路况信息,并准确的控制车辆状态。呆在驾驶仓中的人们将享受与家中相同的娱乐休闲体验,车载应用尽在云端。例如挡风玻璃,类似于手机屏幕,可实现多点触摸、支持视频通话,在玻璃上比划几下就能导航、显示路况、查询天气和附近美食、阅读电子书、回复邮件、互动游戏等等。
魅力体育 完美呈现
IBM专门为中网设计了具有实时大数据分析功能的MatchTracker(赛事追踪系统),可以为球迷提供数据呈现、计分等功能。 MatchTracker基于IBM SlamTracker分析技术,使球迷能够利用历史和实时性数据,洞悉比分之后的态势和策略。此外,IBM还为中网组委会构建了安全和敏捷的内联网。
未来的体育片段:今后,比赛日将会带给球迷们终身难忘的回忆。他们不仅能收到来自队员为其量身定制的信息,还能够通过手机支持的忠实度账户获得购买特许权,甚至在去洗手间排队的间隙都可以收到实时战况;如果遇上有人情绪失控,球迷们还能通过手机立即报告,专人将会迅速呼叫保安人员,以保证比赛顺利运行并提高赛场整体管理水平;你能想象从手机上投标赛后新闻发布会的座位吗?或者在衣帽间外和球员照相?这些都将不再是梦想。
智慧教育 创新源泉
为了满足爆炸式增长的用户和数据量,同济大学携手中科曙光,在全面整合云计算平台和现有资产的基础上,采用 DS800-F20存储系统、Gridview集群管理系统,以及Hadoop分布式计算平台构建出了业内领先的大数据柔性处理平台,使得同济大学在信息学科及其交叉学科研究领域迈上一个新台阶。
未来教育片段:未来个性化学习终端,将会更多的融入学习资源云平台,根据每个学生的不同兴趣爱好和特长,推送相关领域的前沿技术、资讯、资源乃至未来职业发展方向,等等,并贯穿每个人终身学习的全过程。
全面迎接金融大数据时代
华为向农行提供了良好的计算平台,基于华为RH2288 V2服务器的分布式并行计算集群进行测试,以及还提供了快速响应客户需求的研发能力,以及业界最快捷的售后服务。农行的测试结果表明,华为解决方案完全满足农行对海量数据进行分布式处理的要求。
未来金融保险片段:通过大数据处理对个人信用信息的完善管理,公共机构能够将风险降到最低,从而实现社会管理效率的最大化。
零售营销 极致体验
作为中国商务部重点扶持的最大零售企业之一,北京华联集团通过部署Oracle 零售应用解决方案,以优化运营管理,进而提高商业敏捷性,并提升关键货物、定价、存货、供应链和交易流程的管理和实施。全面支持其旗下各项业务的不断增长,包括大卖场、综合超市、百货公司以及商业地产等。
未来零售片段:当一位顾客踏进百货店大门的一刻起,门店的店员可以在便携式设备上查询这样的消费者大数据,他们可以轻松的检索消费者个人档案,并从其最近的社交媒体信息中了解该顾客的近况,你就知道他/她的名字、身高、在店内及网上的支付记录,甚至是他对生活、宇宙及一切事物的看法等等都了如指掌,比如他是准备好好过个假期还是为寻找一件适合她的晚礼服而烦恼着。
电信大数据异军突起
北京信合运通科技有限公司选择IBM PowerLinux平台作为信合大数据解决方案的基础架构平台已在国内帮助十多家电信运营商完成了大数据和分析项目的实施,是电信行业最领先的独立软件开发商。
未来电信片段:电信运营商们可以利用大数据为自身的产品服务,通过大数据分析用户行为,改进产品设计,并通过用户偏好分析,及时、准确地进行业务推荐,强化客户关怀,这样就可以不断改善用户体验,增加用户的信息消费以及对运营商的黏度;还可以通过大数据分析网络的流量、流向变化趋势,及时调整资源配置,同时还可以分析网络日志,进行全网络优化,不断提升网络质量和网络利用率;还可以通过业务、资源、财务等各类数据的综合分析,快速准确地确定公司的经营管理和市场竞争策略;
上述7个领域是大数据应用最多的领域,当然,随着大数据技术的日益成熟,还会涌现出很多其他大数据应用领域,以及很多新的应用案例。

阅读全文

与大数据分析平台案例相关的资料

热点内容
如何提高自己的网络排名 浏览:571
怎么看凯立德导航版本 浏览:871
更新手机依赖文件失败 浏览:327
数据ltc是什么意思 浏览:568
顺序表存储数据结构有哪些特点 浏览:891
苹果手机在微信怎么搜索文件 浏览:375
数据库服务怎么重启 浏览:841
苹果6s通话声音太小 浏览:517
什么是数据分析法 浏览:659
多页双面文件按顺序复印如何操作 浏览:772
diskgen硬盘工具 浏览:642
后端编程哪个好 浏览:540
编程哪个软件最简单 浏览:591
山西运城疫苗用哪个app预约 浏览:413
有线网络电视机顶盒如何看直播 浏览:909
linux挂载硬盘home 浏览:964
word2010全部接受修订 浏览:802
咋找文件管理中找下载路径 浏览:967
冒险小镇怎么快速升级 浏览:573
如何修改5g手机的5g网络 浏览:486

友情链接