A. 『杰夫·迪恩的密码是圆周率的最后4位数字』这个笑话是在说明什么大数据领域的
圆周率是一个无穷不循环的小数,目前人类可以算到几十万位,但仍没算完,也就不存在最后的四位之说了,所以密码是不存在的,
B. 大数据能做什么
现在谈这个问题可能会让大家笑话,似乎所有人都知道大数据能干这个,能干那个,最后连我们自己都觉得可笑。大数据已经都不是被“妖魔化”了,是“娱乐化”。大数据似乎是个离我们忽远又忽近的事物了,变得不真实起来。
好吧,我还是结合从业经历来说说大数据“解决过什么问题”吧:简单地来说,大数据可以帮我们解决决策和选择的问题。
天气预报就是一个最古老而且众所周知的预测。你可以根据预报来决定明天穿什么衣服,是否要带雨伞,等等;
近两年来,大数据被应用到影视制片行业,基于对观众偏好的分析,去预测、设计观众喜欢的剧情,找观众喜爱的演员出演相关的角色,甚至可以去预测票房。这些所有的预测都是基于数据的基础上,经过一定的模型处理,得到接近真实的结论。从某种程度上给决策者决策的依据,比如《纸牌屋》和《星星》。
大数据还有一个重要的作用,就是解决人们的“选择”问题。别笑,无论你的年龄、性别、教育背景,人们目前都面临着前所未有的选择问题。讲的学术一些,这是由于“长尾效应”导致的问题;讲得通俗一些,就是由于日益增多的可选择的对象和我们自身的处理能力之间的矛盾。
科技的进步让人变得更懒,也就是我们自身的处理能力降低,无论是主观的还是客观的。而可被选择的对象却在日益增多。从纷繁复杂的商品(电商),到海量曲库中的乐曲;从婚恋网站的男女朋友,到交通管理的信号灯。
基于人工智能下的大数据,就是可以使人们“变懒”的一个手段。基于你的历史行为,判断出你可能的喜好,乃至需求,将最佳结果,推荐给你。这就是大数据,她是你的贴心管家,或者说是最懂你的朋友。
C. 有一个笑话说看到美景有文化的人和友和没文化的人怎么了感慨
内容如下:
1、在关羽张飞跟随刘备之后,“从今往后,关某之命即是刘兄之命”,关某之躯即为刘兄之躯,俺也一样。”面对关羽口若悬河对刘备发表肺腑之言,张飞从头到尾只有这一句:俺也一样!
2、郭沫若曾经用书法为山东博物馆题名,可是当地不懂文化的人,却把“山东博物馆”,读成“山东情妇馆”,还有一位说“书法不错啊,心系情妇那”。
3、一位大哥,席间闲侃转基因食品问题,大哥很真诚地劝大家不要再吃转基因食品了,说对孩子伤害太大了。他孩子和他做亲子鉴定基因不匹配,就是因为孩子吃转基因食品把基因改变了,问他这些知识都是听毕乱谁说的?他骄傲地说,是他老婆告诉他的。
4、在“岳母刺字”雕像前,听到一个男子说:“也就岳母舍得刺女婿,亲妈绝对不忍心干这事。”边上一圈游客瞬间安静了。走到雷峰塔下,这个人纤裤又感叹:"毛主席真好,还专门给雷锋同志修了一座塔。"一下子大家都沉默了。
5、儿子写日记 : “夜深了,妈妈在打麻将,爸爸在上网。”爸爸检查时,很不满意地说 : “日记源于生活,但要高于生活 !”孩子马上修改为 :“夜深了,妈妈在赌钱,爸爸在网恋。”
爸爸更不满了,愤怒地说 : " 一定要提倡正能量,以正面为主!”孩子再修改为 : " 夜深了,妈妈在研究经济,爸爸在研究互联网+生活。"
爸爸看后说,这还差不多,但毁数简深度不够,有待进一步提高!以后你长大了成了硕士研究生,你就知道应该怎么写了:“妈妈在研究信息不对称状态下的动态博弈,爸爸在研究人工智能与情感供给侧的新兴组合。”
爸爸接着说,要是你打算成为博士,得这样写:“妈妈在研究复杂群体中多因素干扰及信息不对称状态下的新型“囚徒困境”博弈;爸爸研究的是:大数据视角下的六度空间理论在情感供给侧匹配中的创新与实践。”
D. “大数据”会成“大笑话”吗
《西游记》中的好词:
抖擞神威 磨砖作镜 积雪为粮 天龙围绕 花雨缤纷 理圆四回德
指解源流 三答乘妙典 五蕴楞严 共乐天真 智满金身 恶气遮漫
翻波跃浪 吐雾喷风 寻蛇拨草 扑鹞分松 星辰灿烂 洗心涤虑
芥纳须弥 曹溪路险 鹫岭云深 千丈冰崖五叶莲开帘垂香袅
E. 利用人脸识别抓罪犯竟搞出笑话,你认为高科技该如何利用
用人脸识别抓罪犯竟搞出笑话,这件事情的由来是因为在利用脸识别系统抓捕罪犯时,这个人工智能系统既然认错了人,将一个完全无关的人认成了罪犯,还让那个人蹲了10天的监狱。如此就能够看出来这个人工智能系统还不是那么的完善,还不能够应用到正常的生活当中。即使是高科技人工智能系统也应该在进行了完善和各个方面功能细节上的处理加以管理。个人认为高科技应该在个别实验点试验后才能在正常的生活中使用。
高科技该如何利用?如果能用在让最大发挥它作用的地方自然是最好的,但是有一些地方就还是减少使用高科技的产品,毕竟人类还是要比高科技产品有感情有思维。
F. 且慢说“大数据”的无所不能
且慢说“大数据”的无所不能
“大数据”是个好东西,是科学的前沿,值得我们认真积极关注、推介和参与,但它绝不是哈利波特,不会“一抓就灵”,不能包打天下和无所不能。
回头看看这些年的所谓产业“浪潮”新理念、新理论和新技术,一旦引入我国后,常是泡沫翻腾,真经并不多。去年是“云计算”,今年是“大数据”,官员、学者或媒体人嘴上不常换点国际流行的新词,都不好意思开口。
其实,“大数据”很简单,不神秘,以前无法处理的海量数据或没当做数据的东西(如你在超市逛逛或对那个营业员笑一笑),因计算机计算能力如“云计算”的进步,都可以分析出个子丑寅卯了,如很多人逛超市的路径与购物之间有数据关系,据此调整布局有利于销售,美国有超市把影碟与尿布放在一起,就是通过“大数据”分析发现,来为孩子买尿布的父母喜欢为自己带盘碟子。
但把“大数据”用做解决世界上最难处理的问题的全能办法,从管理城市到消除贫困,从制止恐怖袭击、疾病流行到拯救地球环境等,以为有了“大数据”,就没有解决不了的问题,这也是一种误解。人类的思想、个人的文化和行为模式、不同国家及社会的存在发展都非常复杂、曲折和独特,显然不能全部由计算机来“数字自己说话”。比如,近来欧美有人提倡用“大数据”分析人的日常行为模式和习惯,判断谁将要犯罪,以此帮助预防未来的犯罪,就引起了很大的争议和质疑,公众担心因司法程序缺失而受到莫名威胁。
其实,企图用一行行的代码和庞大数据库的“大数据”来解释和指导世间万物万象,很像此前企图用基因等生物密码来解释和调控人类的行为模式,看起来是客观中立的,但说到底,“大数据”再“大”,也不会“自己说话”,还是设计者、分析者和使用者在说了算。所以,“大数据”并不能使人们完全摆脱曲解、隔阂和错误的成见。
而且,数据的采集也会使“大数据”不中立和不全面,以至于不公正,如目前社交媒体等即时通讯是“大数据”分析的一个普遍信息源,那里无疑有许多信息可以挖掘,国外神话“大数据”的范例几乎都来源于此。但至少在我国现在和未来一段时间里,以此途径反映民情的某些“大数据”可能会忽视了“沉默的大多数”而失准。过分依赖和迷信“大数据”,难以避免对某一群体的“数据歧视”,可能会依据错误的成见作出重大的公共政策和商业决定。
更需指出的是,“大数据”的潜在负面效应不可忽视。无处不在的“大数据”使个人隐私无处藏身,甚至会引发更多问题。例如,最近,“大数据”被用来预测脸谱网用户极其敏感的个人信息,如性取向、种族、宗教和政治观点、性格特征、智力水平、快乐与否、成瘾药物使用、父母婚姻状况、年龄及性别等。这些高度敏感信息很可能会被雇主、房东、政府部门、教育机构及私营组织用来对个人实施歧视。
“大数据时代”的作者维克托说,大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型。这话很有道理。但他认为,大数据时代最大的转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。歌颂者说,这是维克托颠覆了千百年来人类的思维惯例,对人类的认知和与世界交流的方式提出了全新的挑战。可我们有疑:不问或不知“为什么”,我们还是人吗?
其实,维克托又新写了一本叫“删除”的书,讲述了大数据时代的信息取舍,说遗忘是一种美德。说白了,就是该记的记,该忘的忘。这就更加说明,无论到何时,其实都还是人在思考和“说话”,即使在“大数据时代”可以通过数据形式来部分表达。所以,把“大数据”提高到不恰当的高度,甚至魔幻化或泡沫化,对推广“大数据”技术及应用不仅无益,还会弄成一些新的神话,或许还有笑话。
G. 大数据请记住我是什么梗
大数据请记住是指一般会在自己喜欢看的视频下评论,就是希望多推荐一些类似的视频,多出现在舞蹈区的视频评论中,大数据会根据自己的喜好来推荐视频类型。
只要你对一类视频评论三连,那么你的首页基本上都是和这个视频相关或者类似的东西,例如你喜欢看土味视频,要是你还想看类似的视频,就可以在评论中留下“大数据请记住我”的评论,希望大数据记住自己的喜好,当首页全是土味视频的时候,也被称为号养好了。
大数据的价值体现在以下几个方面:
(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;
(2)做小而美模式的中小微企业可以利用大数据做服务转型;
(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
H. 有关大数据的误区:数据统计≠大数据
有关大数据的误区:数据统计≠大数据
关于大数据的误区:数据统计是已经发生的事情,而大数据往往被用于还没有发生的事情预测或者推荐中,二者不能划等号。不过,无论数据统计也好,大数据也罢,都是为了使工作变得更为有效,让决策更为理性而准确。
大数据太火了,被广泛应用到各行各业,而近阶段又有着明显的过热迹象。大数据到底是一个营销词汇,还是一个方法论?本文作者老李正是一家大数据服务提供商的资深员工,他所做的项目就是针对不同行业进行大数据分析。他认为,关于大数据你首先必须有一个基本认识,那就是“大量的数据并非一定具有价值”。另外,数据统计并不等同于大数据,数据统计和大数据的区别就在于人工智能。
近两年来,“大数据”被广泛应用到各行各业,而近阶段又有着明显的过热迹象。从央视的春运迁徙图到姚晨看到微博数据的惊呼;从两会期间的两会大数据,到《星星》都叫兽的高低领毛衣,“大数据”被人们推到了一个前所未有的高度,同时也从一个高精尖的科研方向变成了一个世人皆知的营销词汇。
我既没有资格代表学术界,更没有资格来判定谁是谁非。我只能就自己的工作经历,来谈一下我眼中的大数据:
什么是大数据?
网络对大数据的定义是这样的:大数据(big data)或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
Gartner给出了这样的定义:“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
个人认为Gartner的定义更为贴切。“新处理模式”是一个很关键的词汇,这也是我所理解的“大数据”区别于传统统计分析等最关键的特征之一。这个所谓的“新处理模式”有两层含义:
1、由于海量的数据,需要更高效的存储和处理技术,Hadoop成为了大数据时代的标志;
2、如果你认为大数据就等于Hadoop,那就大错特错了。Hadoop只是大数据时代的一个必要条件,大数据还有一个明显的标志是数据挖掘和人工智能的紧密结合。这也是我理解的“大数据”与现在很多所谓“大数据”项目最明显的区别之一。我会在后面的案例中给大家展开。
除了上面的“新处理模式”上的区别,个人认为还有一个最主要的区别是:数据统计分析是基于已有数据的纵向归类,而大数据是基于对已有海量数据的处理,对还未产生的数据作出预测和推荐。数据统计是已经发生的事情,而大数据往往被用于还没有发生的事情预测或者推荐中。
预测和推荐,是如何实现的?
目前主要的推荐算法大致可以分为两类。一个是基于行为,一个是基于内容。当然,针对不同的领域,不同的预测和推荐的对象,又会有十余种算法。这就不是本文展开的内容了。
基于行为的分析,顾名思义,即对用户在互联网、移动互联网留下的“痕迹”,即浏览、点击、收藏、购买、二次购买的分析,得出未来会选择购买的预测和推荐结果。基于行为的分析,属于群体智慧,综合利用群体用户的行为偏好。用户之间会相互影响,更加符合现实世界中的用户行为。
基于内容的分析, 包括对文字、图片、音频、视频等信息的分析,得出预测和推荐的结论。内容的“基因”和用户的偏好相匹配,最有代表的是潘多拉的音乐推荐项目,其将曲库中所有歌曲都由400多位专家打上标签,然后建立个人与音乐的联系,从而完成音乐的推荐。内容的分析只针对个人,与用户之间关系无关。
大数据到底能做什么
现在谈这个问题可能会让大家笑话,似乎所有人都知道大数据能干这个,能干那个,最后连我们自己都觉得可笑。大数据已经都不是被“妖魔化”了,是“娱乐化”。大数据似乎是个离我们忽远又忽近的事物了,变得不真实起来。
好吧,我还是结合从业经历来说说大数据“解决过什么问题”吧:简单地来说,大数据可以帮我们解决决策和选择的问题。
天气预报就是一个最古老而且众所周知的预测。你可以根据预报来决定明天穿什么衣服,是否要带雨伞,等等;
近两年来,大数据被应用到影视制片行业,基于对观众偏好的分析,去预测、设计观众喜欢的剧情,找观众喜爱的演员出演相关的角色,甚至可以去预测票房。这些所有的预测都是基于数据的基础上,经过一定的模型处理,得到接近真实的结论。从某种程度上给决策者决策的依据,比如《纸牌屋》和《星星》。
大数据还有一个重要的作用,就是解决人们的“选择”问题。别笑,无论你的年龄、性别、教育背景,人们目前都面临着前所未有的选择问题。讲的学术一些,这是由于“长尾效应”导致的问题;讲得通俗一些,就是由于日益增多的可选择的对象和我们自身的处理能力之间的矛盾。
科技的进步让人变得更懒,也就是我们自身的处理能力降低,无论是主观的还是客观的。而可被选择的对象却在日益增多。从纷繁复杂的商品(电商),到海量曲库中的乐曲;从婚恋网站的男女朋友,到交通管理的信号灯。
基于人工智能下的大数据,就是可以使人们“变懒”的一个手段。基于你的历史行为,判断出你可能的喜好,乃至需求,将最佳结果,推荐给你。这就是大数据,她是你的贴心管家,或者说是最懂你的朋友。
一个最经典的案例是沃尔玛曾经做过的“啤酒”和“尿布”调研:沃尔玛在研究中发现,一类顾客经常在购买尿布的同时也购买啤酒。尿布跟啤酒自然是毫无关联的两个品类的商品,从个人经验上来看,根本想不到二者的联系。后来发现,这是一类社会现象所导致的。美国有很多年轻夫妇,尿布用完后,女主人在家带孩子,而男主人就去超市买尿布。买完尿布之后,男主人通常会顺带着买些啤酒。
上述例子说明,数据经常可以让你发现看似不合理不合逻辑但却存在,并且经常发生的现象。
再举个例子,北京的交通拥堵是地球人都知道的事情。尤其是早晚高峰,这已经不需要预测了。但如果根据历史交通数据,再经过数学模型,计算出一个全北京最佳的交通信号灯管理系统,这就属于大数据的范畴了。
这也是我眼中大数据主要与普通的数据统计分析最大的不同:数据统计可以帮助你发现疾病,但大数据可以不但帮助你发现,且帮助你治疗疾病。
大数据绝不是“噱头“,我们在帮助某运营商阅读基地的阅读推荐项目中,各项指标均得到大幅提升。而这个提升不是百分之几十,而是数倍的提升!(用户人均流量提升了4倍,沉默用户激活能力提升了6.5倍)这才是大数据的魅力。
大数据不是万能的
大数据显然不是万能的。正因为如此,她才真实。大数据在有些领域由于种种原因,所带来的价值并不如预期的那么高。导致这种现象最主要的问题有两个,一个是由于数据本身的质量或者数量不够;另一个是算法不合适。
不要以为是海量数据就一定会有价值,在过往的工作中,我们经常发现来自甲方的数据源有80-90%的数据都是无用的。只有10%-20%的数据才会产生一定的价值。这就又让我想到Marry Meeker打的那个比喻,“大数据的工作就像在一堆稻草中寻找一根针”。
何况,大多数领域本身业务属于早期,所拥有的数据非常贫乏。冷启动、稀疏性是大数据在诸多领域面临的挑战。
另一方面,对于不同领域,不同项目,没有放之四海而皆准的算法,必须要根据具体问题具体分析解决。在实际的工作中发现,不只是不同的领域(如文章推荐与商品推荐),甚至同一领域的不同单元(同属电商但不同类电商,如母婴类和服装类或者奢侈品类)也有所不同。
数据的交叉利用
上面提到的两个大数据在实际应用中面临的最大问题,即冷启动时数据的匮乏和业务早期数据的稀疏性问题,并不是无药可救。业界一直讨论的数据打通,就是解决这两问题的出路。
对于一些新兴领域,缺乏数据是必然的,而另一方面,正由于缺乏数据的支持,所以才更需要有强大决策支持的系统对其业务做指导和支撑,以实现少走弯路,利益最大化的目的。
移动互联网领域的项目,尤为代表。虽然在过去的两三年里,移动互联网得到了高速的发展,但毕竟在各个方面的积累,都无法与互联网相比。尤其在人们形成稳定的使用习惯之前,数据还不具备更多的价值和意义。
但如果能把互联网的数据与移动互联网数据打通,那么我们就掌握了这个人的喜好等多方面信息,从而为移动互联网业务做出更有效的指导和帮助。
当然,数据的打通绝不仅限于互联网和移动互联网。每个数据源的数据往往刻画了一个人的不同方面。正如巴拉巴西教授在《爆发》一书中描绘的那样,如果数据充分,人类93%的行为是可以预知的,是有规律的。
也只有将这些不同来源的数据重新组织,才能挖掘出更有意义的信息。
如今,行业内不少人打着“数据统计和分析”的旗号来做大数据,让很多外行人陷入了误区:数据统计并非等于大数据。无论数据统计也好,大数据也罢,其实都是为了使我们的工作变得更为有效,让决策更为理性而准确。重视数据,本身就是一个企业成熟的标志。
移动互联网的迅速崛起,让数据变得更为多样、丰富。它的移动性,它的碎片化,它的私密性和随时性都刚好弥补了用户离开桌面电脑之后的数据,从而与原有的互联网数据一起很好滴勾勒出一个网民一天的生活,日常生活的数据化。
随着数据的进一步丰富和完善,随着不同渠道数据的打通和交叉利用,有关大数据的想象一定会更加广阔。
以上是小编为大家分享的关于有关大数据的误区:数据统计≠大数据的相关内容,更多信息可以关注环球青藤分享更多干货
I. 如何幽默地翻译大数据的经典笑话“Big data is like teenage sex
“大数据”就像青少年谈论性行为一样:(青少年们)大家都在热烈讨论,但是没人知道到底该怎么做。
网络嫌我字数不够
J. 一个段子解释什么叫大数据.简单粗暴令人秒懂
很多这种段子的,随便网络就是一大把的。
其主要原理就是反销售,所谓的反销售就是指直接对对你进行营销的人反营销,达到把自己的东西卖出去的目的。
呵呵呵呵