这种情况的话,是可大可小,目前针对大数据的应用领域来讲,没有一个固定的价格也就是说低成本也可以开发高层本也可以开发。所谓的大数据应用于金融风控需要的是及时快速的更新的节奏而这个花费的费用是比较模旅尘高的,因为数据的更新主要在于时效性镇指和它旦禅的可追溯性。
2. 如何利用大数据做金融风控
大数据能够进行数据变现的商业模式目前就是两个,一个是精准营销,典型的场景是商品推荐和精准广告投放,另外一个是大数据风控,典型的场景是互联网金融的大数据风控。
金融的本质是风险管理,风控是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据风控识别欺诈用户及评估用户信用等级。
传统金融的风控主要利用了信用属性强大的金融数据,一般采用20个纬度左右的数据,利用评分来识别客户的还款能力和还款意愿。信用相关程度强的数据 纬度为十个左右,包含年龄、职业、收入、学历、工作单位、借贷情况、房产,汽车、单位、还贷记录等,金融企业参考用户提交的数据进行打分,最后得到申请人 的信用评分,依据评分来决定是否贷款以及贷款额度。其他同信用相关的数据还有区域、产品、理财方式、行业、缴款方式、缴款记录、金额、时间、频率等。普惠在线
互联网金融的大数据风控并不是完全改变传统风控,实际是丰富传统风控的数据纬度。互联网风控中,首先还是利用信用属性强的金融数据,判断借款人的还 款能力和还款意愿,然后在利用信用属性较弱的行为数据进行补充,一般是利用数据的关联分析来判断借款人的信用情况,借助数据模型来揭示某些行为特征和信用 风险之间的关系。
互联网金融公司利用大数据进行风控时,都是利用多维度数据来识别借款人风险。同信用相关的数据越多地被用于借款人风险评估,借款人的信用风险就被揭示的更充分,信用评分就会更加客观,接近借款人实际风险。
常用的互联网金融大数据风控方式有以下几种:
验证借款人身份
验证借款人身份的五因素认证是姓名、手机号、身份证号、银行卡号、家庭地址。企业可以借助国政通的数据来验证姓名、身份证号,借助银联数据来验证银行卡号和姓名,利用运营商数据来验证手机号、姓名、身份证号、家庭住址。
如果借款人是欺诈用户,这五个信息都可以买到。这个时候就需要进行人脸识别了,人脸识别等原理是调用国政通/公安局 API接口,将申请人实时拍摄的照片/视频同客户预留在公安的身份证进行识别,通过人脸识别技术验证申请人是否是借款人本人。
其他的验证客户的方式包括让客户出示其他银行的信用卡及刷卡记录,或者验证客户的学历证书和身份认证。
分析提交的信息来识别欺诈
大部分的贷款申请都从线下移到了线上,特别是在互联网金融领域,消费贷和学生贷都是以线上申请为主的。
线上申请时,申请人会按照贷款公司的要求填写多维度信息例如户籍地址,居住地址,工作单位,单位电话,单位名称等。如果是欺诈用户,其填写的信息往 往会出现一些规律,企业可根据异常填写记录来识别欺诈。例如填写不同城市居住小区名字相同、填写的不同城市,不同单位的电话相同、不同单位的地址街道相 同、单位名称相同、甚至居住的楼层和号码都相同。还有一些填写假的小区、地址和单位名称以及电话等。
如果企业发现一些重复的信息和电话号码,申请人欺诈的可能性就会很高。
分析客户线上申请行为来识别欺诈
欺诈用户往往事先准备好用户基本信息,在申请过程中,快速进行填写,批量作业,在多家网站进行申请,通过提高申请量来获得更多的贷款。
企业可以借助于SDK或JS来采集申请人在各个环节的行为,计算客户阅读条款的时间,填写信息的时间,申请贷款的时间等,如果这些申请时间大大小于 正常客户申请时间,例如填写地址信息小于2秒,阅读条款少于3秒钟,申请贷款低于20秒等。用户申请的时间也很关键,一般晚上11点以后申请贷款的申请 人,欺诈比例和违约比例较高。
这些异常申请行为可能揭示申请人具有欺诈倾向,企业可以结合其他的信息来判断客户是否为欺诈用户。
利用黑名单和灰名单识别风险
互联网金融公司面临的主要风险为恶意欺诈,70%左右的信贷损失来源于申请人的恶意欺诈。客户逾期或者违约贷款中至少有30%左右可以收回,另外的一些可以通过催收公司进行催收,M2逾期的回收率在20%左右。
市场上有近百家的公司从事个人征信相关工作,其主要的商业模式是反欺诈识别,灰名单识别,以及客户征信评分。反欺诈识别中,重要的一个参考就是黑名单,市场上领先的大数据风控公司拥有将近1000万左右的黑名单,大部分黑名单是过去十多年积累下来的老赖名单,真正有价值的黑名单在两百万左右。
黑名单来源于民间借贷、线上P2P、信用卡公司、小额借贷等公司的历史违约用户,其中很大一部分不再有借贷行为,参考价值有限。另外一个主要来源是催收公司,催收的成功率一般小于于30%(M3以上的),会产生很多黑名单。
灰名单是逾期但是还没有达到违约的客户(逾期少于3个月的客户),灰名单也还意味着多头借贷,申请人在多个贷款平台进行借贷。总借款数目远远超过其还款能力。
黑名单和灰名单是很好的风控方式,但是各个征信公司所拥有的名单仅仅是市场总量的一部分,很多互联网金融公司不得不接入多个风控公司,来获得更多的 黑名单来提高查得率。央行和上海经信委正在联合多家互联网金融公司建立统一的黑名单平台,但是很多互联网金融公司都不太愿意贡献自家的黑名单,这些黑名单 是用真金白银换来的教训。另外如果让外界知道了自家平台黑名单的数量,会影响其公司声誉,降低公司估值,并令投资者质疑其平台的风控水平。
利用移动设备数据识别欺诈
行为数据中一个比较特殊的就是移动设备数据反欺诈,公司可以利用移动设备的位置信息来验证客户提交的工作地和生活地是否真实,另外来可以根据设备安装的应用活跃来识别多头借贷风险。
欺诈用户一般会使用模拟器进行贷款申请,移动大数据可以识别出贷款人是否使用模拟器。欺诈用户也有一些典型特征,例如很多设备聚集在一个区域,一起 申请贷款。欺诈设备不安装生活和工具用App,仅仅安装和贷款有关的App,可能还安装了一些密码破译软件或者其他的恶意软件。
欺诈用户还有可能不停更换SIM卡和手机,利用SIM卡和手机绑定时间和频次可以识别出部分欺诈用户。另外欺诈用户也会购买一些已经淘汰的手机,其机器上面的操作系统已经过时很久,所安装的App版本都很旧。这些特征可以识别出一些欺诈用户。
利用消费记录来进行评分
大会数据风控除了可以识别出坏人,还可以评估贷款人的还款能力。过去传统金融依据借款人的收入来判断其还款能力,但是有些客户拥有工资以外的收入,例如投资收入、顾问咨询收入等。另外一些客户可能从父母、伴侣、朋友那里获得其他的财政支持,拥有较高的支付能力。
按照传统金融的做法,在家不工作照顾家庭的主妇可能还款能力较弱。无法给其提供贷款,但是其丈夫收入很高,家庭日常支出由其太太做主。这种情况,就需要消费数据来证明其还款能力了。
常用的消费记录由银行卡消费、电商购物、公共事业费记录、大宗商品消费等。还可以参考航空记录、手机话费、特殊会员消费等方式。例如头等舱乘坐次数,物业费高低、高尔夫球俱乐部消费,游艇俱乐部会员费用,奢侈品会员,豪车4S店消费记录等消费数据可以作为其信用评分重要参考。
互联网金融的主要客户是屌丝,其电商消费记录、旅游消费记录、以及加油消费记录都可以作为评估其信用的依据。有的互联金融公司专门从事个人电商消费数据分析,只要客户授权其登陆电商网站,其可以借助于工具将客户历史消费数据全部抓取并进行汇总和评分。
参考社会关系来评估信用情况
物以类聚,人与群分。一般情况下,信用好的人,他的朋友信用也很好。信用不好的人,他的朋友的信用分也很低,
参考借款人常联系的朋友信用评分可以评价借款人的信用情况,一般会采用经常打电话的朋友作为样本,评估经常联系的几个人(不超过6六个人)的信用评分,去掉一个最高分,去掉一个最低分,取其中的平均值来判断借款人的信用。这种方式挑战很大,只是依靠手机号码来判断个人信用可信度不高。一般仅仅用于反欺诈识别,利用其经常通话的手机号在黑名单库里面进行匹配,如果命中,则此申请人的风险较高,需要进一步进行调查。
参考借款人社会属性和行为来评估信用
参考过去互联网金融风控的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄大的人比年龄低的人贷款违约率要高,其中50岁左右的贷款人违 约率最高,30岁左右的人违约率最低。贷款用于家庭消费和教育的贷款人,其贷款违约率低;声明月收入超过3万的人比声明月收入低于1万5千的人贷款违约率 高;贷款次数多的人,其贷款违约率低于第一次贷款的人。
经常不交公共事业费和物业费的人,其贷款违约率较高。经常换工作,收入不稳定的人贷款违约率较高。经常参加社会公益活动的人,成为各种组织会员的人,其贷款违约率低。经常更换手机号码的人贷款违约率比一直使用一个电话号码的人高很多。
午夜经常上网,很晚发微博,生活不规律,经常在各个城市跑的申请人,其带贷款违约率比其他人高30%。刻意隐瞒自己过去经历和联系方式,填写简单信 息的人,比信息填写丰富的人违约概率高20%。借款时间长的人比借款时间短短人,逾期和违约概率高20%左右。拥有汽车的贷款人比没有汽车的贷款人,贷款 违约率低10%左右。
利用司法信息评估风险
涉毒涉赌以及涉嫌治安处罚的人,其信用情况不是太好,特别是涉赌和涉毒人员,这些人是高风险人群,一旦获得贷款,其贷款用途不可控,贷款有可能不会得到偿还。
寻找这些涉毒涉赌的嫌疑人,可以利用当地的公安数据,但是难度较大。也可以采用移动设备的位置信息来进行一定程度的识别。如果设备经常在半夜出现在 赌博场所或赌博区域例如澳门,其申请人涉赌的风险就较高。另外中国有些特定的地区,当地的有一部分人群从事涉赌或涉赌行业,一旦申请人填写的居住地址或者 移动设备位置信息涉及这些区域,也要引起重视。涉赌和涉毒的人员工作一般也不太稳定或者没有固定工作收入,如果申请人经常换工作或者经常在某一个阶段没有 收入,这种情况需要引起重视。涉赌和涉毒的人活动规律比较特殊,经常半夜在外面活动,另外也经常住本地宾馆,这些信息都可以参考移动大数据进行识别。
总之,互联网金融的大数据风控采用了用户社会行为和社会属性数据,在一定程度上补充了传统风控数据维度不足的缺点,能够更加全面识别出欺诈客户,评价客户的风险水平。互联网金融企业通过分析申请人的社会行为数据来控制信用风险,将资金借给合格贷款人,保证资金的安全。
3. 如何利用大数据防范金融风险
1、征信大数据挖掘: 互联网海量大数据中与风控相关的数据。在数据原料方面,越来越多的互联网在线动态大数据被添加进来。 2、风控运营: 贷前营销:帆没 1、已有客户开发、新客户开发; 2、预审批、申请评分; 3、预审批,客户准入、预授信额度估算。 贷中审批: 1、欺诈甄别、反欺诈液此监测; 2、申请再评分; 3、授信审批; 4、贷款定价。 贷后管理: 1、行为评分模型; 2、额度管理; 3、风险预警、预态埋纳催收; 4、催收评分、催收策略。
4. 相比银行传统风控,大数据风控对比传统风控有优势吗
相对于传统风控,大数据风控在建模原理和方法论上并无本质区别,只不过是通过互联网的红利,采集到更多维的数据变量,通过分析数据的相关性来加强或者替代传统的强因果关系。
建模原理和方法论上并无本质区别
大数据风控即大数据风险控制,是指通过运用大数据构建模型的方法对借款人进行风险控制和风险提示。
以往传统的风控需要N个工作日,而且经常是线下调查+调取央行个人征信记录的方式,耗时耗力。大数据风控基于线上大量的数据资源和强大的数据挖掘及分析能力,与传统风控相比,具有数据覆盖维度更广,处理速度更快的优势。
可以肯定回答,绝对不会被替代。
现在审核中,大数据只能算作是传统风控的一个参考点或者说是辅助作用。而且数据资源也是在传统风控的审核过的业务基础上采集的。
单纯借助大数据风控,而忽略传统风控系统,显然是不靠谱也是不可能的。
最好是可以以大数据风控为辅助手段,选择具有风险引擎和规则引擎的"双引擎风控"系统,不仅有自主学习能力,POC跑分也远远高于传统的规则单引擎。
传统的风控系统比较简单, 一套简单的IT系统结合线上线下征信,征信数据来源局限,原理简单,风险较大。
相对于大数据风控系统来说,由于大数据征信评分原因,IT系统相对完善,数据来源来源征信机构及互联网各种平台相关数据。
大体有四部分功能:1、评分建模,风控部分;
2、IT系统:业务系统、审批系统、征信系统、催收系统、账务系统;
3、决策配置工具,即信dai决策引擎;
4、征信大茄肆搭数据的整合模块。
大数据风控系统优势是大数据驱动,兼容手动、自动审批、决策、dai后管理。
鉴于大数据风控系统大大降低了风险,目前信dai行业,特别是小微金融机构大数据风控应用趋于普遍。神州融首推出了大数据风控平台、融360等也相继推出了自己的风控系统。
您好,专业金融风控平台 “红途风控汇”为您解答:
个人以为,阿里的风控相比传统银行的风控是有差距的。阿里作为一家互联网公司,相关很多法律法规不完善,也就存在很多空子可以钻。而传统银行作为国家调控的主要手段,它的风控显然更成熟也更具安全性。
目前来看,阿里的金融产品还是比较稳健的,因为其收益率并没有超越红线,相比p2p的高收益而言,相对安全。
应 该 说 是 各 有 千 秋 , 星 桥 数 据 的 金 融 大 数 据 数 据 信 息 全 面 , 为 信 贷 类 企 业 跟 个 人颤拿 提 供 黑 名 单 查 询 、 身 份 验 证 、 涵 盖 网 上 消 费 痕 迹 、 银 行 流 水 、 社 保 记 录 、 交 税 记 录 等 查 询 、 各 类 反 欺 诈 规 则 等 各 类 大 数 据 金 融 一 体 化 服 务 , 可 以 说 是 传 统 征 信 的 一 个 有 力 补 充 。
应该是不会被取代的,或者说短期内不会被取代。二者处于不同的维度,不发生取代关系
有关风控,可以网络 红途 风控交流学习。
中农信贷是用现代科技与人工结合的办理业务,不同之处在于将现代科技技术运用到业务中去了。
大数据风控目前应该是前沿技术在金融领域的最成熟应用,相对于智能投顾、区块链等还在初期的金融科技应用,大数据风控目前已经在业界逐步普及,从浅橙科技这样的高科技企业,到交易规模比较大的网贷平台,再到做现金贷、消费金融的创业公司,都在通过大数据风控技术来控制贷款规模扩张中的风险。也就是说大数据风控是非常靠谱的。
5. 大数据风控在金融科技中的应用和问题
大数据风控在金融科技中的应用和问题
一、为什么要用大数据风控?
不论是银行还是消费金融公司,互联网小贷公司等其他金融机构,金融机构普遍有风控需求,底层业务逻辑几乎完全相同,只是面对客群,金融产品、风险偏好存在差异。
银行等传统机构本质上是风险经营。一方面,监管层对金融机构的风控能力提出很高要求, 另一方面,风控直接会影响金融机构的利润水平。
因此,大数据风控直接解决金融机构的核心需求,价值度最大。大数据风控能够能够在用户画像,反欺诈,信用评级等方面大大提高金融机构的效率和风控能力,是金融企业发展过程中必须结合的一项科技手段。
二、大数据产业情况介绍
目前大数据行业主要有三类玩家:
以人行征信、鹏元征信、前海征信、银联智策为主的数据机构,他们特点是和传统的银行,公安部,工商局,航空公司,社保局等国家机关合作,提供公民基本身份证信息、银行卡信息、航空出行信息、企业工商信息等,他们的特点是对外提供数据查询,数据丰富有价值,缺点是风控产品偏弱。以蚂蚁金服、腾讯征信、网络金融为主的互联网公司,他们的特点是各自都有一块基于电商、社交、搜索的巨量数据,同时一些外部数据,形成自己的风控产品和数据输出能力,这些互联网公司刚开始只是和自己的战略合作企业合作输出风控,现在也慢慢对外提供2B的风控产品。同盾科技、百融金服、帮盛科技、聚信立、数美科技等创业技术公司,在互联网巨头还没有对外提供风控技术和传统数据机构风控技术还不强的时候,他们的出现弥补了P2P金融和现金贷对风控产品的巨大需求,他们的数据是整合多方数据源,不断的为2B企业提供风控模型和数据,并且获得了一些网贷数据积累。
三、大数据风控的覆盖流程
大数据覆盖信贷领域各个流程,重点是获客、身份验证和授信环节,贷中后环节。
获客环节建立用户画像,跟踪用户完整生命周期;身份验证环节,通过身份验证,活体识别等技术解决申请人是否本人的问题,关联分析则是利用图关联技术,找出欺诈团伙;授信环节汇聚多方数据源,通过建模进行风险定价,金融科技服务商输出信用评分给机构使用;贷中后环节,主要是排查异常客户,及时报警,以及逾期客户失联修复等。
大数据在信贷过程中的应用
四、大数据风控的价值点分析
1.数据
大数据风控中什么是最重要的?
答案是:数据。
数据的大数据风控中的核心中的核心,没有什么比数据直接告诉金融机构某个目标客户是黑名单客户,逾期严重客户更简单和高效的事情了。
数据最好能有海量数据,覆盖足够多的用户;用户数据价值密度高、噪音少,数据清洗容易;用户数据维度多,能够形成丰富的用户画像;自身业务场景能够获取有价值数据 。
2.技术
对于有些金融机构来讲,如果风控标准很严格,其实排查不能准入的客户其实是不难的,但是对于大部分金融机构来讲,风控和业务是互斥的,为了提高业务量,就必须降低准入标准,但是又要防范风险,这就需要借助技术手段,通过反欺诈建模和信用建模方式,对一下白户进行评估,以及评估客户信用水平,以决定是否准入。
技术要求有强大的底层技术架构能力,良好的企业级产品输出能力和大数据清洗和建模能力,未来还需要结合Al等技术,形成智能的风控和反欺诈平台。
3.场景
理财,保险,汽车金融,现金贷等金融服务,对应的场景不同,对建模的要求也不同,建模能力要求对客户的业务场景非常理解,模型才能适合行业特征。需要经验丰富的建模团队和行业专家队伍;服务过行业标杆客户,了解客户的业务场景;深度理解业务需求。
五、大数据风控的在信贷中应用
我们以百融系统为例,介绍大数据风控在信贷过程中的流程:
百融大数据风控应用贷款流程
当前的信贷审批流程主要分为人工审核和自动审核,对于客户资质好,信用好的客户,只要能通过负面信息,欺诈信息,信用评估,那么系统自 动审批通过。对负面信息和欺诈风险没有通过的客户,系统可以自动拒绝或者申请人工复核,对于信用评分不高的客户,需要人工介入审核。
六、常用的大数据行业数据
央行征信报告:一般持牌金融机构有央行征信介入权限,包括个人的执业资格记录、行政奖励和处罚记录、法院诉讼和强制执行记录、欠税记录等。司法信息:最高法以及省市各级法院的最新公布名单,包括执行法院、立案时间、执行案号、执行标的、案件状态、执行依据、执行机构、生效法律文书确定的义务、被执行人的履行情况、失信被执行人的行为等信息。公安信息:覆盖公安系统涉案、在逃和有案底人员信息,包括案发时间、案件详情如诈骗案/生产、销售假药案等信息。信用卡信息:银行储蓄卡/信用卡支出、收入、 逾期等信息。航旅信息:包含过去一年中,每个季度的飞行城市、飞行次数、座位层次等数据。社交信息:包含社交账号匹配类型、社交账号性别、社交账号粉丝数等。运营商信息:核查运营商账户在网时长、在网状态、消费档次等信息。网贷黑名单:根据个人姓名和身份证号码验证是否有网贷逾期,黑名单信息。还有驾驶证状态,租车黑名单,电商消费记录等等。
七、大数据行业存在的问题
目前整个大数据行业面临的问题主要是客户隐私泄露问题,像公安,法院等信息由于信息敏感,其实是游走在法律监管空白地带。
在百行征信成立之前,各家数据机构的数据其实没有打通,数据的有效性会打折扣,预计百行征信数据出来之后,因为结合了各家数据之长,数据连贯性会好一些。
各个大数据公司在数据收集和清洗方式不同,会造成数据污染,这样输出的数据会有一定的不准确性。
目前公民数据主要来自于线下收集和网络行为记录,数据的存在一定的滞后性,单纯线下收集的数据存在一定的延迟性。
大数据还处于发展初期,目前比较大的问题还是数据量不够大,不够全,以及如何协调数据开放和公民隐私之间的矛盾,未来还需要结合人工智能和区块链,物联网等技术,实现数据的不可篡改,数据收集及时等能力,从而更好为金融服务。
6. 大数据风控有哪些优点
风控是金融行业的核心业务,大数据风控是对多维度、大量数据的智能处理,批量标准化的执行流程,通过全方位收集用户的各项数据信息,并进行有效的建模、迭代,对用户信用状况进行评价,可以决定是否放贷以及放贷额度、贷款利率 。大数据风控更能贴合信息发展时代风控业务的发展要求;越来越激烈的行业竞争,也正是现今大数据风控如此火热的重要原因。比如浅橙科技,他们有自主研发的HAS风控体系,以风控技术、大数据应用技术为核心,搭建了大数据机器学习架构,能够用先进的人工智能和机器学习技术进行自主挖掘,迭代更新,为金融机构和用户提供更专业、更智能的服务。
大数据风控优势
01 数据量大
这也是大数据风控宣传的活字招牌。 根据公开资料,蚂蚁金服的风控核心CTU 投入了2200多台服务器,专门用于风险的检测、分析和处置。每天处理2亿条数据,数据维度有10万多个。
02 数据维度多
传统金融风控与大数据风控的显著区别在于对传统金融数据和非传统金融数据的应用。传统的金融数据包括上文中提及的个人社会特征、收入、借贷情况等等。而互金公司的大数据风控,采纳了大量的非传统金融数据。比如阿里巴巴的网购记录,京东的消费记录等等。
03 双重变量降低主观判断误差
大数据风控在运行逻辑上不强调强因果关系,而是看重统计学上的相关性。
除了传统变量(即传统网贷公司房贷审批的经验判断),还纳入了非传统变量,将风控审核的因果关系放宽到相关关系,通过互联网的方式抓取大量数据之后,进行系列数据分析和筛选,并运用到风险审核当中去。这样不仅能简化风控流程,提高审批效率,而且能有效避免因为认为主观判断的失误。
04 适用范围更广
中国的互金服务的客群可简单分为:无信贷历史记录者和差信贷历史记录者。他们没有征信报告或金融服务记录,对传统金融机构而言,他们的风控审核助力有限,同理,学历、居住地、借贷记录这些传统的强金融风控指标可能在面对无信贷记录者和差信贷记录者时都会面临同样的问题。而互金公司可可以通过其他方式补充新的风控数据来源,并且验证这些数据的有效性。
7. 中国银行的大数据智能风控平台是什么
中国银行的大数据智能风控平台是一款是一款利用人工智能、大数据、自然语言处理、知识图谱技术构建的综合型在线服务平台。根据查询相侍燃关公开信息显示,平台围绕海量异构数据,全面监控海量金融实体多维风险。平台提供智能多维老枣虚标签、预警信号推送、风险事件跟踪、风险传导关联、综合异构图谱等贯穿多场景全流程风险管理功能,提升金融机构风岩春控能力。目前平台在风控、合规、投研、监管等核心金融场景得到广泛应用。
8. 大数据风控是什么
大数据风控指的就是大数据风险控制,是指通过运用大数据构建模型的方法进行风险控制和风险提示。通过采集大量企业或个人的各项指标进行数据建模的大数据风控更为科学有效。
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据风控主要是通过建立数据风险模型,筛选海量数据,提取出对企业有用的数据,再进行分析判断风险性。
(8)金融大数据风控扩展阅读:
大数据风控能解决的问题:
1、有效提高审核的效率和有效性:
引入大数据风控技术手段分析,通过多维度的信息分析、过滤、交叉验证、汇总,可以形成一张全面的申请人数据画像,辅助审核决策,可以提高审核的效率和有效性。
2、有效降低信息的不对称:
引入大数据风控技术手段分析,通过多维度的信息分析、过滤、交叉验证、汇总,可以形成一张全面的申请人数据画像,辅助审核决策,可以提高审核的效率和有效性。
3、有效进行贷后检测:
通过大数据技术手段对贷款人进行多维度动态事件(如保险出险、频繁多头借贷、同类型平台新增逾期等)分析,做到及时预警。
参考资料来源:网络-大数据风控
9. 常用的互联网金融大数据风控方式有哪些
1:验证借款人信息
验证借款人身份的五因素认证是姓名、手机号、身份证号、银行卡号、家庭地址。企业可以通过借助银联数据来验证银行卡号和姓名。
其他的验证客户的方式包括让客户出示其他银行的信用卡及刷卡记录,或者验证客户的学历证书和身份认证。
2:大数据分析提交的信息
大部分的贷款申请都从线下移到了线上,特别是在互联网金融领域,消费贷一般都是以线上申请为主的。
线上申请时,申请人会按照贷款公司的要求填写多维度信息例如户籍地址,居住地址,工作单位,单位电话,单位名称等。如果是欺诈用户,其填写的信息往往会出现一些规律,企业可根据异常填写记录来识别欺诈。例如填写不同城市居住小区名字相同、填写的不同城市,不同单位的电话相同、不同单位的地址街道相同、单位名称相同、甚至居住的楼层和号码都相同。
3:分析客户的消费信息
从客户的电商消费记录、旅游消费记录、以及加油消费记录都可以作为评估其信用的依据。有的互联金融公司专门从事个人电商消费数据分析,只要客户授权其登陆电商网站,其可以借助于工具将客户历史消费数据全部抓取并进行汇总和评分。
4:参考客户的社会属性和行为进行评估
参考过去互联网金融风控的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄大的人比年龄低的人贷款违约率要高。经常不交公共事业费和物业费的人,其贷款违约率较高。经常换工作,收入不稳定的人贷款违约率较高。经常参加社会公益活动的人,成为各种组织会员的人,其贷款违约率低。经常更换手机号码的人贷款违约率比一直使用一个电话号码的人高很多。
5:调查客户是否进入黑名单
市场上有近百家的公司从事个人征信相关工作,其主要的商业模式是反欺诈识别,灰名单识别,以及客户征信评分。反欺诈识别中,重要的一个参考就是黑名单,市场上领先的大数据风控公司拥有将近1000万左右的黑名单,大部分黑名单是过去十多年积累下来的老赖名单,真正有价值的黑名单在两百万左右。
涉毒涉赌以及涉嫌治安处罚的人,其信用情况不是太好,特别是涉赌和涉毒人员,这些人是高风险人群,一旦获得贷款,其贷款用途不可控,贷款有可能不会得到偿还。