⑴ 人工智能与大数据怎么结合
这个的比较的复杂啊
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。
大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的系统分析
人工智能(Artificial ),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理毕氏论、方法、技术及应用系统的一门新的技术科学。
智能城市是一个系统。也称为网络禅哪城市、数字化城市、信息城市。不但包括人脑智慧、电脑网贺数码络、物理设备这些基本的要素,还会形成新的经济结构、增长方式和社会形态。
采纳吧
⑵ 海博科技AI+大数据生态圈推动“孪生”智慧城市新升级
以技术创新为驱动,伴随着中国IT业不断成长和发展,2004年创办的海博 科技 是国内最早一批将大数据、人工智能技术应用在平安城市运营和智慧公安建设的企业,曾参与保障北京奥运会、海军节、世园会、全运会、APEC等诸多国际重大活动,以及天网工程、平安城市等国家级重点项目建设,产品及创新解决方案研发能力处于国内一流水平,一个以海博为核心的“AI+”生态圈正在加速构建。
如今,海博 科技 与华为、阿里巴巴建立战略合作伙伴关系,与海信进行视频解码的相关技术研究,……全面推动公共安全、智慧城市、大 健康 等领域的“AI+”升级,以算法引领数字孪生,赋能城市升级。
(一)多款“AIoT”智能产品国内领先
作为山东省第三批“瞪羚企业”,海博 科技 正如瞪羚一样,已跳跃进入了高成长期。2018年是海博人最自豪的一年,“这一年我们干了两件大事,一是圆满保障了上合组织青岛峰会,二是企业产品化转型成功。”山东海博 科技 信息系统股份有限公司总经理韩东明表示。
2018年公司团队全面支撑上合组织青岛峰会视频保障工作,协助客户以环鲁、环青、环城三道防控圈为核心,整合城市监控视频、移动警务视频、海警船4G视频、卫星通信视频等,构建起海陆空视频监控联动的“天罗地网”,为各单位在指挥调度、 社会 面管控、要人警卫、应急处突、反恐防爆、情报预警等6个维度提供稳定智能的视频安保支撑。海博 科技 自主研发的视频云警务大数据实战平台,连续6024个小时以全面、稳定的场景能力保障活动安全有序举行。
2018年,海博 科技 在“AIoT(人工智能物联网)”智能产品研发上取得了极大的突破。技术研发团队凭借对人体行为分析、手势识别、图像深度学习、视频智能分析等技术的研发和创新应用,打造了多款“AIoT”智能产品,覆盖终端用户,包括智能警用无人机、警务终端、智能车载、智能体检机器人等。
(二)加强技术攻坚,持续以算法引领智慧城市赋能升级
公司的人体行为分析技术,可“实现同时对数十人的面部表情、手势、身体行为进行捕捉、识别和分析,进而做到行为预测、深度生物识别”,尤其视频大数据、人工智能产品及创新解决方案研发能力,始终在公共安全和民生领域处于国内领先。
经过对驾驶员体检业务以及相关技术应用的研究,海博 科技 研发驾驶员智能自助体检机,实现了由项目型向产品型软件公司转型的战略升级。目前拥有包括软件著作权、实用新型专利等在内的近50余项知识产权。,海博 科技 近年来成功研发推出了国内领先的驾驶员智能自助体检机。
海博 科技 在与公共安全领域用户的业务合作中发现,通过人工智能技术对提供驾驶员体检服务已经具备了技术可行性,并且也有较大的现实需求。这是一套融合了视频图像深度学习、人工智能算法、多模态感知等技术,对人体行为进行智能化检测的AIoT设备。“在学车诉求较强的旺季,一台驾驶员智能自助体检机一天能实现100余人的体检业务,彻底改变驾驶员体检线下模式,减轻体检人来回奔波、浪费人力物力,提升服务效率,有效降低整个 社会 成本,取得良好的 社会 效益和经济效益。”
(三)打通城市警务体系“毛细血管”
在技术人才方面,海博 科技 长期专注于大数据和人工智能领域的 科技 研发及技术创新工作,现已形成稳定的团队,围绕公司目前的核心产品,已攻克了多个行业共性难题。
近年来,海博 科技 共有21个独立开发的项目列入青岛市技术创新重点项目计划,与哈尔滨工业大学成立校企联合实验室,达成产学研合作项目1个,共同进行“监控视频分析与处理”项目的研究开发,开展人工智能以及视觉技术分析等内容的技术研究,分别与中国海洋大学、山东大学达成合作意向,双方未来将在人才、技术、设备等多方面进行合作。依托这些技术,公司在2020年推出海博锐鹰智慧警车系统,将算力、本地解析能力从市局、分局前移到民警手中,以边缘计算、人工智能算法打通城市警务体系“毛细血管”。
此外,海博 科技 还积极与上下游企业进行技术交流,“用 科技 守护美好生活”是海博 科技 的企业使命,每时每刻都在守护和改变着这个城市。秉持“智汇物联,安创未来”的信念,希望通过海博的研发和努力,能让城市更加安宁、和谐,美好。
(四)“数字孪生”推动城市智慧升级,从虚实结合到虚实互动,智慧孪生城市未来已来。
数字孪生作为实现数字世界与物理世界实时互动的重要技术,得益于物联网、大数据、云计算、人工智能等新一代信息技术的发展,数字孪生与国民经济各产业融合不断深化,有力,成为我国经济 社会 发展变革的强大动力。
在推动智慧城市建设中,公司的计算机视觉识别技术就破解了夜间识别这一长期的行业痛点,实现了复杂环境的精准识别与定位。针对公安业务需求,海博 科技 研发了近二十项“专家+实战型”智能研判技战法模型,极大丰富了预警、研判、指挥、管控等手段,让行业尖端技术真正成为用户一线实战强有力的“武器”。
在公共安全领域,海博 科技 立足于场景化和互联网化的思维,以人工智能大数据为服务基石,基于领先的人脸识别车辆识别技术,在智能安防领域不断取得重大进步。联合安全领域全球合作伙伴共同打造出端到端公共安全解决方案,以视频解析为中心,构建大数据可视分析决策平台——智慧公安创新应用实验室。汇聚人脸识别、视频结构化、车辆识别等功能模块,实现海量视频价值数据的存储、管理和智能化应用,助力实现数字警务、智慧公安的美好愿望。
回溯创业历程,创始人深有感触:“正是对团队、员工以及客户的信任,让海博 科技 从不到十人的创业团队,一步步发展成为国家高新技术企业、山东省瞪羚企业,也让我们有勇气、有信心实现让海博的产品服务每座城市的目标。”
⑶ 大数据与AI深度融合,进入智能社会时代
大数据与AI深度融合,进入智能社会时代
什么是人工智能
人工智能(AI)是研究、开发用于模拟、延伸和扩展人的理论、技术及应用系统的一门新技术科学。人工智能分为计算智能、感知智能、认知智能三个阶段。首先是计算智能,机器人开始像人类一样会计算,传递信息,例如神经网络、遗传算法等;其次是感知智能,感知就是包括视觉、语音、语言,机器开始看懂和听懂,做出判断,采取一些行动,例如可以听懂语音的音箱等;第三是认知智能,机器能够像人一样思考,主动采取行动,例如完全独立驾驶的无人驾驶汽车、自主行动的机器人。
什么是大数据
大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据是以数据为核心资源,将产生的数据通过采集、存储、处理、分析并应用和展示,最终实现数据的价值。
大数据与人工智能相辅相成
大数据的积累为人工智能发展提供燃料。IDC、希捷科技曾发布了《数据时代2025》白皮书。报告显示,到2025年全球数据总量将达到163ZB。这意味着,2025年数据总量将比2016全球产生的数据总量增长10倍多。其中属于数据分析的数据总量相比2016年将增加50倍,达到5.2ZB(十万亿亿字节);属于认知系统的数据总量将达到100倍之多。爆炸性增长的数据推动着新技术的萌发、壮大为深度学习的方法训练计算机视觉技术提供了丰厚的数据土壤。
大数据主要包括采集与预处理、存储与管理、分析与加工、可视化计算及数据安全等,具备数据规模不断扩大、种类繁多、产生速度快、处理能力要求高、时效性强、可靠性要求严格、价值大但密度较低等特点,为人工智能提供丰富的数据积累和训练资源。以人脸识别所用的训练图像数量为例,网络训练人脸识别系统需要2亿幅人脸画像。
数据处理技术推进运算能力提升。人工智能领域富集了海量数据,传统的数据处理技术难以满足高强度、高频次的处理需求。AI芯片的出现,大大提升了的大规模处理大数据的效率。目前,出现了GPU、NPU、FPGA和各种各样的AI-PU专用芯片。传统的双核CPU即使在训练简单的神经网络培训中,需要花几天甚至几周时间而AI芯片能提约70倍的升运算速度。
算法让大量的数据有了价值。无论是特斯拉的无人驾驶,还是谷歌的机器翻译;不管是微软的“小冰”,还是英特尔的精准医疗,都可以见到“学习”大量的“非结构化数据”的“身影”。“深度学习”“增强学习”“机器学习”等技术的发展都推动着人工智能的进步。以计算视觉为例,作为一个数据复杂的领域传统的浅层算法识别准确率并不高。自深度学习出现以后,基于寻找合适特征来让机器识别物体几乎代表了计算机视觉的全部图像识别精准度从70%+提升到95%。由此可见,人工智能的快速演进,不仅需要理论研究,还需要大量的数据作为支撑。
人工智能推进大数据应用深化。在计算力指数级增长及高价值数据的驱动下,以人工智能为核心的智能化正不断延伸其技术应用广度、拓展技术突破深度,并不断增强技术落地(商业变现)的速度,例如,在新零售领域,大数据与人工智能技术的结合,可以提升人脸识别的准确率,商家可以更好地预测每月的销售情况;在交通领域,大数据和人工智能技术的结合,基于大量的交通数据开发的智能交通流量预测、智能交通疏导等人工智能应用可以实现对整体交通网络进行智能控制;在健康领域,大数据和人工智能技术的结合,能够提供医疗影像分析、辅助诊疗、医疗机器人等更便捷、更智能的医疗服务。同时在技术层面,大数据技术已经基本成熟,并且推动人工智能技术以惊人的速度进步;产业层面,智能安防、自动驾驶、医疗影像等都在加速落地。
随着人工智能的快速应用及普及,大数据不断累积,深度学习及强化学习等算法不断优化,大数据技术将与人工智能技术更紧密地结合,具备对数据的理解、分析、发现和决策能力,从而能从数据中获取更准确、更深层次的知识,挖掘数据背后的价值,催生出新业态、新模式。
⑷ 人工智能和大数据的前景和未来
人工智能和大数据的前景和未来如下:
人工智能产业链可分为基础层、技术层和应用层。基础层方面:包括AI芯片市场、大数据服务市场提高。以自主为中心的云生态建设,制定标准实现大数据交流共享,大数据产业信息安全。
随着人工智能的日益成毁岁熟,它将会陆续普及到其他领含余晌域,继续深入发展,从未来发展趋势看,人工智能的发展前景是十分广阔的。目前,我国互联网正处于从消费互联网转向工业互联网的发展进程之中,通过综合应用物联网、
大数据和人工智能等新一代技术手段来赋能传统产业后,中国工业将会展现出一个全新的产业互联网。而由于人工智能的大量运用,必然会在产业升级过程中释放出大量的就业岗位,与此同时,也将淘汰许多落后产能,使用现代化人工智能生产线后,将可以节省大量劳动力。
⑸ 大数据和ai能力开放总体原则是什么
帮助人类。大数据和ai能力开放的总衫碧册体宗旨是方便人类进行工作,或宏因此宗旨是帮助人类。大数据,或称巨量资料,指的是所涉及的资料量规慧茄模巨大到无法透过主流软件工具。
⑹ AI智能科技软件预测分析与大数据有什么关系
软件预测分析需要大量的数据支持,所以与大数据是密切相关的。大数据山顷可瞎唯灶磨扮以帮助AI系统更准确地进行预测和分析,worldliveball8.8773据此将赛事成功率稳定在十中八
⑺ 5G+ 大数据 +AI+AIOT+ 云计算赋能新型智慧城市大脑顶层规划总体方案
文档获取方式见文末
智慧城市发展历程
新型智慧城市是以 为民服务全程全时、城市治理高效有序、数据开放共融共享、经济发展绿色开源、网络空间安全清朗 为主要目标,通过体系规划、信息主导、改革创新,推进新一代信息技术与城市现代化深度融合、迭代演进,实现国家与城市协调发展的新生态。
疫情防控考验下,暴露出城市治理能力短板
智慧城市新机遇 — 新基建赋能智慧城市高质量发展
新型基础设施包括 5G 、人工智能、大数据中心、工业互联网、城际高速铁路和城际轨道交通 、特高压、新能源 汽车 充电桩 7 大领域。 5G 网络独具满足智慧城市多场景对网络差异化需求的能力,将促进基于 5G的智慧应用、人工智能、云计算的市场需求大量爆发,前瞻 布局 新型基础 设施 ,持续推动交 通 、能源 、水利、市政等传统基础设施数字化升级 ,构 建 “泛在 连接 、高效协 同 、 全域感知、智能融合、安全可信” 数字基础设施体系,将为智能化 社会 服务应用提供有力支撑,推动智慧城市高质量发展。
建设目标
建设目标: 在坚持以人民为中心的发展理念的基础上,以提升群众获得感、幸福感为出发点与落脚点,构建以“云、网、端”为基础,数据智能为核心,支撑 N 多应用的新型智慧城市,即以 5G+ 大数据 +AI+AIOT+ 云计算 等技术强化智慧 城市基础 建设,以数据智能 “三融无跨”“开放共享” 为核心构建 城市数据智脑 ,创新 探索 新的 智慧城市应用 ,全面建成管理精细、措施精准、服务普惠的新型智慧城市。
设计理念
互联网化思维 + 5G/ 大数据 /AI/Iot/ 云新技术驱动产品全面升级。
总体规划 —技术架构( 1/2 )
总体规划 —逻辑架构( 2/2 )
夯实三大基础设施,包括新一代“云 + 边”及其协同设施、基础通信网络和智慧化物联网终
端构成的 “云、网、端” ,支撑智慧城市高效有序地建设运行。通过集约化建设,合理灵活
地分配基础设施资源,加强智慧城市底层基础构建。
夯实三大基础设施,包括新一代“云 + 边”及其协同设施、基础通信网络和智慧化物联网终
端构成的 “云、网、端” ,支撑智慧城市高效有序地建设运行。通过集约化建设,合理灵活
地分配基础设施资源,加强智慧城市底层基础构建。
创新四类智慧应用,面向 党建引领、政府管理、产业融合 和 民生服务 四大板块,从城市的业务发展战略及定位出发,梳理各部门的业务需求,融合各部门业务数据、互联网数据,依托政府大数据共享平台,深度数据治理、流程再造,整合各种渠道,为 市民、企业、管理服务者、管理决策者 四类服务对象提供统一的访问和交互入口,全面推动新型智慧城市建设。
构建新型智慧城市 标准评估 和 信息安全 两大保障体系,支撑智慧城市高效有序地建设运行。
⑻ AI大数据技术介绍 AI与大数据有何关系
1、人工智能与大数据密不可分,可以将很多大数据的应用归结为人工智能,随着人工智能的快速陵辩应用及普及,大数据不断累积,深度学习及强化学习等算法不断优化,大数据技术将与人工智能技术更紧密地结合,具备对数据的理解、分析、发现和决策能力,从而能从数据中获取更准确、更深层次的知识,挖掘数据背后的价值,催生出新业态物汪此、新模式。
2、人工智能是很多技术的总称,包括机器人、语罩迅言识别、图像识别、自然语言处理和专家系统等,随着新一代信息技术的快速发展,计算能力、数据处理能力和处理速度得到了大幅提升,机器学习算法快速演进,大数据的价值得以展现,随着智能终端和传感器的快速普及,海量数据快速累积,基于大数据的人工智能也因此获得了持续快速发展的动力来源。
3、大数据,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产,大数据是以数据为核心资源,将产生的数据通过采集、存储、处理、分析并应用和展示,最终实现数据的价值。
4、大数据主要包括采集与预处理、存储与管理、分析与加工、可视化计算及数据安全等,具备数据规模不断扩大、种类繁多、产生速度快、处理能力要求高、时效性强、可靠性要求严格、价值大但密度较低等特点,所谓大数据,就是大量的信息,利用普通的加减乘除啥的肯定会把电脑给跑废掉,不过这里的电脑不是我们用的普通的电脑,他们通常都有数据处理中心,就是高配的商业服务器。
⑼ 践行AI战略:华为引领数据中心网络迈入人工智能时代
AI正在成为企业助力决策、提升客户体验、重塑商业模式与生态系统、乃至整个数字化转型的关键驱动力。
但在崭新的虚悄AI时代,数据中心网络性能也正在成为AI算力以及整个AI商用进程发展的关键瓶颈,正面临诸多挑战。
为此,华为以“网络新引擎 AI赢未来”为主题发布了业界首款面向AI时代数据中心交换机CloudEngine 16800,将人工智能技术创新性的应用到数据中心交换机,引领数据中心网络迈入AI时代。
AI时代数据中心网络面临三大挑战
当前,数字化转型的持续推进,正在提速驱动数据量暴增;同时,语音/视频等非结构化数据占比持续提高,庞大的数据量和处理难度已远超人类的处理能力,需要基于机器运算深度学习的AI算法来完成海量无效数据的筛选和有用信息的自动重组,从而获得高效的决策差基渣建议和智慧化的行为指引。
根据华为GIV 2025(Global Instry Vision)的预测,企业对AI的采用率将从2015年的16%增加到2025年86%,越来越多的企业将利用AI助力决策、重塑商业模式与生态系统、重建客户体验。
作为人工智能的“孵化工厂”,数据中心网络正成为AI等新型基础设施的核心。但与此同时,随着AI时代的到来,AI人工智能的算力也受到数据中心网络性能的影响,正在成为AI商用进程的一大瓶颈。
华为网络产品线总裁胡克文指出,AI时代的数据中心网络将面临以下三大挑战:
挑战1.AI算力。高性能数据中心集群对网络丢包异常敏感,未来的网络应该做到零丢包。但传统的以太网即使千分之一的丢包率,都将导致数据中心的AI算力只能发挥50%。
挑战2.大带宽。未来5年,数字洪水猛增近20倍,现有100GE的网络无法支撑。预计全球年新增数据量将从2018年的10ZB猛增到2025年180ZB(即1800亿TB),现有100GE为主的数据中心网络已无法支撑数据洪水的挑战。
挑战3.要面向自动驾驶网络的能力。随着数据中心服务器规模的增加,以及计算网络、存储网络和数据网络三网融合,传统人工运维手段已难以为继,亟需引入创新的技术提升智能化运维的能力,如何用新的技术去使能、把网络问题排查出来成为业界都在思考的问题。
华为定义AI时代数据中心交换机三大特征
从行业大势来看,随着以人工智能为引擎的第四次技术革命正将我们带入一个万物感知、万物互联、万物智能的智能世界,数据中心网络也必须从云时代向AI时代演进。在华为看来,数据中心需要一个自动驾驶的高性能网络来提升AI算力,帮助客户加速AI业务的运行。
那么,AI时代的数据中心网络究竟该如何建设呢?胡克文指出,“华为定义了AI时代数据中心交换机的三大特征:内嵌AI芯片、单槽48 x 400GE高密端口、能够向自动驾驶网络演进的能力。”
特征1.业界首款内嵌AI芯片数据中心交换机,100%发挥AI算力
从应用侧来看,刷脸支付的背后是上亿次图像信息的智能识别,深度 健康 诊断需要基于数千个算法模型进行分析,快捷网购体验离不开数百台服务器的智能计算。也就是说,新商业物种的诞生,产业的跨越式发展以及用户体验得以改变,强烈地依赖于人脸识别、辅助诊断、智能推荐等AI应用的发展。
但由于AI算力受到数据中心网络性能的影响,正在成为AI商用进程的关键瓶颈。为了最大化AI算力,存储介质演进到闪存盘,时延降低了不止100倍,计算领域通过采用GPU甚至专用的AI芯片将处理数据的能力提升了100倍以上。
CloudEngine 16800是业界首款搭载高性能AI芯片的数据中心交换机,承载独创的iLossLess智能无损交换算法,实现流量模型自适应自优化,从而在零丢包基础上获得更低时延和更高吞吐的网络性能,克服传统以太网丢包导致的算力损失,将AI算力从50%提升到100%,数据存锋伍储IOPS(Input/Output Operations Per Second)性能提升30%。
特征2.业界最高密度单槽位48 x 400GE,满足AI时代5倍流量增长需求
数据中心是互联网业务流量汇聚点,企业AI等新型业务驱动了数据中服务器从10G到25G甚至100G的切换,这就必然要求交换机支持400G接口,400GE接口标准化工作已经于2015年启动,目前针对数据中心应用已经完成标准化,400G时代已经来临。
集群的规模是数据中心架构演进的动力,经典的无阻塞CLOS理论支撑了数据中心服务器规模从千台、万台到今天10万台规模的发展,增大核心交换机容量是数据中心规模扩大的最常见手段。以一个1000T流量规模的数据中心组网为例,采用400GE技术,核心汇聚交换机需要5K个接口,相对100GE技术减少75%。
为此,CloudEngine 16800全面升级了硬件交换平台,在正交架构基础上,突破超高速信号传输、超强散热、高效供电等多项技术难题,不仅支持10G→40G→100G→400G端口平滑演进能力,还使得单槽位可提供业界最高密度48端口400GE线卡,单机提供业界最大的768端口400GE交换容量,交换能力高达业界平均的5倍,满足AI时代流量倍增需求。同时,CloudEngine 16800在PCB板材、工艺、散热,供电等多方面都进行了革命性的技术改进和创新,使得单比特功耗下降50%。
特征3.使能自动驾驶网络,秒级故障识别、分钟级故障自动定位
当数据中心为人工智能提供了充分的技术支撑去创新时,人工智能也给数据中心带来巨大利益,如借助telemetry等技术将异常信息送到集中的智能运维平台进行大数据分析,这极大提升了网络的运行和运维效率,降低运维难度和人力成本。但是当前计算和存储正在融合,数据中心服务器集群规模越来越大,分析的流量成千倍的增长,信息上报或者获取频度从分钟级到毫秒级,再加上信息的冗余,这些都使得智能运维平台的规模剧增,智能运维平台对性能压力不堪重负降低了处理的效率。如何减轻智能运维平台的压力,在最靠近服务器,最靠近数据的网络设备具有智能分析和决策功能,成为提升运维效率的关键。
CloudEngine 16800基于内置的AI芯片,可大幅度提升“网络边缘”即设备级的智能化水平,使得交换机具备本地推理和实时快速决策的能力;通过本地智能结合集中的FabricInsight网络分析器,构建分布式AI运维架构,可实现秒级故障识别和分钟级故障自动定位,使能“自动驾驶网络”加速到来。该架构还可大幅提升运维系统的灵活性和可部署性。
引领数据中心网络从云时代迈入AI时代
自2012年进入数据中心网络市场以来,目前华为已服务于全球6400+个用户,广泛部署在中国、欧洲、亚太、中东、非洲、拉美等全球各地,帮助互联网、金融、政府、制造、能源、大企业等多个行业的客户实现了数字化转型。
2017年华为进入Gartner数据中心网络挑战者象限;2018年进入Forrester数据中心SDN网络硬件平台领导者;2013-2018年,全球数据中心交换机厂商中,华为连续六年复合增长率第一,发展势头强劲。
早在2012年,华为就以“云引擎,承未来”为主题,发布了CloudEngine 12800数据中心核心交换机,七年以来这款面向云时代的交换机很好的支撑了数据中心业务弹性伸缩、自动化部署等核心诉求。
而随着本次华为率先将AI技术引入数据中心交换机、并推出面向AI时代的数据中心交换机CloudEngine 16800,华为也在引领数据中心网络从云时代迈入AI时代。
2018年,华为轮值董事长徐直军宣布:将人工智能定位为新的通用技术,并发布了人工智能发展战略,全面将人工智能技术引入到智能终端、云和网络等各个领域。而本次华为发布的业界首款面向AI时代数据中心交换机CloudEngine 16800,也是华为在网络领域持续践行AI战略的集中体现。
而作为华为AI发展战略以及全栈全场景AI解决方案的一个重要组成部分,CloudEngine 16800不仅是业界首款面向AI时代的数据中心交换机,还将重新定义数据中心网络的代际切换,助力客户使能和加速AI商用进程,引领数据中心真正进入AI时代。
⑽ 大数据、BI、AI,三者之间的关系是什么_大数据和bi的区别
BI目前实现的是收集数据,提供反馈,辅助决策的能力,以数据为基础的,面向数据管理和分析,段橡乎属被动角色。而AI则辅以大数据,算法等得到更有价值的信息,实现收集预测的能力,更多的是主动角色。
虽然AI的应用范围非常广,但结合BI现仍是处理结构化的数据。而此处二者的交集在于机器学习和数据挖掘,但又略有不同。AI的机器学习强调算法,BI的数据挖掘还包括对数据的管理,算法选择上也较为简单,没有神经网络和深度学习等复杂AI算法。
未来,AI与BI的区别在于BI负责梳理生产关系,AI是先进生产力。那么AIBI模式通过将AI嵌入BI,构建基于AI的BI平台,利用AI的智能让BI系如纳统能够解决更复杂的业务场景,产出更精准的分析结果,从而使决策更为科学和准确。
对于结构化的数据,BI系统握悉可应用机器学习算法,得到更精确的分析结果。例如上文提到的总结用户画像,分析人群行为数据,得到千人千面,实现精准营销的结果。还有金融领域的风险监测,AIBI的模式可以分析出金融风险和其他指标、行为之间的内在联系,预测更为准确。
对于非结构化的数据,BI可以应用图像处理、语音工程和文本分析等AI技术,智能化地处理复杂业务场景。如语音转文字,录入数据及产出想要的报表等。
业务场景除了在IT信息化基础比较扎实的行业,也会在深度场景化的细分领域,且这些领域不具备通用性。也可理解为解决方案不具备复用性。这个时候通过AI完成一些算法匹配,根据匹配的结果来驱动业务执行。