㈠ 工业大数据是什么
工业大数据的本质来是数据驱源动。就象我们以前说大数据一样,并不是一个名词,而是一个技术代名词,指的是基于大数据的分析、可视化,模型等大数据相关的技术和应用。在大数据技术日益成熟的前提下,与产业的深度整合成为大数据发展的下一个重要方向,埃睿迪的iReadyInsights平台,就是与产业深度融合的大数据平台。其被应用于工业、环保、金融等产业,并且有诸多典型客户。
㈡ 国内成功落地的工业大数据公司有哪些
国内做大数据的公司依旧分为两类:
一类是现在已经有获取大数据能力的公司,如网络、腾讯、阿里巴巴等互联网巨头以及华为、浪潮、中兴等国内领军企业,涵盖了数据采集,数据存储,数据分析,数据可视化以及数据安全等领域;
另一类则是初创的大数据公司,他们依赖于大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。其中大部分的大数据应用还是需要第三方公司提供服务。
㈢ 工业大数据应用在哪些方面
工业大数据应用在哪些方面?
1.加速产品创新
客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。
2.产品故障诊断与预测
这可以被用于产品售后服务与产品改进。无所不在的传感器、互联网技术的引入使得产品故障实时诊断变为现实,大数据应用、建模与仿真技术则使得预测动态性成为可能。
3.生产线的大数据应用
现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。
4.工业供应链分析和优化
当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。
5.产品销售预测与需求管理
通过大数据来分析当前需求变化和组合形式。大数据是一个很好的销售分析工具,通过历史数据的多维度组合,可以看出区域性需求占比和变化、产品品类的市场受欢迎程度以及最常见的组合形式、消费者的层次等,以此来调整产品策略和铺货策略。
6.生产计划与排程
制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的历史数据,对于需要快速响应的APS来说,是一个巨大的挑战。
大数据可以给予我们更详细的数据信息,发现历史预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。
帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。虽然,大数据略有瑕疵,只要得到合理的应用,大数据会变成我们强大的武器。当年,福特问大数据的客户需求是什么?而回答是“一匹更快的马”,而不是现在已经普及的汽车。所以,在大数据的世界里,创意、直觉、冒险精神和知识野心尤为重要。
7.产品质量管理与分析
传统的制造业正面临着大数据的冲击,在产品研发、工艺设计、质量管理、生产运营等各方面都迫切期待着有创新方法的诞生,来应对工业背景下的大数据挑战。例如在半导体行业,芯片在生产过程中会经历许多次掺杂、增层、光刻和热处理等复杂的工艺制程,每一步都必须达到极其苛刻的物理特性要求,高度自动化的设备在加工产品的同时,也同步生成了庞大的检测结果。
㈣ 工业大数据有什么应用
从需求角度来看,目前国内制造企业对大数据的需求较为明显,但很多用户仍处于观望和试验阶段,不知道如何进行。因此,对于大数据服务提供商来说,有必要结合行业业务,寻找合适的应用场景。
互联网给传统制造业带来了挑战,而互联网大数据可以为企业管理者和参与者提供一个新的视角,通过技术创新和开发,以及对数据的全面感知、收集、分析和共享,来审视制造业价值链。it所带来的巨大价值正在被传统企业所认可。
然而,不同于目前互联网大数据的火热,工业大数据的应用对于企业来说有着很高的门槛。与互联网不同,行业大数据与行业业务密切相关。因此,对企业的行业积累和对行业业务的深入了解都有很高的要求。此外,行业内的大数据分析比较准确,逻辑关系非常清晰。
㈤ 工业大数据有哪些应用场景
1.加速产品立异
客户与工业企业之间的交互和买卖行为将发生大量数据,挖掘和剖析这些客户动态数据,可以帮助客户参加到产品的需求剖析和产品设计等立异活动中,为产品立异作出贡献。
2.产品毛病确诊与猜测
这可以被用于产品售后服务与产品改善。无所不在的传感器、互联网技术的引入使得产品毛病实时确诊变为实际,大数据使用、建模与仿真技术则使得猜测动态性成为可能。
3.生产线的大数据使用
现代化工业制作生产线装置有数以千计的小型传感器,来勘探温度、压力、热能、振荡和噪声。由于每隔几秒就收集一次数据,使用这些数据可以完成许多方式的剖析,包括设备确诊、用电量剖析、能耗剖析、质量事故剖析(包括违反生产规则、零部件毛病)等。
4.工业供应链剖析和优化
当时,大数据剖析已经是许多电子商务企业提升供应链竞争力的重要手法。例如,电子商务企业京东商城,经过大数据提早剖析和猜测各地产品需求量,然后提高配送和仓储的效能,保证了次日货到的客户体会。
5.产品出售猜测与需求管理
经过大数据来剖析当时需求改变和组合方式。大数据是一个很好的出售剖析东西,经过历史数据的多维度组合,可以看出区域性需求占比和改变、产品品类的商场受欢迎程度以及最常见的组合方式、消费者的层次等,以此来调整产品策略和铺货策略。
6.生产计划与排程
制作业面临多品种小批量的生产模式,数据的精细化自动及时便利的收集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的历史数据,关于需求快速呼应的APS来说,是一个巨大的挑战。
关于工业大数据有哪些应用场景,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
㈥ 工业大数据是什么,及其对企业未来发展的作用
我国工业大数据处于起步阶段
工业大数据是指在工业领域信息化应用中所产生的数据,是工业互联网的核心,是工业智能化发展的关键。工业大数据是基于网络互联和大数据技术,贯穿于工业的设计、工艺、生产、管理、服务等各个环节,使工业系统具备描述、诊断、预测、决策、控制等智能化功能的模式和结果。
工业大数据从类型上主要分为现场设备数据、生产管理数据和外部数据。
——以上数据来源于前瞻产业研究院《中国工业大数据产业发展前景与投资战略规划分析报告》。
㈦ 工业大数据包括哪些工业大数据应用在哪些方面
【导读】众所周知,第二次世界大战也称为工业革命,可见工业在生活中是多么的重要,现在工业也已经趋于人工智能化,不过还是处于前期的观望试运行阶段,今天我们就来了解一下大数据在工业方面的应用有哪些,一起来看看吧!
大数据在工业中的应用有哪些?
从需求角度来看,目前国内制造企业对大数据的需求较为明显,但很多用户仍处于观望和试验阶段,不知道如何进行。因此,对于大数据服务提供商来说,有必要结合行业业务,寻找合适的应用场景。
工业大数据的应用有哪些?
互联网给传统制造业带来了挑战,而互联网大数据可以为企业管理者和参与者提供一个新的视角,通过技术创新和开发,以及对数据的全面感知、收集、分析和共享,来审视制造业价值链。所带来的巨大价值正在被传统企业所认可。
然而,不同于目前互联网大数据的火热,工业大数据的应用对于企业来说有着很高的门槛。与互联网不同,行业大数据与行业业务密切相关。因此,对企业的行业积累和对行业业务的深入了解都有很高的要求。此外,行业内的大数据分析比较准确,逻辑关系非常清晰。
工业大数据的应用有哪些?大数据在工业中的应用有哪些?通过大数据分析,企业可以使部门之间的数据更加协调,从而准确预测市场需求缺口。同时,通过更加灵活的工艺管理和更加自动化的生产设备装配调度,实现智能化生产。然而,据我们所知,在中国从事大数据应用的公司并不多。然而,拥有自主知识产权和核心技术的企业并不多。要做好工业大数据的应用,需要有一套严谨的数据推理逻辑,以及平台和工具。目前,国内大数据应用企业还没有足够的能力满足这一需求。
然而,仍有一些大型工业企业处于应用的前沿。以唐山钢铁集团为例,通过引进国际最先进的生产线,实现实时数据采集,与涵宇等企业合作,深入挖掘行业大数据价值,实时生产监控、生产调度、产品质量管理、能源控制等。此外,先进制造企业基于大数据在行业中的应用,将产品、机器、资源、人有机结合,推动基于大数据分析和应用的制造业智能化转型。
综上所述,在“互联网+”时代,用户需求具有实时性、小批量、碎片化、更新快等特点,对传统制造业提出了挑战。工业大数据有其鲜明的特点。随着信息化和工业化的融合,产业大数据的应用为制造业转型升级开辟了一条新途径。深入探讨工业大数据在制造过程中的应用场景和应用,将有利于更好地发挥其支撑作用。
以上就是小编今天给大家整理的关于“工业大数据包括哪些?工业大数据应用在哪些方面?”的相关内容,希望对大家有所帮助。总的来说,大数据的价值不可估量,未来发展前景也是非常可观的,因此有兴趣的小伙伴,尽早着手学习哦!
㈧ 工业大数据是什么,及其对企业未来发展的作用
1、工业大数据是什么?
工业大数据是指涵盖工业领域中整个产品的全生命周期,所产生的各类数据及相关技术和应用的总称。
2、这些数据对未来企业的作用
在这里就举两个例子来说明,当然也是鉴于篇幅的关系,不能把所有的工业数据的应用都分享出来。
首先是产品的生产流程和进度的工业数据,这个工业数据主要是提供给生产计划部门和销售部门使用的,例如生产计划部门可以根据一个产品的生产流程制定详细的生产结合,并评估每个流程节点的生产周期,生产成本等等,以便快速的协调生产计划,合理控制生产周期。
而生产进度的工业数据可以让销售部门的销售人员更加对客户的产品形成控制力,同时也可以实时的将这些生产进度数据分享给客户知悉,从而坚定客户对我们的信心,这对于生产订单的实施和后续订单的吸引都有非常大的好处。
再例如产品质量的工业数据,我们可以通过对每个产品,以及产品对应的工艺流程来分门别类的统计与质量相关的合格率,废品率,不合格类型,报废类型等等,通过这些数据来提升企业生产能力,从而提升企业的产品质量和缩短企业的产品生产周期,甚至大幅度的降低企业生产成本。
而如果是传统的制造企业的话,虽然很多企业也在对一些工业数据进行手工采集和制表归类,但是如何更好的去应用就是一个非常大是问题了,甚至根本就从来都没有使用过。
㈨ 工业大数据特征有哪些 大数据工程师来告诉你
【导语】工业大数据是智能制造的核心,以“大数据+工业互联网”为基础,用云计算、大数据、物联网、人工智能等技术引领工业生产方式的变革,拉动工业经济的创新发展,那么工业大数据特征有哪些呢?下面大数据工程师来告诉你吧。
1、准确性(accuracy):
主要指数据的真实性、完整性和可靠性,更加关注数据质量以及处理、分析技术和方法的可靠性。对数据分析的置信度要求较高,仅依靠统计相关性分析不足以支撑故障诊断、预测预警等工业应用,需要将物理模型与数据模型结合,挖掘因果关系。
2、闭环性(closed-loop):
包括产品全生命周期横向过程中数据链条的封闭和关联以及智能制造纵向数据采集和处理过程中,需要支撑状态感知、分析、反馈、控制等闭环场景下的动态持续调整和优化。
3、多样(variety):
指数据类型的多样性和来源广泛。工业数据分布广泛,分布于机器设备、工业产品、管理系统、互联网等各个环节,并且结构复杂,既有结构化和半结构化的传感数据,也有非结构化数据。
4、数据容量大(volume):
数据的大小决定所考虑的数据的价值和潜在的信息。工业数据体量比较大,大量机器设备的高频数据和互联网数据持续涌入,大型工业企业的数据集将达到PB级甚至EB级别。
5、快速(velocity):
指获得和处理数据的速度。工业数据处理速度需求多样,生产现场级要求分析时限达到毫秒级,管理与决策应用需要支持交互式或批量数据分析。
6、强关联性(strong-relevance):
一方面,产品生命周期同一阶段的数据具有强关联性,如产品零部件组成、工况、设备状态、维修情况、零部件补充采购等;另一方面,产品生命周期的研发设计、生产、服务等不同环节的数据之间需要进行关联。
7、价值密度低(value):
工业大数据更强调用户价值驱动和数据本身的可用性,包括:提升创新能力和生产经营效率及促进个性化定制、服务化转型等智能制造新模式变革。
8、时序性(sequence):
工业大数据具有较强的时序性,如订单、设备状态数据等。
关于工业大数据特征,就和大家分享到这里了,中国社会发展至今,大数据的应用正在逐渐普及,所以未来前景不可估量,希望想从事此行业的人员能够合理选择。