导航:首页 > 网络数据 > 大数据挖掘搜索

大数据挖掘搜索

发布时间:2023-05-22 02:16:10

A. 大数据搜索与挖掘平台有哪些

传说中的网络大数据,腾讯大数据,电信大数据等等。你这问题略大,小生有礼了。。。

B. 大数据挖掘方法有哪些

直接数据挖掘:目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。

间接数据挖掘:目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。

数据挖掘的方法

神经网络方法

神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。

遗传算法

遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。

决策树方法

决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。

粗集方法

粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。

覆盖正例排斥反例方法

它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。

统计分析方法

在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。

模糊集方法

即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。

数据挖掘任务

关联分析

两个或两个以上变量的取值之间存在某种规律性,就称为关联。数据关联是数据库中存在的一类重要的、可被发现的知识。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阀值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。

聚类分析

聚类是把数据按照相似性归纳成若干类别,同一类中的数据彼此相似,不同类中的数据相异。聚类分析可以建立宏观的概念,发现数据的分布模式,以及可能的数据属性之间的相互关系。

分类

分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。

预测

预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。

时序模式

时序模式是指通过时间序列搜索出的重复发生概率较高的模式。与回归一样,它也是用己知的数据预测未来的值,但这些数据的区别是变量所处时间的不同。

偏差分析

在偏差中包括很多有用的知识,数据库中的数据存在很多异常情况,发现数据库中数据存在的异常情况是非常重要的。偏差检验的基本方法就是寻找观察结果与参照之间的差别。

C. 大数据挖掘方法有哪些

谢邀。

大数据挖掘的方法:

神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。


遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。


决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。


粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。


它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。


在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。


即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。

D. 如何利用好大数据挖掘潜在用户

就目前而言,现在的大数据技术为绝大部分的业务提供了许多功能,同时还提高了效率和收入。当然除了这些以外,大数据分析还为公司的潜在客户和现有客户提供了许多好处。这些优点让很多公司对于大数据技术十分向往,那么怎么能够利用好大数据呢?一般来说参与寻找内部、收集最大的数据量、和大数据公司进行合作。
一,参与寻找内部
要想找到潜在用户,可以利用大数据技术从订单历史、客户服务信息、业务订单管理系统来挖掘数据,数据分析师可以通过对数据进行分析出最忠实购物者的全方位视图来找到自己需要的参数。
通过挖掘数据拥有大量的属性,这些属性能够体现出客户的价值。可能会确定不同业务的各种市场的销售程度,即他们花的资金很少,并且会花费大量时间与客户服务代表合作。有了这些知识,就能够精准的寻找出自己需要的内容。
二、收集最大数据量
大家都知道,我们在与客服交流的过程总可以说是在了解客户,如果收集到客户尽可能多的信息,将会非常有帮助。而与别的品牌互动,退货和交换以及之前的购买历史记录中获得更多的数据,如果最大限度地利用客户的个人详细信息也是对于大数据分析带来很大的帮助。这有助于全面了解客户群并减除差距。
如果数据中存在缺失可能导致丢失有价值的信息,从而误导客户体验的全貌。所以说,在大数据分析之前一定要确保捕获可能对客户的行为和体验产生影响的所有内容。在分析完成之前,所有有关客户群的任何内容非常重要。此过程可以说明以前可能不容易获得或未见到的见解和模式,这些知识有助于解决客户的特定偏好和需求。愿意接受客户的所作所为,而不是他们正在思考的事情。对于我们的分析一定要保持客观的视角看待问题。
同样重要的事情就是,这种分析是一个持续的过程。客户的偏好和需求将不断变化,并受到包括新兴产品、当前趋势和各种其他重要因素在内的所有情况的影响。但是,在需求方面保持更高级并不容易,这一过程可确保对未来和现有客户始终保持高度重视。
三、与大数据公司合作
在获得了数据以后,如果能够最大限度地利用大数据来了解客户并定位理想客户仅仅只是一个开始。对于品牌来说,不仅可以确定其最佳购物者,还可以针对该公司的其他成员扩大其购物群的忠诚度。不过,当今企业面临的一大挑战是缺乏资源来启动大数据计划。除了保存和使用这些数据的理想基础设施外,组织还必须有能力去检查这些数据,当然还必须最大限度地利用这些洞察力。这是与大数据公司的合作关系的关键部分。而大数据公司的大数据专家不仅可以确保组织能够访问所有理想的大数据,还可以帮助分析它,以获得高价值的性能指标,预测和见解,从而提高品牌的价值。

对于上面提到的问题,想必大家看了这篇文章以后已经知道了怎么利用好大数据找到潜在用户了吧,一般来说,参与寻找内部、收集最大的数据量、和大数据公司进行合作才能找到潜在用户,希望这篇文章能够给大家带来帮助。

E. 大数据是什么如何挖掘

数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

用于分析大数据的工具主要有开源与商用两个生态圈。
开源大数据生态圈:
1、Hadoop HDFS、HadoopMapRece, HBase、Hive 渐次诞生,早期Hadoop生态圈逐步形成。
2、. Hypertable是另类。它存在于Hadoop生态圈之外,但也曾经有一些用户。
3、NoSQL,membase、MongoDb
商用大数据生态圈:
1、一体机数据库/数据仓库:IBM PureData(Netezza), OracleExadata, SAP Hana等等。
2、数据仓库:TeradataAsterData, EMC GreenPlum, HPVertica 等等。
3、数据集市:QlikView、 Tableau 、 以及国内的REU-BDS 大数据

F. 大数据挖掘是什么

数据挖掘(DataMining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。

数据挖掘对象

根据信息存储格式,北大青鸟南邵计算机学院认为用于挖掘的对象有关系数据库、面向对象数据库、数据仓库、文本数据源、多媒体数据库、空间数据库、时态数据库、异质数据库以及Internet等。

数据挖掘流程

定义问题:清晰地定义出业务问题,确定数据挖掘的目的。

数据准备:数据准备包括:选择数据_在大型数据库和数据仓库目标中提取数据挖掘的目标数据集;数据预处理_进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。

数据挖掘:根据数据功能的类则明型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。

结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。

数据挖掘分类

直接数据挖掘:目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。

间接数据挖掘:目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。

数据挖掘的方法

神经网络方法

神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。

遗传算法

遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性孙裤告、易于和其它模型结合等性质使得它纯扮在数据挖掘中被加以应用。

决策树方法

决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。


G. 大数据挖掘主要涉及哪些技术

1、数据科学与大数据技术
本科专业,简称数据科学或大数据。
2、大数据技术与应用回
高职院校专业。
相关专业名答称:大数据管理与应用、大数据采集与应用等。
大数据专业强调交叉学科特点,以大数据分析为核心,以统计学、计算机科学和数学为三大基础支撑性学科,培养面向多层次应用需求的复合型人才。

阅读全文

与大数据挖掘搜索相关的资料

热点内容
tex压缩文件如何解压 浏览:599
数据库如何查看前10行的内容 浏览:109
在线看小说哪个网站好 浏览:364
德阳哪个app好 浏览:184
齐天大圣网络怎么样 浏览:771
电脑重设时间提示找不到文件 浏览:914
win10myeclipse2013 浏览:456
苹果吃到中间是灰色 浏览:967
ipad上的excel文件可以用吗 浏览:361
word2003横版变竖版 浏览:34
搜狗输入法78版本 浏览:792
iphone5s文件 浏览:68
win10共享xp打印机权限设置 浏览:426
点开app时怎么设置密码 浏览:55
iphone怎么设置个人热点 浏览:372
夜神模拟器的文件夹 浏览:674
iphone管理存储空间 浏览:735
cad文件过大打开一直转圈 浏览:825
小程序gps 浏览:755
奔驰怎么看导航版本 浏览:859

友情链接