导航:首页 > 网络数据 > kettle大数据量处理

kettle大数据量处理

发布时间:2023-05-18 00:20:41

A. 求助:哪些公司可以提供大数据处理分析解决方案

上海献峰网络指出:你要的大数据分析解决方案大全都在这

从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?

一、大数据分析的五个基本方面

1. Analytic Visualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。

2. Data Mining Algorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。

3. Predictive Analytic Capabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。

4. Semantic Engines(语义引擎)
我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。

5. Data Quality and Master Data Management(数据质量和数据管理)

数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。

二、大数据处理

周涛博士说:大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。

具体的大数据处理方法其实有很多,但是根据长时间的实践,笔者总结了一个基本的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,以及挖掘。

采集

大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。

在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。

导入/预处理

虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。

导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。

统计/分析

统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC 的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。

统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。

挖掘

与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的K-Means、用于统计学习的SVM和用于分类的Naive Bayes,主要使用的工具有Hadoop的Mahout等。

该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,还有,常用数据挖掘算法都以单线程为主。

B. kettle从oracle向mysql迁移大数据量时报错,求教

OGG全称为Oracle GoldenGate,是由Oracle官方提供的用于解决异构数据环境中数据复制的一个商业工具。相比于其它迁移工具OGG的优势在于可以直接解析源端Oracle的redo log,因此能够实现在不需要对原表结构做太多调整的前提下完成数据增量部分的迁移。本篇文章将重点介绍如何使用OGG实现Oracle到MySQL数据的平滑迁移,以及讲述个人在迁移过程中所碰到问题的解决方案。


(一)OGG逻辑架构

参照上图简单给大家介绍下OGG逻辑架构,让大家对OGG数据同步过程有个简单了解,后面章节会详细演示相关进程的配置方式,在OGG使用过程中主要涉及以下进程及文件

C. 如何进行大数据分析及处理

1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

D. ETL会不会淘汰

摘要 你好,目前来说是不会的,ETL任然是大数据时代下数据迁移不可缺少的

E. 大数据etl工具有哪些

ETL是数据仓库中的非常重要的一环,是承前启后的必要的一步。ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。

下面给大家介绍一下什么是ETL以及ETL常用的三种工具——Datastage,Informatica,Kettle。

一、什么是ETL?
ETL,Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。

数据仓库结构
通俗的说法就是从数据源抽取数据出来,进行清洗加工转换,然后加载到定义好的数据仓库模型中去。目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。

ETL是BI项目重要的一个环节,其设计的好坏影响生成数据的质量,直接关系到BI项目的成败。

二、为什么要用ETL工具?
在数据处理的时候,我们有时会遇到这些问题:

▶ 当数据来自不同的物理主机,这时候如使用SQL语句去处理的话,就显得比较吃力且开销也更大。

▶ 数据来源可以是各种不同的数据库或者文件,这时候需要先把他们整理成统一的格式后才可以进行数据的处理,这一过程用代码实现显然有些麻烦。

▶ 在数据库中我们当然可以使用存储过程去处理数据,但是处理海量数据的时候存储过程显然比较吃力,而且会占用较多数据库的资源,这可能会导致数据资源不足,进而影响数据库的性能。

而上述遇到的问题,我们用ETL工具就可以解决。ETL工具具有以下几点优势:

1、支持多种异构数据源的连接。(部分)

2、图形化的界面操作十分方便。

3、处理海量数据速度快、流程更清晰等。

三、ETL工具介绍
1、Datastage

IBM公司的商业软件,最专业的ETL工具,但同时价格不菲,适合大规模的ETL应用。

使用难度:★★★★

2、Informatica

商业软件,相当专业的ETL工具。价格上比Datastage便宜一点,也适合大规模的ETL应用。

使用难度:★★

3、Kettle

免费,最著名的开源产品,是用纯java编写的ETL工具,只需要JVM环境即可部署,可跨平台,扩展性好。

使用难度:★★

四、三种ETL工具的对比
Datastage、Informatica、Kettle三个ETL工具的特点和差异介绍:

1、操作

这三种ETL工具都是属于比较简单易用的,主要看开发人员对于工具的熟练程度。

Informatica有四个开发管理组件,开发的时候我们需要打开其中三个进行开发,Informatica没有ctrl+z的功能,如果对job作了改变之后,想要撤销,返回到改变前是不可能的。相比Kettle跟Datastage在测试调试的时候不太方便。Datastage全部的操作在同一个界面中,不用切换界面,能够看到数据的来源,整个job的情况,在找bug的时候会比Informatica方便。

Kettle介于两者之间。

2、部署

Kettle只需要JVM环境,Informatica需要服务器和客户端安装,而Datastage的部署比较耗费时间,有一点难度。

3、数据处理的速度

大数据量下Informatica与Datastage的处理速度是比较快的,比较稳定。Kettle的处理速度相比之下稍慢。

4、服务

Informatica与Datastage有很好的商业化的技术支持,而Kettle则没有。商业软件的售后服务上会比免费的开源软件好很多。

5、风险

风险与成本成反比,也与技术能力成正比。

6、扩展

Kettle的扩展性无疑是最好,因为是开源代码,可以自己开发拓展它的功能,而Informatica和Datastage由于是商业软件,基本上没有。

7、Job的监控

三者都有监控和日志工具。

在数据的监控上,个人觉得Datastage的实时监控做的更加好,可以直观看到数据抽取的情况,运行到哪一个控件上。这对于调优来说,我们可以更快的定位到处理速度太慢的控件并进行处理,而informatica也有相应的功能,但是并不直观,需要通过两个界面的对比才可以定位到处理速度缓慢的控件。有时候还需要通过一些方法去查找。

8、网上的技术文档

Datastage < Informatica < kettle,相对来说,Datastage跟Informatica在遇到问题去网上找到解决方法的概率比较低,kettle则比较多。

五、项目经验分享
在项目中,很多时候我们都需要同步生产库的表到数据仓库中。一百多张表同步、重复的操作,对开发人员来说是细心和耐心的考验。在这种情况下,开发人员最喜欢的工具无疑是kettle,多个表的同步都可以用同一个程序运行,不必每一张表的同步都建一个程序,而informatica虽然有提供工具去批量设计,但还是需要生成多个程序进行一一配置,而datastage在这方面就显得比较笨拙。

在做增量表的时候,每次运行后都需要把将最新的一条数据操作时间存到数据库中,下次运行我们就取大于这个时间的数据。Kettle有控件可以直接读取数据库中的这个时间置为变量;对于没有类似功能控件的informatica,我们的做法是先读取的数据库中的这个时间存到文件,然后主程序运行的时候指定这个文件为参数文件,也可以得到同样的效果

阅读全文

与kettle大数据量处理相关的资料

热点内容
vhdvhdx转换工具 浏览:468
如何数据传输与充电三合一 浏览:757
软件编程是大学的哪个专业 浏览:600
tex压缩文件如何解压 浏览:599
数据库如何查看前10行的内容 浏览:109
在线看小说哪个网站好 浏览:364
德阳哪个app好 浏览:184
齐天大圣网络怎么样 浏览:771
电脑重设时间提示找不到文件 浏览:914
win10myeclipse2013 浏览:456
苹果吃到中间是灰色 浏览:967
ipad上的excel文件可以用吗 浏览:361
word2003横版变竖版 浏览:34
搜狗输入法78版本 浏览:792
iphone5s文件 浏览:68
win10共享xp打印机权限设置 浏览:426
点开app时怎么设置密码 浏览:55
iphone怎么设置个人热点 浏览:372
夜神模拟器的文件夹 浏览:674
iphone管理存储空间 浏览:735

友情链接