A. 求助:哪些公司可以提供大数据处理分析解决方案
上海献峰网络指出:你要的大数据分析解决方案大全都在这
从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?
一、大数据分析的五个基本方面
1. Analytic Visualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2. Data Mining Algorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3. Predictive Analytic Capabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4. Semantic Engines(语义引擎)
我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5. Data Quality and Master Data Management(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。
二、大数据处理
周涛博士说:大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。
具体的大数据处理方法其实有很多,但是根据长时间的实践,笔者总结了一个基本的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。整个处理流程可以概括为四步,分别是采集、导入和预处理、统计和分析,以及挖掘。
采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC 的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的K-Means、用于统计学习的SVM和用于分类的Naive Bayes,主要使用的工具有Hadoop的Mahout等。
该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,还有,常用数据挖掘算法都以单线程为主。
B. kettle从oracle向mysql迁移大数据量时报错,求教
OGG全称为Oracle GoldenGate,是由Oracle官方提供的用于解决异构数据环境中数据复制的一个商业工具。相比于其它迁移工具OGG的优势在于可以直接解析源端Oracle的redo log,因此能够实现在不需要对原表结构做太多调整的前提下完成数据增量部分的迁移。本篇文章将重点介绍如何使用OGG实现Oracle到MySQL数据的平滑迁移,以及讲述个人在迁移过程中所碰到问题的解决方案。
(一)OGG逻辑架构
参照上图简单给大家介绍下OGG逻辑架构,让大家对OGG数据同步过程有个简单了解,后面章节会详细演示相关进程的配置方式,在OGG使用过程中主要涉及以下进程及文件:
Manager进程:需要源端跟目标端同时运行,主要作用是监控管理其它进程,报告错误,分配及清理数据存储空间,发布阈值报告等
Extract进程:运行在数据库源端,主要用于捕获数据的变化,负责全量、增量数据的抽取
Trails文件:临时存放在磁盘上的数据文件
Data Pump进程:运行在数据库源端,属于Extract进程的一个辅助进程,如果不配置Data Pump,Extract进程会将抽取的数据直接发送到目标端的Trail文件,如果配置了Data Pump,Extract进程会将数据抽取到本地Trail文件,然后通过Data Pump进程发送到目标端,配置Data Pump进程的主要好处是即使源端到目标端发生网络中断,Extract进程依然不会终止
Collector进程:接收源端传输过来的数据变化,并写入本地Trail文件中
Replicat进程:读取Trail文件中记录的数据变化,创建对应的DML语句并在目标端回放
二、迁移方案
(一)环境信息
OGG版本 OGG 12.2.0.2.2 For Oracle OGG 12.2.0.2.2 For MySQL
数据库版本 Oracle 11.2.0.4 MySQL 5.7.21
OGG_HOME /home/oracle/ogg /opt/ogg
(二)表结构迁移
表结构迁移属于难度不高但内容比较繁琐的一步,我们在迁移表结构时使用了一个叫sqlines的开源工具,对于sqlines工具在MySQL端创建失败及不符合预期的表结构再进行特殊处理,以此来提高表结构转换的效率。
注意:OGG在Oracle迁移MySQL的场景下不支持DDL语句同步,因此表结构迁移完成后到数据库切换前尽量不要再修改表结构。
(三)数据迁移
数据同步的操作均采用OGG工具进行,考虑数据全量和增量的衔接,OGG需要先将增量同步的抽取进程启动,抓取数据库的redo log,待全量抽取结束后开启增量数据回放,应用全量和增量这段期间产生的日志数据,OGG可基于参数配置进行重复数据处理,所以使用OGG时优先将增量进行配置并启用。此外,为了避免本章节篇幅过长,OGG参数将不再解释,有需要的朋友可以查看官方提供的Reference文档查询任何你不理解的参数。
1.源端OGG配置
(1)Oracle数据库配置
针对Oracle数据库,OGG需要数据库开启归档模式及增加辅助补充日志、强制记录日志等来保障OGG可抓取到完整的日志信息
查看当前环境是否满足要求,输出结果如下图所示:
(2)Oracle数据库OGG用户创建
OGG需要有一个用户有权限对数据库的相关对象做操作,以下为涉及的权限,该示例将创建一个用户名和密码均为ogg的Oracle数据库用户并授予以下权限
(3)源端OGG 管理进程(MGR)配置
(4)源端OGG 表级补全日志(trandata)配置
表级补全日志需要在最小补全日志打开的情况下才起作用,之前只在数据库级开启了最小补全日志(alter database add supplemental log data;),redolog记录的信息还不够全面,必须再使用add trandata开启表级的补全日志以获得必要的信息。
(5)源端OGG 抽取进程(extract)配置
Extract进程运行在数据库源端,负责从源端数据表或日志中捕获数据。Extract进程利用其内在的checkpoint机制,周期性地检查并记录其读写的位置,通常是写入到本地的trail文件。这种机制是为了保证如果Extract进程终止或者操作系统宕机,我们重启Extract进程后,GoldenGate能够恢复到以前的状态,从上一个断点处继续往下运行,而不会有任何数据损失。
(6)源端OGG 传输进程(pump)配置
pump进程运行在数据库源端,其作用非常简单。如果源端的Extract抽取进程使用了本地trail文件,那么pump进程就会把trail文件以数据块的形式通过TCP/IP协议发送到目标端,Pump进程本质上是Extract进程的一种特殊形式,如果不使用trail文件,那么Extract进程在抽取完数据后,直接投递到目标端。
补充:pump进程启动时需要与目标端的mgr进程进行连接,所以需要优先将目标端的mgr提前配置好,否则会报错连接被拒绝,无法传输抽取的日志文件到目标端对应目录下
(7)源端OGG 异构mapping文件(defgen)生成
该文件记录了源库需要复制的表的表结构定义信息,在源库生成该文件后需要拷贝到目标库的dirdef目录,当目标库的replica进程将传输过来的数据apply到目标库时需要读写该文件,同构的数据库不需要进行该操作。
2.目标端OGG配置
(1)目标端MySQL数据库配置
确认MySQL端表结构已经存在
MySQL数据库OGG用户创建
mysql> create user 'ogg'@'%' identified by 'ogg';
mysql> grant all on *.* to 'ogg'@'%';
#### 提前创建好ogg存放checkpoint表的数据库
mysql> create database ogg;
(2)目标端OGG 管理进程(MGR)配置
目标端的MGR进程和源端配置一样,可直接将源端配置方式在目标端重复执行一次即可,该部分不在赘述
(3)目标端OGG 检查点日志表(checkpoint)配置
checkpoint表用来保障一个事务执行完成后,在MySQL数据库从有一张表记录当前的日志回放点,与MySQL复制记录binlog的GTID或position点类似。
#### 切换至ogg软件目录并执行ggsci进入命令行终端
shell> cd $OGG_HOME
shell> ggsci
ggsci> edit param ./GLOBALS
checkpointtable ogg.ggs_checkpoint
ggsci> dblogin sourcedb [email protected]:3306 userid ogg
ggsci> add checkpointtable ogg.ggs_checkpoint
(4)目标端OGG 回放线程(replicat)配置
Replicat进程运行在目标端,是数据投递的最后一站,负责读取目标端Trail文件中的内容,并将解析其解析为DML语句,然后应用到目标数据库中。
#### 切换至ogg软件目录并执行ggsci进入命令行终端
shell> cd $OGG_HOME
shell> ggsci
#### 添加一个回放线程并与源端pump进程传输过来的trail文件关联,并使用checkpoint表确保数据不丢失
ggsci> add replicat r_cms,exttrail /opt/ogg/dirdat/ms,checkpointtable ogg.ggs_checkpoint
#### 增加/编辑回放进程配置文件
ggsci> edit params r_cms
replicat r_cms
targetdb [email protected]:3306,userid ogg,password ogg
sourcedefs /opt/ogg/dirdef/cms.def
discardfile /opt/ogg/dirrpt/r_cms.dsc,append,megabytes 1024
HANDLECOLLISIONS
MAP cms.*,target cms.*;
注意:replicat进程只需配置完成,无需启动,待全量抽取完成后再启动。
至此源端环境配置完成
待全量数据抽取完毕后启动目标端回放进程即可完成数据准实时同步。
3.全量同步配置
全量数据同步为一次性操作,当OGG软件部署完成及增量抽取进程配置并启动后,可配置1个特殊的extract进程从表中抽取数据,将抽取的数据保存到目标端生成文件,目标端同时启动一个单次运行的replicat回放进程将数据解析并回放至目标数据库中。
(1)源端OGG 全量抽取进程(extract)配置
#### 切换至ogg软件目录并执行ggsci进入命令行终端
shell> cd $OGG_HOME
shell> ggsci
#### 增加/编辑全量抽取进程配置文件
#### 其中RMTFILE指定抽取的数据直接传送到远端对应目录下
#### 注意:RMTFILE参数指定的文件只支持2位字符,如果超过replicat则无法识别
ggsci> edit params ei_cms
SOURCEISTABLE
SETENV (NLS_LANG = "AMERICAN_AMERICA.AL32UTF8")
SETENV (ORACLE_SID=cms)
SETENV (ORACLE_HOME=/data/oracle/11.2/db_1)
USERID ogg@appdb,PASSWORD ogg
RMTHOST 17X.1X.84.121,MGRPORT 7809
RMTFILE /opt/ogg/dirdat/ms,maxfiles 100,megabytes 1024,purge
TABLE cms.*;
#### 启动并查看抽取进程正常
shell> nohup ./extract paramfile ./dirprm/ei_cms.prm reportfile ./dirrpt/ei_cms.rpt &
## 查看日志是否正常进行全量抽取
shell> tail -f ./dirrpt/ei_cms.rpt
(2)目标端OGG 全量回放进程(replicat)配置
#### 切换至ogg软件目录并执行ggsci进入命令行终端
shell> cd $OGG_HOME
shell> ggsci
ggsci> edit params ri_cms
SPECIALRUN
END RUNTIME
TARGETDB [email protected]:3306,USERID ogg,PASSWORD ogg
EXTFILE /opt/ogg/dirdat/ms
DISCARDFILE ./dirrpt/ri_cms.dsc,purge
MAP cms.*,TARGET cms.*;
#### 启动并查看回放进程正常
shell> nohup ./replicat paramfile ./dirprm/ri_cms.prm reportfile ./dirrpt/ri_cms.rpt &
#### 查看日志是否正常进行全量回放
shell> tail -f ./dirrpt/ri_cms.rpt
三、数据校验
数据校验是数据迁移过程中必不可少的环节,本章节提供给几个数据校验的思路共大家参数,校验方式可以由以下几个角度去实现:
1.通过OGG日志查看全量、增量过程中discards记录是否为0来判断是否丢失数据;
2.通过对源端、目标端的表执行count判断数据量是否一致;
3.编写类似于pt-table-checksum校验原理的程序,实现行级别一致性校验,这种方式优缺点特别明显,优点是能够完全准确对数据内容进行校验,缺点是需要遍历每一行数据,校验成本较高;
4.相对折中的数据校验方式是通过业务角度,提前编写好数十个返回结果较快的SQL,从业务角度抽样校验。
四、迁移问题处理
本章节将讲述迁移过程中碰到的一些问题及相应的解决方式。
(一)MySQL限制
在Oracle到MySQL的表结构迁移过程中主要碰到以下两个限制:
1. Oracle端的表结构因为最初设计不严谨,存在大量的列使用varchar(4000)数据类型,导致迁移到MySQL后超出行限制,表结构无法创建。由于MySQL本身数据结构的限制,一个16K的数据页最少要存储两行数据,因此单行数据不能超过65,535 bytes,因此针对这种情况有两种解决方式:
根据实际存储数据的长度,对超长的varchar列进行收缩;
对于无法收缩的列转换数据类型为text,但这在使用过程中可能导致一些性能问题;
2. 与第一点类似,在Innodb存储引擎中,索引前缀长度限制是767 bytes,若使用DYNAMIC、COMPRESSED行格式且开启innodblargeprefix的场景下,这个限制是3072 bytes,即使用utf8mb4字符集时,最多只能对varchar(768)的列创建索引;
3. 使用ogg全量初始化同步时,若存在外键约束,批量导入时由于各表的插入顺序不唯一,可能子表先插入数据而主表还未插入,导致报错子表依赖的记录不存在,因此建议数据迁移阶段禁用主外键约束,待迁移结束后再打开。
mysql>set global foreign_key_checks=off;
(二)全量与增量衔接
HANDLECOLLISIONS参数是实现OGG全量数据与增量数据衔接的关键,其实现原理是在全量抽取前先开启增量抽取进程,抓去全量应用期间产生的redo log,当全量应用完成后,开启增量回放进程,应用全量期间的增量数据。使用该参数后增量回放DML语句时主要有以下场景及处理逻辑:
目标端不存在delete语句的记录,忽略该问题并不记录到discardfile
目标端丢失update记录
- 更新的是主键值,update转换成insert
- 更新的键值是非主键,忽略该问题并不记录到discardfile
目标端重复insert已存在的主键值,这将被replicat进程转换为UPDATE现有主键值的行
(三)OGG版本选择
在OGG版本选择上我们也根据用户的场景多次更换了OGG版本,最初因为客户的Oracle 数据库版本为11.2.0.4,因此我们在选择OGG版本时优先选择使用了11版本,但是使用过程中发现,每次数据抽取生成的trail文件达到2G左右时,OGG报错连接中断,查看RMTFILE参数详细说明了解到trail文件默认限制为2G,后来我们替换OGG版本为12.3,使用MAXFILES参数控制生成多个指定大小的trail文件,回放时Replicat进程也能自动轮转读取Trail文件,最终解决该问题。但是如果不幸Oracle环境使用了Linux 5版本的系统,那么你的OGG需要再降一个小版本,最高只能使用OGG 12.2。
(四)无主键表处理
在迁移过程中还碰到一个比较难搞的问题就是当前Oracle端存在大量表没有主键。在MySQL中的表没有主键这几乎是不被允许的,因为很容易导致性能问题和主从延迟。同时在OGG迁移过程中表没有主键也会产生一些隐患,比如对于没有主键的表,OGG默认是将这个一行数据中所有的列拼凑起来作为唯一键,但实际还是可能存在重复数据导致数据同步异常,Oracle官方对此也提供了一个解决方案,通过对无主键表添加GUID列来作为行唯一标示,具体操作方式可以搜索MOS文档ID 1271578.1进行查看。
(五)OGG安全规则
报错信息
2019-03-08 06:15:22 ERROR OGG-01201 Error reported by MGR : Access denied.
错误信息含义源端报错表示为该抽取进程需要和目标端的mgr进程通讯,但是被拒绝,具体操作为:源端的extract进程需要与目标端mgr进行沟通,远程将目标的replicat进行启动,由于安全性现在而被拒绝连接。
报错原因
在Oracle OGG 11版本后,增加了新特性安全性要求,如果需要远程启动目标端的replicat进程,需要在mgr节点增加访问控制参数允许远程调用
解决办法
在源端和目标端的mgr节点上分别增加访问控制规则并重启
## 表示该mgr节点允许(ALLOW)10.186网段(IPADDR)的所有类型程序(PROG *)进行连接访问ACCESSRULE, PROG *, IPADDR 10.186.*.*, ALLOW
(六)数据抽取方式
报错信息
2019-03-15 14:49:04 ERROR OGG-01192 Trying to use RMTTASK on data types which may be written as LOB chunks (Table: 'UNIONPAYCMS.CMS_OT_CONTENT_RTF').
报错原因
根据官方文档说明,当前直接通过Oracle数据库抽取数据写到MySQL这种initial-load方式,不支持LOBs数据类型,而表 UNIONPAYCMS.CMSOTCONTENT_RTF 则包含了CLOB字段,无法进行传输,并且该方式不支持超过4k的字段数据类型
解决方法
将抽取进程中的RMTTASK改为RMTFILE参数 官方建议将数据先抽取成文件,再基于文件数据解析进行初始化导入
C. 如何进行大数据分析及处理
1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
D. ETL会不会淘汰
摘要 你好,目前来说是不会的,ETL任然是大数据时代下数据迁移不可缺少的
E. 大数据etl工具有哪些
ETL是数据仓库中的非常重要的一环,是承前启后的必要的一步。ETL负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
下面给大家介绍一下什么是ETL以及ETL常用的三种工具——Datastage,Informatica,Kettle。
一、什么是ETL?
ETL,Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。
数据仓库结构
通俗的说法就是从数据源抽取数据出来,进行清洗加工转换,然后加载到定义好的数据仓库模型中去。目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。
ETL是BI项目重要的一个环节,其设计的好坏影响生成数据的质量,直接关系到BI项目的成败。
二、为什么要用ETL工具?
在数据处理的时候,我们有时会遇到这些问题:
▶ 当数据来自不同的物理主机,这时候如使用SQL语句去处理的话,就显得比较吃力且开销也更大。
▶ 数据来源可以是各种不同的数据库或者文件,这时候需要先把他们整理成统一的格式后才可以进行数据的处理,这一过程用代码实现显然有些麻烦。
▶ 在数据库中我们当然可以使用存储过程去处理数据,但是处理海量数据的时候存储过程显然比较吃力,而且会占用较多数据库的资源,这可能会导致数据资源不足,进而影响数据库的性能。
而上述遇到的问题,我们用ETL工具就可以解决。ETL工具具有以下几点优势:
1、支持多种异构数据源的连接。(部分)
2、图形化的界面操作十分方便。
3、处理海量数据速度快、流程更清晰等。
三、ETL工具介绍
1、Datastage
IBM公司的商业软件,最专业的ETL工具,但同时价格不菲,适合大规模的ETL应用。
使用难度:★★★★
2、Informatica
商业软件,相当专业的ETL工具。价格上比Datastage便宜一点,也适合大规模的ETL应用。
使用难度:★★
3、Kettle
免费,最著名的开源产品,是用纯java编写的ETL工具,只需要JVM环境即可部署,可跨平台,扩展性好。
使用难度:★★
四、三种ETL工具的对比
Datastage、Informatica、Kettle三个ETL工具的特点和差异介绍:
1、操作
这三种ETL工具都是属于比较简单易用的,主要看开发人员对于工具的熟练程度。
Informatica有四个开发管理组件,开发的时候我们需要打开其中三个进行开发,Informatica没有ctrl+z的功能,如果对job作了改变之后,想要撤销,返回到改变前是不可能的。相比Kettle跟Datastage在测试调试的时候不太方便。Datastage全部的操作在同一个界面中,不用切换界面,能够看到数据的来源,整个job的情况,在找bug的时候会比Informatica方便。
Kettle介于两者之间。
2、部署
Kettle只需要JVM环境,Informatica需要服务器和客户端安装,而Datastage的部署比较耗费时间,有一点难度。
3、数据处理的速度
大数据量下Informatica与Datastage的处理速度是比较快的,比较稳定。Kettle的处理速度相比之下稍慢。
4、服务
Informatica与Datastage有很好的商业化的技术支持,而Kettle则没有。商业软件的售后服务上会比免费的开源软件好很多。
5、风险
风险与成本成反比,也与技术能力成正比。
6、扩展
Kettle的扩展性无疑是最好,因为是开源代码,可以自己开发拓展它的功能,而Informatica和Datastage由于是商业软件,基本上没有。
7、Job的监控
三者都有监控和日志工具。
在数据的监控上,个人觉得Datastage的实时监控做的更加好,可以直观看到数据抽取的情况,运行到哪一个控件上。这对于调优来说,我们可以更快的定位到处理速度太慢的控件并进行处理,而informatica也有相应的功能,但是并不直观,需要通过两个界面的对比才可以定位到处理速度缓慢的控件。有时候还需要通过一些方法去查找。
8、网上的技术文档
Datastage < Informatica < kettle,相对来说,Datastage跟Informatica在遇到问题去网上找到解决方法的概率比较低,kettle则比较多。
五、项目经验分享
在项目中,很多时候我们都需要同步生产库的表到数据仓库中。一百多张表同步、重复的操作,对开发人员来说是细心和耐心的考验。在这种情况下,开发人员最喜欢的工具无疑是kettle,多个表的同步都可以用同一个程序运行,不必每一张表的同步都建一个程序,而informatica虽然有提供工具去批量设计,但还是需要生成多个程序进行一一配置,而datastage在这方面就显得比较笨拙。
在做增量表的时候,每次运行后都需要把将最新的一条数据操作时间存到数据库中,下次运行我们就取大于这个时间的数据。Kettle有控件可以直接读取数据库中的这个时间置为变量;对于没有类似功能控件的informatica,我们的做法是先读取的数据库中的这个时间存到文件,然后主程序运行的时候指定这个文件为参数文件,也可以得到同样的效果