导航:首页 > 网络数据 > 垂直大数据

垂直大数据

发布时间:2023-05-17 21:18:21

『壹』 大数据未来的发展前景怎么样

现状大数据的前景十分的好,随着大数据应用于各行各业,并正在改变运镇着各行各业,同时也引领大数据人才的变革,在国家及当地政府支持下,大数据在快速发展,企业日后发展将旁蠢粗基于大数据计算分析、数据挖掘、数据分析等数据产业的发展,我国也将更加需要档州更多的数据人才。

『贰』 大数据市场未来将呈现三大发展趋势

大数据市场未来将呈现三大发展趋势

随着移动互联网、物联网等的迅速发展,新数据源不断出现,而中国数据总量的不断增长,使大数据成为一种重要资源,有利于推动零售、旅游、医疗、金融、电信、政府公共服务各个领域的业务创新。

大数据转变企业商业模式

来自于线下大数据市场(IT企业的大数据应用及大数据平台业务市场)中IT巨头和单一大数据业务的厂商开始行动,优化产品和服务路线图;线上大数据市场(互联网用户数据市场,以及以互联网金融为主的线上金融市场)的成熟度逐渐提高,以金融和零售为核心的线上大数据应用走向成熟,市场体量进一步扩大。企业着力培育数据资产,积极探讨数据变现,行业大数据多集聚、少融合。

大数据产业链整体布局完整,但局部环节竞争程度差异化明显。数据采集环节,综合型大数据源市场处于结构化整合阶段,垂直型大数据源市场处于布局阶段;数据存储和数据挖掘环节市场结构稳定,国际巨头垄断,寡头格局已经形成,国内企业短期内很难超越;数据应用环节是国内企业的机会,但技术仍不成熟。

各环节产业链正在影响企业商业模式的转变。模式一:利用存储能力进行运营,满足企业和个人面临海量信息存储的需求;模式二:对数据进行挖掘分析后预测相关主体的行为,以开展业务;模式三:直接进行信息租售或提供信息租售平台;模式四:IT服务提供商提供大数据空间出租模式,通过出租一个虚拟空间,从简单的文件存储,逐步扩展到数据聚合平台;模式五:针对企业需求,为运营某一环节或某一业务问题提供解决方案,实施单点技术,例如向零售商提供大数据分析技术,获得营销点子;模式六:针对企业系统需求,提供整体解决方案;模式七:BDaaS (Big data as a service),数据应用即服务的模式,通过云服务提供在线大数据技术或者解决方案。

根据易观智库2014年中国大数据市场行业投资结构数据显示,金融、通信、零售为前三大行业,投资占比分别为16.0%、15.6%和13.9%。政府、医疗、旅游投资比例分别为12.7%、9.0%和4.1%。六大行业累计占比71.3%。其他行业包括教育、制造、能源、媒体、互联网等,累计占比28.7%。大数据产业集群逐渐形成,即针对企业而言,以云端大数据集聚为前提条件,以行业云服务为平台,共享企业间核心竞争力。

大数据市场三大趋势渐显

大数据市场未来将呈现以下发展趋势:

其一,数据生态系统复合化程度加强。大数据的世界不只是一个单一的、巨大的计算机网络,而是一个由大量活动构件与多元参与者元素所构成的生态系统,终端设备提供商、基础设施提供商、网络服务提供商、网络接入服务提供商、数据服务使能者、数据服务提供商、触点服务、数据服务零售商等等一系列的参与者共同构建的生态系统。而今,这样一套数据生态系统的基本雏形已然形成,接下来的发展将趋向于系统内部角色的细分,也就是市场的细分;系统机制的调整,也就是商业模式的创新;系统结构的调整,也就是竞争环境的调整等等,从而使得数据生态系统复合化程度逐渐增强。

其二,数据管理成为核心竞争力,直接影响财务表现。当“数据资产是企业核心资产”的概念深入人心之后,企业对于数据管理便有了更清晰的界定,将数据管理作为企业核心竞争力,持续发展,战略性规划与运用数据资产,成为企业数据管理的核心。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关;此外,对于具有互联网思维的企业而言,数据资产竞争力所占比重为36.8%,数据资产的管理效果将直接影响企业的财务表现。

其三,产业核心要素的掌控者主导数据生态体系。数据生态体系中的核心环节是产业的核心要素,例如电商的支付、物流、信息(信用)。掌握产业核心要素环节的企业若顺势而为,把握大数据时代的机遇,将企业自身的核心竞争力优势进一步释放,运用互联网思维,通过产业核心要素的大数据掌控数据生态的主要生态链,从而最终实现在数字经济时代的再一次腾飞。

大数据应用推动各行业发展

进一步通过数据驱动经营和营销,各零售企业会以会员为核心进行管理优化,通过以人为中心的数据驱动,实现决策优化及精准营销。行业会探索越来越多的大数据营销新模式,各类零售企业会积极尝试新机会,如微店等,寻找消费者偏好的新潮流。不断丰富外部数据源,在企业自身线下数据采集能力不断提高的同时,与更丰富的外部数据源合作将快速提升营销的精准度,包括权威市场研究机构、领先互联网巨头等。

旅游大数据的应用,是尽快建立数据统一化标准,建立统一数据交换标准,区域旅游数据一体化,全国旅游数据一体化。实现大数据的三屏统一(旅游监管大屏、景区公告大屏、游客手机屏)。

通过利用医疗服务的EHRs数据、医院与医保的结算与费用数据、医学研究的学术、社会、政府数据、医疗厂商的医药、医械、临床实验数据、居民的行为与健康管理数据、政府的人口与公共卫生数据、公共社会经济生活中网络产生的数据等方面,为医疗行业的药品研发、疾病治疗、公共卫生管理、居民健康管理、健康危险因素分析提供精准数据支撑。

在传统金融运作模式下,金融机构评估消费者的信用状况、消费能力、消费意愿的能力不强,导致部分金融领域产品服务定价过高,部分领域成为剩余市场,这与实际的金融要求还存在一定差距。大数据将有助于推动金融和银行产业中的数据聚合,基于产业整体数据挖掘价值,推动产业的发展,推动业务模式的创新。金融业大数据目前应用的主要价值在于金融风险管理、消费智能、智能运营等。

电信企业从传统数据时代走向大数据时代。由于电信企业生产运营所需,自身生产管理系统已经具备海量以客户为中心组织的统一的视图数据资源。大数据可为电信业提升网络服务质量,增强管道智能化;更加精准的洞察客户需求,增强市场竞争力;升级行业信息化解决方案,提升客户价值;提供数据安全服务,在大数据市场建立差异化竞争优势。

大数据不仅是一种海量的数据状态及其相应的数据处理技术,更是一种思维方式,一项重要的基础设施,一个影响整个国家和社会运行的基础性社会制度。它是治理交通拥堵、雾霾、看病难、食品安全等“城市病”的利器,更将为政府打开了解社情民意的政策窗口,打造平台的政府、服务导向的政府、开放的政府,即智慧政府。其应用价值是:加强统筹规划,优化大数据形成机制;加强数据收集和信息感知,提高智慧城市感知水平;推进大数据应用,提高经济社会智慧化水平。

以上是小编为大家分享的关于大数据市场未来将呈现三大发展趋势的相关内容,更多信息可以关注环球青藤分享更多干货

『叁』 自学大数据难不难,就业前景怎样

任何知识自学都是比复较困哪的,首先很制多人因为无法坚持而半途放弃,含有就是遇到问题无法解决而产生厌学情绪从而放弃。当然自学也有成功的,但确实少之又少,所以最好还是参加培训。
目前很多公司都在招大数据相光岗位,向网络,腾讯,华为都在招,而且工资基本都在10K以上的。所以学了大数据基本不愁找工作!

『肆』 大数据快步迈进实用门槛

大数据快步迈进实用门槛

近年来,深圳出入境检验检疫局依托大数据、物联网、云计算等新兴信息技术,打造“智慧口岸”。图为食检中心的工作人员在处理抽检食品的检验数据。
宁夏吴忠市供热公司打造信息化供热平台,通过对供热管网能耗、室内外温度、用户需求热量等进行大数据分析,实现了传统粗放式供热模式向精准供热的转变。 新华社记者 王 鹏摄 新华社记者 鲁 鹏摄
镜头一:“传统唱片公司选择线上直播演唱会,不仅是为了增加传播渠道。网友预定演出时留下自己的QQ号,通过数据挖掘,我们就可以知道某个艺人歌迷的地域分布,最喜欢听什么歌,关注什么新闻等。有的公司据此调整了艺人线下演唱会的安排。”腾讯视频live music音乐总监邓林海说。
镜头二:互联网服装品牌裂帛副总裁大禹说:“柔性供应链的底气就是大数据,我们投入3000多万元开发了一整套系统,能随时看到任何一个品牌某一天某个品类的价格、售罄率,以及自己品牌服装的毛利率和消费者反馈,这样每单只要下300到500件,然后根据预测不断快速翻单。”
镜头三:2015年12月底,《关于认真做好2016年春运工作的通知》中特别提出,要探索利用大数据分析旅客出行规律,创新春运组织,提高服务品质,使广大旅客不仅“走得了”,还要“走得好、走得满意”。
这些都是大数据在垂直行业中的创新应用,而在2015年这个“大数据元年”,类似的应用不胜枚举。这一年,顶层设计出炉,《促进大数据发展行动纲要》发布,“十三五”规划建议中明确提出实施国家大数据战略;这一年,交易体系逐渐形成,贵阳大数据交易所挂牌运营,各地纷纷跟进;这一年,大数据应用更是“生根开花”,来自市场研究机构IDC的报告显示,2012年中国总体数据量占世界的13%,而到2020年将提高到21%。这些数据正在释放能量。
《2015年中国大数据发展调查报告》显示,2015年中国大数据市场规模达到115.9亿元,增速达38%。中国银行[0.00% 资金 研报]副行长朱鹤新表示:“大数据在我国已具备了从概念到应用落地的成熟条件,迎来了飞速发展的黄金机遇期。大数据将在打造社会治理新模式、经济运行新机制、民生服务新体系、创新驱动新格局、产业发展新生态等方面发挥重要作用。”
“游戏规则”渐成体系
在2015年两会上,腾讯董事会主席马化腾的一份建议有关政府数据开放,他表示:“公共数据的开放成为数据基础设施的基石,相互连接和数据共通的重要渠道,当务之急是打破各领域的信息孤岛,推动全社会对信息资源的开发利用。”不到一年的时间里,这一“瓶颈”正随着“游戏规则”的快速建立得以突破。
在诸多游戏规则中,提纲挈领者自然是国务院2015年9月发布的《促进大数据发展行动纲要》(以下简称“《纲要》”),这一顶层设计被视为解决政府数据开放共享不足、产业基础薄弱、缺乏统筹规划、创新应用领域不广等一系列问题的“抓手”。拿政府开放数据来说,《纲要》提出,2017年底前形成跨部门数据资源共享共用格局;2018年底前建成国家政府数据统一开放平台,率先在信用、交通、医疗、卫生、就业、社保等重要领域实现公共数据资源合理适度向社会开放。国家信息中心信息化研究部副主任单志广认为:“这体现出政府促进大数据开放与共享的决心。”
纲举目张,2015年也由此成为各部委和各地政府的“数据开放年”。农业部在2015年底发布的《关于推进农业农村大数据发展的实施意见》中提出,“农业部各类统计报表、各类数据调查样本和调查结果、通过遥感等现代信息技术手段获取的数据、各类政府网站形成的文件资料、政府购买的商业性数据等在国家农业数据中心平台共享共用。”在地方,北京、上海、佛山、青岛、贵州等多个省市的数据开放平台已纷纷上线,拿上海来说,目前已初步建立实有人口库、法人库、空间地理等三大基础信息库,累计编制资源目录数1.1万条、数据项14.58万个,政务数据资源目录体系逐渐成型。
不过,开放只是应用的基础。在浪潮集团董事长孙丕恕看来,数据要体现价值,还必须走市场化的道路,在政府开放数据之外,还要使数据交易和交换“常态化”。大数据交易平台也由此应运而生。
2015年4月,全球第一个大数据交易所贵阳大数据交易所挂牌,7月,长江大数据交易所(筹)和东湖大数据交易中心在武汉成立,12月华东江苏大数据交易中心平台上线运营。贵阳大数据交易所执行总裁王叁寿介绍说,截至2015年底,贵阳大数据交易所交易金额突破6000万元;会员数量超过300家,接入的数据源公司超过100家,数据类型涵盖贸易通[-3.19%]关大数据、专利类大数据、企业征信大数据、企业工商大数据等,数据总理超过10PB。
创新应用纵深发展
“2015年下半年,不少多年无法执行到位的案件的被执行人会突然找到法院来,要求还清欠款,把自己从‘老赖’名单中抹去,这就是执法创新结合互联网大数据所体现出的能量。”广东省中山市第一人民法院法官王念颇为感慨。
“老赖”是对拒不执行判决、裁定的被执行人的形象称呼。2015年7月,最高人民法院与芝麻信用合作,开创了通过互联网联合信用惩戒的先河。在与芝麻信用合作的各平台商家中,“老赖”无法预订机票、软卧车票、三星级以上酒店甚至度假产品。半年里,共计5300多名失信被执行人因此还清债务,其中1500多名失信被执行人是长达三四年、一直逃避执行的“老赖”。
这正是互联网大数据创新应用的一个缩影,其基础是我国高度成熟的消费互联网。与“真金白银”挂钩,这也成为大数据创新应用最活跃的领域。
电子商务、物流配送、互联网金融、O2O,垂直领域的大数据应用正在切实帮助企业提升效率,创新模式。在电商领域,京东目前数据总存储量达到50+PB,年增长300%。大数据已经全面用于用户消费行为的深度挖掘、精准营销、销量预测与库房自动补货、搜索推荐系统的持续优化等环节。滴滴出行战略负责人朱景士则表示:“滴滴每天数据分析量级是50TB,大约是5万部高清电影,每天连续上传的定位数据是50亿次。根据这些数据,滴滴可以不断提高算法精度,优化路线,比如我们在上海为乘客推荐上车地点,设立了滴滴车站,就能让司机更容易找到乘客。”
而在消费互联网之外,大数据应用还在向产业互联网延伸。一方面,为用户“画像”,让企业对用户进行细分,提升业务精准度成为热门。2015年12月23日,大数据服务商百分点发布用户标签管理系统。百分点董事长苏萌告诉记者,通过这样的系统,企业能够根据业务需求定义用户标签,并且直接利用组合功能创建新标签,从而迅速找到目标用户,“支撑企业快速对接大数据技术及数据服务,实现智能化的业务应用”。
在另一方面,在生产端,大数据的“流动”同样帮助企业提升智能制造水平。软控股份有限公司总裁郑江家表示:“轮胎制造的密炼环节像‘和面’,通过打通数据流,可以实现上下工序的智能互动。如果‘水’多‘面’软,这些数据就会被传输到下一步压胶环节,就能自动把‘饺子皮’擀得厚一点,不再需要人工处理。产品品质也就提升了。”山东省青岛市经济和信息化委员会主任项阳青也认为:“数据驱动是智能制造的关键,这才能带来基于互联网思维下的全生命周期创新。”

『伍』 大数据智能分析的特征有哪些

一、差异性


与单一来源数据智能分析相比,大数据实现了集多端口、多行业、多来源的综合性数据融合,在数据来源、数据结构、产生时间、使用场所、代码协议等方面具有较大的差异性。


二、共享性


大数据技术能够打破信息孤岛困境,打通信息流通动脉,盘活数据潜在价值,推动各行业、部门之间形成统一高效、互联互通的数据和资源共享布局。


三、准确性


以大数据为核心的多源数据融合,进一步提高数据内容的系统性,确保数据来源的完整性和可靠性。


四、技术性


大数据实现了多源数据多端口接入,同时垂直领域的应用需求嵌入不同多源数据融合处理技术,是个“技术活”。


“维度云”数据资源管理平台


五、权威性


依托权威、合法、多源的一手数据资源,进行多源数据智能分析结果的展示内容、发布数据具备权威性,具有一定的指导意义。


六、前瞻性


大数据智能分析能够有效地补充传统单一来源数据分析手段的缺陷,通过数据清洗和处理技术,加之合理的建模,充分挖掘和掌握运行规律,具备较强的前瞻性。


关于大数据智能分析的特征有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

『陆』 大数据的发展前途怎么样

大数据的就业前景目前来看是不错的,随着大数据往各垂直领域延伸发展,对统计学、数学专业的人才,数据分析、数据挖掘、人工智能等偏软件领域的需求加大,大数据领域从业人员薪资水平将持续增长,人才供不应求。
大数据就业方向
1、大数据开发方向。所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;

2、数据挖掘、数据分析和机器学习方向。所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;

3、大数据运维和云计算方向。对应岗位:大数据运维工程师;

三个方向中,大数据开发是基础。以Hadoop开发工程师为例,Hadoop入门月薪已经达到了8k以上,工作1年月薪可达到1.2w以上,具有2-3年工作经验的hadoop人才年薪可以达到30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径。从近两年大数据方向研究生的就业情况来看,大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。

从近几年招聘情况来看,大数据开发岗位的数量明显比较多,而且不仅需要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。

当前大数据技术正处在落地应用的初期,所以此时人才招聘会更倾向于研发型人才,而且拥有研究生学历也更容易获得大厂的就业机会,读研之后在岗位选择上可以重点考虑一下大数据平台开发,在5G通信的推动下,未来云计算会全面向PaaS和SaaS领域覆盖,这个过程会全面促进大数据平台的发展。

『柒』 移动互联网在大数据时代有哪些垂直方向的创业机会

主要有三个方面,仅供您参考:

一、是围绕智能城市建设的相关机会,如回政府的智答能交通、智能路牌、网格化管理等;
二、是围绕健康医疗领域的相关机会,如构建个人健康数据库、如医疗卫生系统围绕治疗本源的云中心和云数据。
三、是围绕移动用户的精准营销,如移动支付、资讯个性化定制等!

垂直领域的机会更适合中小型企业的创新发展,这几年是好时机,建议好好把握!

『捌』 对大数据的全方位解读

对大数据的全方位解读
大数据是当下非常火爆的一个词,人人都在谈论大数据。但大数据的定义是什么?它到底是如何出现的?它有什么特别之处?它最大的应用领域在哪里?它的发展方向是什么?对于以上问题,其实大多数人是弄不清楚的。
1)大数据时代出现的必然性
大数据和云计算这两个词经常被同时提到,很多人误以为大数据和云计算是同时诞生的、具有强绑定关系。其实这两者之间既有关联性,也有区别。云计算指的是一种以互联网方式来提供服务的计算模式,而大数据指的是基于多源异构、跨域关联的海量数据分析所产生的决策流程、商业模式、科学范式、生活方式和关联形态上的颠覆性变化的总和。大数据处理会利用到云计算领域的很多技术,但大数据并非完全依赖于云计算;反过来,云计算之上也并非只有大数据这一种应用。
云计算的起源可以追溯到 2003 年末 Amazon 公司工程师 Chris Pinkham 提交给 CEO Jeff Bezos 的一篇论文中的一个设想:将 Amazon 内部使用的计算基础设施开放给全世界的开发者。次年 11 月,Amazon 发布了第一版云计算服务:Simple Queue Service。Simple Queue Service 再往后发展至 2006 年,演变成立今天着名的 AWS(Amazon Web Sercice)。同在 2006 年,Google 公司 CEO Eric Schmidt 首次公开提出了“云计算”(Cloud Computing)的这一概念,云计算也在这一年开始变得广为人知。
大数据这个词的流行却晚了好几年——直到 2009 年,大数据这个说法才逐渐开始在互联网圈内传播。但仅仅在互联网领域流行,仍然不足以引起普遍关注,因为纯互联网经济毕竟只占全球经济总量的很小一部分。而大数据概念真正变得火爆,却是因为美国奥巴马政府在 2012 年高调宣布了其“大数据研究和开发计划”——美国政府希望利用大数据解决一些政府部门面临的非常重要的问题,该计划由横跨 6 个政府部门的 84 个子课题组成。这标志着大数据真正开始进入主流的传统线下经济。
大数据出现的时间点自有它深刻的原因。2009 年至 2012 年这段时间正是电子商务在包括中国在内的全球全面开花的几年。众所周知,互联网领域有 3 大类商业模式:广告、游戏和电子商务。而电子商务又是第 1个真正将纯互联网经济与传统经济嫁接在一起诞生的混合模式。准确地说,正是互联网与传统经济的碰撞,才真正催生出了今天几乎全民关注的“大数据”。大数据横跨了互联网产业与传统产业,而且大数据真正广阔的应用领域其实也正是比纯互联网经济大得多的传统产业。
从数据量的角度来看,在电子商务模式出现以前,传统企业的数量增长缓慢。传统企业的数据仓库中的数据大多数来自于交易型数据,而交易这种行为处于用户消费决策漏斗的最底部,这就决定了交易前的各种浏览、搜索、比较等用户行为数据的都量远远超过交易数据。电子商务模式使得企业可以采集到用户的浏览、搜索、比较等行为,这就导致企业的数据规至少提升了一个数量级。现在日益流行的移动互联网以及将来会流行的物联网又必将使数据量提高两三个数量级。从这个角度来讲,大数据时代是必然会出现的。
从IT产业的发展来看,第一代IT巨头大多是 2B 的,比如 IBM、Microsoft、Oracle、SAP 这类传统IT企业;第二代IT巨头大多是 2C 的,比如 Yahoo、Google、Amazon、Facebook 这类互联网企业。一个有意思的现象是:大数据时代前,这两类公司彼此之间基本是井水不犯河水,我们很少看见这两类公司的老板们在一起坐而论道;但在当前这个大数据时代,这两类公司已经开始直接竞争。比如 Amazon 已经开始提供云模式的数据仓库服务,直接抢占 IBM、Oracle 的市场。这个现象出现的本质原因是:在互联网巨头的带动下,传统IT巨头的客户普遍开始从事电子商务业务,正是由于客户进入了互联网,所以传统IT巨头们不情愿地被拖入了互联网领域。如果他们不进入互联网,他们业务必将萎缩。所以第三代IT巨头可能会是 2B 与 2C 融合的IT公司。
2)大数据的核心内涵
大数据概念虽然非常火爆,但少有人真正理解大数据的核心内容。一个普遍而且严重的误解就是:大数据= 数据大,即大数据就是量大的数据。事实上,除了数据量大这个字面意义,大数据还有两个更重要的特征:
1) 跨领域数据的交叉融合。相同领域数据量的增加是加法效应,不同领域数据的融合是乘法效应
2) 数据的流动。数据必须流动,流动产生价值
对于第 1) 点,百分点推荐系统研究中心实验结果显示:百分点公司有 3 家客户,分别是从事服装、化妆品和箱包销售的电商,百分点向这 3 家客户提供个性化商品推荐服务,即:百分点挖掘用户的偏好,不同的用户上同一家电商网站时,向他们展现不同的服装、化妆品或箱包,从而提高电商的转化率和客单价。我们做过两种测试:
a) 将每家网站的数据隔离。当每家网站自身的数据量增加到以前的 4 倍时,推荐效果大约能提高 5%;
b) 将三家网站的数据在去除敏感信息之后进行某种融合。融合后的数据大致是与单家网站的数据的 3 倍,比第一种情况数据量还少。但利用融合后的数据进行数据挖掘时,推荐效果能提升 30%,而且推荐商品并未发生变化,仍然是:用户上服饰类网站时只看见服装、上化妆品网站时只看见化妆品、上箱包网站时只看见箱包。
解释得详细一点,上述实验说明:对同一个消费者,如果我们要向其推荐服装。第一种方法是我们根据他过去的 4 次购买服装的行为来预测其下一次可能会购买的服饰;第二种方法是我们根据他过去分别购买服装、化妆品和箱包的各 1 次行为来预测其下一次可能会购买的服饰。两种方法的基于的用户行数分别是 4 次和 3 次,但第二种方法的效果明显更好。
对于第 2) 点,其实 10 多年前传统企业开始做数据仓库时,数据仓库从业者经常强调一个观点:企业级数据仓库的目标是让不同部门的数据流动起来,各个部门数据割裂,数据的价值就得不到发挥。到了今天的互联网时代,我们发现即使企业已经打通了内部各个部门之间的数据,但与整个互联网比起来,数据量仍然微乎其微,数据应该以互联网为媒介在企业之间某种形式的流动。参照“企业级数据仓库”的概念,现在已经开始出现了“互联网数据仓库”的概念:就是企业通过互联网渠道将与自己相关的外部数据与内部数据进行整合,从而形成“互联网数据仓库”。百分点已经在零售与媒体领域比较成功地打造了“开放数据联盟”,该联盟的成员可以在公允、安全的情况下基于该联盟建立起自己的“互联网数据仓库”,从而享用海量数据的价值。
3)大数据的应用领域
大数据的起源要归功于互联网与电子商务,但大数据最大的应用前景却在传统产业。一是因为几乎所有传统产业都在互联网化,二是因为传统产业仍然占据了国家 GDP 的绝大部分份额。
哪些传统企业最需要大数据服务呢?至少有 3 类企业:
1) 对大量消费者提供产品或服务的企业
2) 做小而美模式的中长尾企业
3) 面临互联网压力之下必须转型的传统企业
第 1) 类企业都需要利用大数据精准分析不同消费者的偏好,提高营销和服务的质量;第 1) 类企业都需要利用大数据分析精准定位自己的客户群;第 3) 类企业主要指哪些正在遭受来自互联网的新玩家冲击的传统企业,此类企业自然都需要利用互联网和大数据作为自我进化的工具。当然,第 3) 类企业与前 2 类企业有重叠。
具体来讲,中国最需要大数据服务的行业就是受互联网冲击最大的产业,首先是线下零售业,其次是金融业。
受电商的冲击,国内很多零售巨头都增长严重放缓,甚至遭遇负增长,线下零售已经到了不得不变革的危机关头。我们也看到了银泰百货、王府井百货、万达集团这些具有创新意识的传统巨头开始利用互联网和大数据来改造线下商业。其中银泰百货以手机为载体、利用 O2O 方式进行双线数据挖掘的创新非常值得借鉴。
而金融行业就更加特殊:金融业并不销售任何实体商品,它自诞生起就是基于数据的产业。由于国家管制,金融业在前几年享受了非常好的政策红利,内部变革动力不足。而目前金融业已经逐渐开始放松管制,新兴的金融机构必将利用互联网以及大数据工具向传统金融巨头发起猛烈攻击。而传统金融机构在互联网方面的技术积累和数据积累都不足,要快速应对新进入者的挑战,必然需要大数据服务。我们也看到了中信银行信用卡中心、招商银行信用卡中心已经在开始利用互联网大数据进行创新。
那么传统产业需要什么样的大数据服务呢?这主要包括 3 层:
1) 基于大数据的行业垂直应用。每个行业都有自己的特点,所以自然会存在行业应用的需求;
2) 顾客标签与商品标签的整理。不管什么行业,都需要精细化整理自己顾客的属性标签以及商品属性标签,而且这些标签必须能够细化到单个顾客和单个商品。标签是行业应用的基础;
3) 企业内部和外部数据的整合与管理。要给顾客和商品打标签,首先必须整合企业内部和外部数据,尤其是日益重要和庞大的外部数据。
图:传统企业需要的大数据服务
第 3 层和第 2 层的方法相对比较通用,行业特殊性相对较少。百分点已经在第 3 层和第 2 层做出了比较成熟的产品,并且也开始在第 1 层做出了一些具体的行业应用产品,比如针对服饰行业的时尚服饰搭配系统。
4)大数据的发展方向
大数据产业未来会向什么方向发展?随着数据逐渐成为企业的一种资产,数据产业会向传统企业的供应链模式发展,最终形成“数据供应链”。拿钢铁产业来讲,铁矿石公司从矿场中挖出矿石,经过粗加工,卖给钢铁企业;钢铁企业再进行精细一点的加工,将板材、钢条卖给下游制造业公司;这些制造业公司做出汽车、飞机、门窗、电脑等产品卖给下游公司。这个产业链中存在找矿、运输、加工等诸多环节,每个环节都有对应的企业。
图:传统企业的供应链
在“数据供应链”中,存在数据、数据整合与挖掘工具以及数据应用这 3 大环节。数据就好比矿场的矿石;数据整合与挖掘工具就好比钢厂的冶炼炉;而精准营销、服饰搭配等数据应用就好比汽车、电脑等可以出售给消费者的产品。企业在数据供应、数据整合与挖掘、数据应用等所有环节都需要专业的服务。这里尤其有两个明显的现象:
1) 外部数据的重要性日益超过内部数据。在互联互通的互联网时代,单一企业的内部数据与整个互联网数据比较起来只是沧海一粟;
2) 能提供包括数据供应、数据整合与加工、数据应用等多环节服务的公司会有明显的综合竞争优势。
5) 什么样的大数据企业会胜出
常有大数据从业者以及投资人和我们探讨一个问题:大数据产业中,什么样的企业会最终胜出?这是一个很难回答的问题,而且即使回答了,三五年内可能都无法判断其正确性。但从“数据供应链”中的各个环节来分析,还是可以得出一些具有参考价值的结论。
1) 数据供应。在互联网没有流行的时代,企业做数据仓库、商业智能、数据挖掘等系统时采用的数据基本都来自于企业内部,企业几乎无法获取外部数据,所以很少有专业的数据供应商。互联网改变了这一局面,将来会有专业的数据供应商。但既然是因为互联网的出现导致了数据供应商的出现,那么反过来数据供应商就必须具有很强的互联网基因;
2) 数据整合与挖掘。数据挖掘工具供应商在非互联网时代就早已存在。但互联网时代使得企业的数据量激增、数据类型发生极大变化(不同于传统的来自于单一领域的结构化数据,互联网数据以跨域的非结构化数据为主),传统的数据挖掘工具供应商的技术和方法已经很难适应。要跟上时代的变化,数据挖掘技术与工具应用商必须具备互联网公司的海量数据处理和挖掘的能力;
3) 数据应用。具体的行业应用与传统行业的业务关系密切,要做好行业应用,最好需要有服务传统行业的经验,了解传统行业的内部运作模式。这时候仅仅具有 2C 经验的互联网基因的公司又稍显不足。
综合起来看,如果一家大数据从业公司同时兼备互联网数据获取能力、互联网技术、互联网执行力,又有做 2B 服务的经验,那么这家公司将比较容易取得领先优势。这个结论其实一点也不奇怪:如本文开篇所述,大数据本来就是互联网与传统产业碰撞时的产物。
用“方兴未艾”这个词来形容大数据产业的发展阶段都还为时过早,目前的大数据产业只能说是小荷才露尖尖角。国内企业在第 1 代IT产业(硬件和软件产业)中是明显落后国外企业的;在第 2 代IT产业(互联网产业)中,国内企业已经与国外企业差距不大甚至在很多方面超过了国外企业;希望在第 3 代IT产业(云计算和大数据)浪潮中,国内企业能够完全赶上并且超过国外企业,我们也认为这是很有可能的。

阅读全文

与垂直大数据相关的资料

热点内容
ios网络唤醒 浏览:133
iphone5c电信4g 浏览:118
如何制作指定网站快捷方式 浏览:482
江西电网招聘进什么网站 浏览:816
巨龙之主城升级条件 浏览:356
c读取文件夹下所有文件 浏览:767
java中main方法必须写在类外面 浏览:905
linux查找文本 浏览:225
设某文件系统采用多级目录结构 浏览:59
电脑里的文件无法删除提示找不到 浏览:707
ios微信无法更新655 浏览:223
抖音收藏文件怎么发送到微信 浏览:208
app里的支付代码怎么写 浏览:469
tin格式的文件如何转dem格式的 浏览:942
火山app为什么扣除虚拟币失败 浏览:166
左边浮动广告代码 浏览:990
怎样破解ipad2锁屏密码 浏览:7
excel2013共用工具栏 浏览:249
钥匙编程故障是怎么回事 浏览:696
linuxftp上传文件 浏览:727

友情链接