1. 大数据应用的实训目的万能版怎么写
分块书写。大数据实训教学大纲一、实训目标 基于Hadoop为核心,通过实猜橘训,达成以下目的,认识大数据,认识大数据技术在新时代对企业的重要性。大数据应用,是指大数据价值创造的关键在于大数据的应用,随着大数毕兆带据技术飞速发展,大手芦数据应用已经融入各行各业。
2. 大数据课程基础内容有哪些
第一阶段:大数据技术入门
1大数据入门:介绍当前流行大数据技术,数据技术原理,并介绍其思想,介绍大数据技术培训课程,概要介绍。
2Linux大数据必备:介绍Lniux常见版本,VMware虚拟机安装Linux系统,虚拟机网络配置,文件基本命令操作,远程连接工具使用,用户和组创建,删除,更改和授权,文件/目录创建,删除,移动,拷贝重命名,编辑器基本使用,文件常用操作,磁盘基本管理命令,内存使用监控命令,软件安装方式,介绍LinuxShell的变量,控制,循环基本语法,LinuxCrontab定时任务使用,对Lniux基础知识,进行阶段性实战训练,这个过程需要动手操作,将理论付诸实践。
3CM&CDHHadoop的Cloudera版:包含Hadoop,HBase,Hiva,Spark,Flume等,介绍CM的安装,CDH的安装,配置,等等。
第二阶段:海量数据高级分析语言
Scala是一门多范式的编程语言,类似于java,设计的初衷是实现可伸缩的语言,并集成面向对象编程和函数式编程的多种特性,介绍其优略势,基础语句,语法和用法, 介绍Scala的函数,函数按名称调用,使用命名参数函数,函数使用可变参数,递归函数,默认参数值,高阶函数,嵌套函数,匿名函数,部分应用函数,柯里函数,闭包,需要进行动手的操作。
第三阶段:海量数据存储分布式存储
1HadoopHDFS分布式存储:HDFS是Hadoop的分布式文件存储系统,是一个高度容错性的系统,适合部署在廉价的机器上,HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用,介绍其的入门基础知识,深入剖析。
2HBase分布式存储:HBase-HadoopDatabase是一个高可靠性,高性能,面向列,可伸缩的分布式存储系统,利用HBase技术可在廉价PC上搭建起大规模结构化存储集群,介绍其入门的基础知识,以及设计原则,需实际操作才能熟练。
第四阶段:海量数据分析分布式计算
1HadoopMapRece分布式计算:是一种编程模型,用于打过莫数据集的并行运算。
2Hiva数据挖掘:对其进行概要性简介,数据定义,创建,修改,删除等操作。
3Spare分布式计算:Spare是类MapRece的通用并行框架。
第五阶段:考试
1技术前瞻:对全球最新的大数据技术进行简介。
2考前辅导:自主选择报考工信部考试,对通过者发放工信部大数据技能认证书。
上面的内容包含了大数据学习的所有的课程,所以,如果有想学大数据的可以从这方面下手,慢慢的了解大数据。
3. 大数据教学大纲,求大神赐教
第一阶段
CORE JAVA (标黑的需重点熟练掌握,其他掌握)
Java基础
数据类型
运算符、循环
算法
顺序结构程序设计
程序结构
数组及多维数组
面向对象
构造方法、控制符、封装
继承
多态
抽象类、接口
常用类
集合Collection、list
HashSet、TreeSet、Collection
集合类Map
异常
File
文件/流
数据流和对象流
线程(理解即可)
网络通信(理解即可)
第二阶段
数据结构
关系型数据库
Linux系统操作
Linux操作系统概述
安装Linux操作系统
图形界面操作基础
Linux字符界面基础
字符界面操作进阶
用户、组群和权限管理
磁盘分区管理
文件系统管理
软件包管理与系统备份
Linux网络配置
(主要掌握Linux操作系统的理论基础和服务器配置实践知识,同时通过大量实验,着重培养学生的动手能力。使学生了解Linux操作系统在行业中的重要地位和广泛的使用范围。在学习Linux的基础上,加深对服务器操作系统的认识和实践配置能力。加深对计算机网络基础知识的理解,并在实践中加以应用。掌握Linux操作系统的安装、命令行操作、用户管理、磁盘管理、文件系统管理、软件包管理、进程管理、系统监测和系统故障排除。掌握Linux操作系统的网络配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服务的配置与管理。为更深一步学习其它网络操作系统和软件系统开发奠定坚实的基础。)
重点掌握:
常见算法
数据库表设计
SQL语句
Linux常见命令
第三阶段
Hadoop阶段
离线分析阶段
实时计算阶段
重点掌握:
Hadoop基础
HDFS
MapRece
分布式集群
Hive
Hbase
Sqoop
Pig
Storm实时数据处理平台
Spark平台
若之前没有项目经验或JAVA基础,掌握了第一阶段进入企业,不足以立即上手做项目,企业需再花时间与成本培养;
第二阶段掌握扎实以后,进入企业就可以跟着做项目了,跟着一大帮人做项目倒也不用太担心自己能不能应付的来,当然薪资不能有太高的要求;
前两个阶段都服务于第三阶段的学习,除了重点掌握这些知识以外,重点需要找些相应的项目去做,不管项目大小做过与没有相差很多的哦!掌握扎实后可直接面对企业就业,薪资待遇较高!
4. 中山大学大数据实验班怎么样
中山大学的大数据实验班一直都者御绝备受关注,该实验班拥有优秀的师资力量,老师们都来自于数学、计算机等相关领域,他们的教学经验丰富,教学方法也非常好,能够很好地指导学生们学习和掌握相关知拆穗识。此外,该实验班还设置了丰富的实践课程和项目课程,为学生们提供了更多的实践机会,从而更好地锻炼他们的实践能力和发展潜力。总的来说,中山大学的大数据实首姿验班非常不错,是广大学生们拓展知识面、深入学习大数据相关领域的理想选择。
5. 大数据专业系列教材,大数据专业应该看什么书
目前,全国高校总数477所“数据科学与大数据技术”专业,累计30所“大数据管理与应用”专业,成功高校总数超过409所。
但由于大数据专业是以软硬件融合、数据科学和大数据技术为特色的新型复合型专业,许多高校在专业建设和人才培养方面面临挑战,教材选用成为许多高校的头疼问题。
在深入调研以上情况后,清华大学博士、中国大数据应用联盟人工智能专家委员会主任、云创大数据总裁刘鹏教授在业内很早就开始着手策划,联合国内多所高校从事一线教育科研任务的专业教师相继担任主编,《高级大数据人才培养丛书》
在大数据教学中,本科院校实践教学注重系统性,偏重新技术的应用,且对工程实践能力要求较高。
为此,刘鹏教授带领团队花了一年的时间编写了《高级大数据人才培养丛书》( 《云计算》、《大数据》、《深度学习》、《大数据库》、《数据挖掘》、0755-0755 )
其中,《Python程序设计》多年来一直处于我国计算机图书被引量的前列,据网络对微信公众号( cnkipj ) 《大数据可视化》的评价,2010年至2014年《大数据实验手册》
《大数据应用人才培养系列教材》( 《虚拟化与容器》、《云计算》、《【工学】高被引图书前三甲,你读过吗?》、《云计算》、《大数据导论》、0755-79055- )
内容从简单到复杂,既遵循理论到实践的学习过程,也遵循系统而广的原则。
清华大学出版社王编辑说:“刘鹏教授的这个教材选题很独特,考虑到未来高职高专大数据人才的就业需求,他选择了一个非常有特色的选题。
”
从业内高校的大数据教材来看,理论知识过于复杂高深,与教学实际不契合,或者实践部分过于简略,学生学完往往也会感到一头雾水。
《高级大数据人才培养丛书》和《大数据应用人才培养系列教材》大相径庭,符合教师教育实际和学生实践实验,一经推出,就受到高校的广泛关注和采用。
师生们普遍对它给予了很高弯梁的评价。 ——不仅与教学实际相符,理论部分和实践部分比例分配合理,大量实验提高了学生动手能力,大数据学习不再是“纸上谈兵”。
大数据教育特别注重实践,除了两套教材外,针对目前大数据教育实践教学中师资力量不足、实验环境薄弱、实验数据缺乏等问题,刘鹏教授带领云创大数据技术团队,与备受高中老师好评的教师教育和教材进行了配套
师资培训
三年来,云创大数据(工信部教育与考试中心授权的“工业和信息化人才培养工程训练基地”)连续举办了几十期大数据/人工智能实战培训班,培训班全部采用实习方式,大大提高了参训老师的实战能力,各期训练有求必应
全国2000多所亏枣高校的5000多名老师能够参加并接受培训,老师们普遍反馈,对未来的教育和人才培养方面有很大启发,云创举办的大数据实战培训班也在教育领域引起了强烈反响。
此外,云创大数据优秀讲师和技术人员还将定期或不定期赴合作高校开展包括教育、实验人员教育指导在内的培训服务。
2016年12月-2017年1月,多次举办高中(高职)大数据教师免费培训班
2017年1月,百所高中老师齐聚二期高中(高职)大数据教师免埋空运费培训班
2017年4月,全国千所高校大数据教师免费讲习班在南京举行
2018年5月,2018信息技术新工科产学研联盟大数据技术师资培训班举办
2018年9-10月,第二届全国高校大数据人工智能教师实战免费培训班举办三期
2019年1月,2019年全国高校大数据人工智能师资培训实战免费培训班连续举办两期
2019年3月,2019大数据人工智能师资培训班在南京举办
2019年6月,2019云计算免费培训班在南京举办
2019年7月,2019年全国高校大数据人工智能师资培训实战免费培训班(第三期)举办
云创大数据持续的大数据实战训练,一方面为高中老师提供了与专家讨论、同事交流、向实战经验丰富的讲师学习的机会,另一方面也一步步突破了Hadoop、Spark、Python语言、Scala等多个大数据实验
大数据实验室
大数据实验室建设方案基于云提供的大数据实验一体化计算机和大数据实验平台建设,采用Docker容器技术,为用户提供大数据实验服务,实现大量用户同时在线实验避免相互干扰,同时提供实验手册、课程资源、教学视频、考试系统等,方便高校师生在平台上开展大数据教学和实验。
今年5月,大数据实验平台再次迎来更新,改版用户界面,优化系统资源使用,增加实验内容,丰富实验形式,扩充题库,完善教材与实验内容的映射,增录实验操作视频集成了商业智能实践教学子系统,基础镜像速度也得到了极大优化,一键营造环境只需十几秒钟。
目前,大数据实验平台已更新为400个大数据实验。
操作简便,实战效果显著,大数据实验平台依托贵州大学、西北工业大学、山东理工大学、郑州大学、河南农业大学、成都理工大学、西南大学、重庆师范大学、重庆工商大学、陕西师范大学、宁夏大学、南京财经大学、金陵科技学院、天津农学院、郑州升达经贸管理学院
值得一提的是,郑州升达经贸管理学院作为民办三大高校,自天骄数据实验平台落地以来,在课堂教学、实验拓展、课程体系建设等诸多方面屡创新成果。
目前,大数据实验室是该校利用率最高的实验室,一直排到周日。
这所学校信息工程学院的计算机科学和软件工程两个专业分别有250名学生和学院其他专业的800多名学生在这个平台上接受了严格的训练。
使用该平台毕业的学生工资水平远远超过普通专业大学毕业生,直接带动了学生就业率和学校影响力的同步提高。
无论是教材体系、师资培训,还是大数据实验室建设,云创大数据都在教育领域稳步发展,拥有雄厚的技术优势和优质资源。
热忱欢迎广大高校、教育机构及各企事业单位与云创业开展多方面交流合作,共同探讨大数据建设相关领域,培养越来越多大数据优秀人才,为行业发展作出贡献。
要获取《高级大数据人才培养丛书》、《大数据应用人才培养系列教材》配套PPT、人工智能人才培养方案大数据、人工智能实验室建设方案大数据、云创大数据合作工作手册等资源,可通过以下方式之一获取
2 .关注“云创大数据( cStor_cn )”,在微信后台回复“PPT”,获取网盘全套资源下载链接
自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:https://www.87dh.com/xl/
6. 高校大数据实训室解决方案有么急求
四、人才培养目标
本专业主要面向大数据应用开发、大数据分析挖掘、大数据系统运维等岗位方向培养合格人才,重点培养具有大数据应用、大数据分析以及大数据系统管理与运维方向的,应用型高技能人才。
本专业方向重点培养能够为企事业单位提供大数据系统搭建、管理、和运维技术和能力的人才。通过计算机基础课程、算法语言、系统管理等专业基础知识学习,接受大数据系统和应用知识的培养,进行各种计算机系统,大数据平台系统,大数据应用系统搭建、配置、管理、及运维实训。通过大量的案例与实践操作,熟练掌握大数据系统管理所需的各种专业知识和能力,具备一定的职业素养,为从事大数据行业系统管理工作奠定坚实基础。
五、实践教学环境
新开普完美校园大数据实验室的软硬件系统配置主次分明,考虑到学生从基础理论到工程实践的各个环节,符合学生递进式的认知规律,有利于学生由浅入深的全面掌握大数据相关知识和应用。大数据实验实训室将搭建理论与实践的桥梁,为学生提供大数据技术的实验及实训平台,深化学生对大数据技术理论的理解,提高学生的操作能力,同时,利用所学知识对大数据技术进行创新性研究。具体建设内容包括:
1)物理层---硬件资源:
基于高性能计算与海量存储节点构建的运算资源池,作为云计算各项实验学习环境的主要承载平台,采用云服务器集群+虚拟主机+物理机的解决方案
2)资源池:
包含计算资源池、存储资源池、网络资源池。提供教学活动中必不可少学习资源、实验资源、项目案例。
3)业务平台层:
面向教学活动中的实验课程与项目实训业务提供流程化支撑。完美校园大数据实验室的业务平台层包含大数据教学管理平台和大数据科研平台。
4)统一管理层:
基于完美校园大数据实验室统一资源调度引擎,为用户使用业务平台层与资源平台提供便捷入口。
六、实验室功能系统模块
大数据实验室各个功能模块介绍如下:
1)云计算管理系统
完美校园大数据实验室采用云服务提供的虚机系统,云计算管理系统通过对硬件设施进行虚拟化处理,形成虚拟层面的资源池系统,该资源池系统可按需为每一套应用系统提供基础硬件资源——计算能力、存储能力和网络功能,快速适应不断变化的业务需求,实现“弹性”资源分配能力。
① 计算模块
计算模块主要提供云主机功能。而云主机提供了整个云平台中最基础的功能,即虚拟服务器从创建到销毁的全生命周期维护。此模块通过利用虚拟化技术,可将大批服务器硬件资源池化,用户仅需点击鼠标,选择期望的硬件配置、操作系统类型和网络配置等信息,即可在短时间内按需获得任意数量的云主机,模块支持云主机硬件配置在线升级、云主机热迁移、重启、暂停、创建快照等多种功能。
② 镜像模块
镜像功能模块是一套虚拟机镜像查找及检索系统,支持多种虚拟机镜像格式(AKI、AMI、ARI、ISO、QCOW2、Raw、VDI、VHD、VMDK),有创建上传镜像、删除镜像、编辑镜像基本信息的功能。
③块存储模块
块存储模块为运行实例提供稳定的数据块存储服务,即云硬盘服务。它的插件驱动架构有利于块设备的创建和管理,如创建卷、删除卷,在实例上挂载和卸载卷。它们独立于云主机的生命周期而存在,可挂载到任意运行中的云主机上,确保单台云主机故障时,数据不丢失,并具备基于云硬盘的快照创建、备份和快照回滚等功能。
④网络模块
网络模块提供云计算的网络虚拟化技术,为云平台其他服务提供网络连接服务。为用户提供接口,可以定义 Network、Subnet、Router,配置 DHCP、DNS、负载均衡、L3 服务,网络支持,GRE、VLAN。插件架构支持许多主流的网络厂家和技术,如 OpenvSwitch。
⑤安全模块
安全模块通过在计算模块中添加扩展实现,基于传统的包过滤型防火墙技术,可为用户的云主机提供细颗粒度的安全防护策略,支持 TCP/UDP/ICMP 等多种协议,支持自定义来源IP和端口范围等规则,支持用户针对不同类型云主机加载不同级别安全策略的功能。
2)大数据教学管理系统
大数据教学管理系统旨在提供统一的平台管理所有的课程教学资料、视频、讲义、实验指导手册、实验数据集、实验练习、实验报告书、实验成绩管理、用户管理(学生花名册管理、教师信息管理)。
大数据教学系统提供了5大功能模块,分别是:在线基础课程包、在线学习平台、在线练习平台、在线测试平台、在线讨论平台、数据分析平台。
① 在线基础课程包
根据岗位人才发展路径图,提供相应的学习课程资源部内容,客户根据实际情况选择适合自己的课程内容,完美校园大数据中心存储了大量教学资源。包含以下资源:
1.存储辅助性的讲解+PPT配套的视频课程,准确全面的给学生讲解相应的知识点或项目案例;
2.存储了通过CMMI4规范的真实的项目文档和案例,可以让学生在学校就能够接触到大规模科技公司的真实项目和研发流程;
3.针对不同的小练习,配合PPT视频教材,提供了详细的描述文档共学员选择不同的方式对知识点进行接纳和
7. 大数据实践有什么意义什么是大数据实践教学平台
大数据实践教学平台,简言之就是一套指导和帮助高等院校建立大数据专业的技术解决方案回。主要就是为了解决答大数据的教学难点,促进专业健康发展,满足高校不同层次人才的培养需要。
像三盟科技的大数据实践方案就包括了相关服务及配套资源,比如教学实践环境建设、专业培养方案制定、课程体系设计、师资体系完善、科研支持平台建设和就业指导。
8. 大数据培训课程介绍,大数据学习课程要学习哪些
《大数据实训课程资料》网络网盘资源免费下载
链接:https://pan..com/s/1RiGvjn2DlL5pPISCG_O0Sw
大数据实训课程资料|云计算与虚拟化课程资源|课程实验指导书综合版|机器学习与算法分析课程资源|Spark课程资源|Python课程资源|Hadoop技术课程资源|云计算课程资料.zip|微课.zip|算法建模与程序示例.zip|spark课程资源.zip|hadoop课程资源.zip|实验指导书|教学视频|教学PPT
9. 金陵科技学院的大数据教学实验平台怎么进去
金陵科技学院的大数据教学实验平台进去如下:
1、首先,打开浏览器,输指基入学校网址。
2、在学校网站首页,找到“教学”栏目,将鼠标悬停在该世闭栏目上,会弹出一个下拉菜单。搜逗裂在下拉菜单中,找到“实验中心”,点击进入实验中心页面。
3、在实验中心页面,找到“大数据教学实验中心”模块,点击进入该模块。
4、进入大数据教学实验中心后,按照提示输入学号和密码进行登录,即可进入大数据教学实验平台。
10. 大数据对教育教学的作用
数据(data),一般而言是指通过科学实验、检验、统计等方式所获得的,用于科学研究、技术设计、查证、决策等目的的数值。通过全面、准确、 系统地测量、收集、记录、分类、存储这些数据,再经过严格地统计、分析、检验这些数据,就能得出一些很有说服力的结论。大规模、长期地测量、记录、存储、 统计、分析这些数据,所获得的海量数据就是大数据(big data)。在制作大数据时,需要严格的方案设计、变量控制和统计检验等,不然所获得的大数据就是不全面、不准确、无价值或价值不大的。
在教育特别是在学校教育中,数据成为教学改进最为显著的指标。通常,这些数据主要是指考试成绩。当然,也可以包括入学率、出勤率、辍学率、升学 率等。对于具体的课堂教学来说,数据应该是能说明教学效果的,比如学生识字的准确率、作业的正确率、多方面发展的表现率——积极参与课堂科学的举手次数, 回答问题的次数、时长与正确率,师生互动的频率与时长。进一步具体来说,例如每个学生回答一个问题所用的时间是多长,不同学生在同一问题上所用时长的区别 有多大,整体回答的正确率是多少,这些具体的数据经过专门的收集、分类、整理、统计、分析就成为大数据。
分析大数据助力教学改革
近年来,随着大数据成为互联网信息技术行业的流行词汇,教育逐渐被认为是大数据可以大有作为的一个重要应用领域,有人大胆地预测大数据将给教育带来革命性的变化。
大数据技术允许中小学和大学分析从学生的学习行为、考试分数到职业规划等所有重要的信息。许多这样的数据已经被诸如美国国家教育统计中心之类的政府机构储存起来用于统计和分析。
而近年来越来越多的网络在线教育和大规模开放式网络课程横空出世,也使教育领域中的大数据获得了更为广阔的应用空间。专家指出,大数据将掀起新的教育革命,比如革新学生的学习、教师的教学、教育政策制定的方式与方法。
教育领域中的大数据分析最终目的是为了改善学生的学习成绩。成绩优异的学生对学校、对社会、以及对国家来说都是好事。学生的作业和考试中有一系 列重要的信息往往被我们常规的研究所忽视。而通过分析大数据,我们就能发现这些重要信息,并利用它们为改善学生的成绩提供个性化的服务。与此同时,它还能 改善学生期末考试的成绩、平时的出勤率、辍学率、升学率等。