㈠ 中国大数据的提出的时间和背景是什么发展情况和现状分别是什么样的
大数据在中国的发展相对比较年轻。2012年,中国政府在美国提出《大数据研究和发展计划内》并且批复了“十容二五国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。我国的开放、共享和智能的大数据的时代才真正大面积的开始
发展和现状是:(一)市场规模快速增长,供给结构初步形成 市场规模快速增长。十二五以来,我国大数据产业从无到有,全国各地发展大数据积极性较高,行业应用得到快速推广,市场规模增速明显。易观国际数据显示,2011-2014年,我国大数据市场规模分别为37.4亿元、47.3亿元、59亿元和75.7亿元,年平均复合增长约为27%。易观国际同时预测,2015、2016年我国大数据市场规模将保持约30%的增长速度,在十二五末市场规模接近100亿元。
㈡ 我想问问大数据的概念什么时候,提出
“大数据”的名称来自于1980年未来学家托夫勒所著的《第三次浪潮》,对“大数据”进行收集和分陵数析的设想,来自于世界著名的管理咨询公司麦肯锡公司。
大数据(bigdata,megadata)或称巨量资料,指的是需要新处理尺蠢首模式才能具有更强的决策力、洞察力和档咐流程优化能力的海量、高增长率和多样化的信息资产。
更多关于大数据的概念什么时候,提出,进入:https://m.abcgonglue.com/ask/065d231615832135.html?zd查看更多内容
㈢ 大数据一词最早出现于20世纪90年代
“大数据”一词,最早出现于20世纪90年代,当时的数据仓库之父比尔·恩门经常提及BigData。
㈣ 大数据概念最早是在哪一年提出的
有资料说「大数据」这个概念最早由全球知名咨询公司麦肯锡提出,但并未提及大专致时间;还有的资料说,属1980年,未来学家阿尔文·托夫勒便在《第三次浪潮》一书中,将大数据热情地赞颂为「第三次浪潮的华彩乐章」,那么晚于1980年的论著应该都不是首创了。
㈤ 哪年哪月是中国大数据元年
大数据元年是2013年。
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》。 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
㈥ 大数据的概念是由( )首先提出的
大数据的概念是由美国技术学者道格拉斯·克罗克福特(Douglas Carl Engelbart)在20世纪60年代提出的。不过,随着计算机技术的不断发展和应用,大数据的概念也在不断演化和完善,现在已经成闷拆为了一个广泛使用的术语。
大数据的概念涉及到数据的获取、存储、处理、分析和应用等多个方面。大数据的特点包括数据规模大、数据类型多样、数据处理速度快、数据价值高等。通过对大数据的睁罩采集、存储和分析,可以帮助人们更好地理解和预测市场趋势、社会变化、自然现象等,从而支持决策和创新。
㈦ 部分计算机专家首次提出大数据概念是在哪一年
部分计算机专家首次提出大数据概念是在2008年。大数据概念最早在2008年8月由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出。
㈧ 大数据概念最早是在哪一年提出的
2008年八月中旬
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
根据维基网络的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
㈨ 大数据是什么时候提出来的
大数据的概念最早可以追溯到上乱禅岩个世纪 90 年代,当时美国 IT 公司 Teradata 提出了“大型数据库管理系统”(DBMS)的概念,这就是“大数据”的前身。然而,大数据这一术语的真正流行是在 2000 年之后的。随着互联网、移动设备和传感器技术袭尺的普及,越来越多的数据被持续地产生、收集、存储和分析,这使得大数哗御据概念得到了广泛关注和应用。㈩ 大数据时代是什么意思大数据是在什么背景下提出的
大数据时代:
最早提出大数据时代到来的是全球知名咨询公司麦肯锡, 大数据在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
大数据提出的背景:
进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。
它已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。
数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。
正如《纽约时报》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。
哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
(10)哪年提出大数据扩展阅读
大数据影响
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、O2O、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。
有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。
“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量。
大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量)。
发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万??
截止到2012年,数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)
EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。国际数据公司(IDC)的研究结果表明,2008年全球产生的数据量为0.49ZB,2009年的数据量为0.8ZB,2010年增长为1.2ZB,2011年的数量更是高达1.82ZB,相当于全球每人产生200GB以上的数据。
而到2012年为止,人类生产的所有印刷材料的数据量是200PB,全人类历史上说过的所有话的数据量大约是5EB。IBM的研究称,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。而到了2020年,全世界所产生的数据规模将达到今天的44倍。
每一天,全世界会上传超过5亿张图片,每分钟就有20小时时长的视频被分享。然而,即使是人们每天创造的全部信息——包括语音通话、电子邮件和信息在内的各种通信,以及上传的全部图片、视频与音乐,其信息量也无法匹及每一天所创造出的关于人们自身的数字信息量。
这样的趋势会持续下去。我们现在还处于所谓“物联网”的最初级阶段,而随着技术成熟,我们的设备、交通工具和迅速发展的“可穿戴”科技将能互相连接与沟通。
科技的进步已经使创造、捕捉和管理信息的成本降至2005年的六分之一,而从2005年起,用在硬件、软件、人才及服务之上的商业投资也增长了整整50%,达到了4000亿美元。
大数据的精髓
大数据带给我们的三个颠覆性观念转变:是全部数据,而不是随机采样;是大体方向,而不是精确制导;是相关关系,而不是因果关系。
A.不是随机样本,而是全体数据:在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(随机采样,以前我们通常把这看成是理所应当的限制,但高性能的数字技术让我们意识到,这其实是一种人为限制);
B.不是精确性,而是混杂性:研究数据如此之多,以至于我们不再热衷于追求精确度;之前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记录,随着规模的扩大,对精确度的痴迷将减弱;拥有了大数据,我们不再需要对一个现象刨根问底,只要掌握了大体的发展方向即可。
适当忽略微观层面上的精确度,会让我们在宏观层面拥有更好的洞察力;
C.不是因果关系,而是相关关系:我们不再热衷于找因果关系,寻找因果关系是人类长久以来的习惯,在大数据时代,我们无须再紧盯事物之间的因果关系,而应该寻找事物之间的相关关系;相关关系也许不能准确地告诉我们某件事情为何会发生,但是它会提醒我们这件事情正在发生。