❶ 大数据平台是什么什么时候需要大数据平台如何建立大数据平台
首先我们要了解java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
❷ 什么是大数据产业
大数据概念包含几个方面的内涵吧
1. 数据量大,TB,PB,乃至EB等数据量的数据需要分析处专理。
2. 要求快属速响应,市场变化快,要求能及时快速的响应变化,那对数据的分析也要快速,在性能上有更高要求,所以数据量显得对速度要求有些“大”。
3. 数据多样性:不同的数据源,非结构化数据越来越多,需要进行清洗,整理,筛选等操作,变为结构数据。
4. 价值密度低,由于数据采集的不及时,数据样本不全面,数据可能不连续等等,数据可能会失真,但当数据量达到一定规模,可以通过更多的数据达到更真实全面的反馈。
很多行业都会有大数据需求,譬如电信行业,互联网行业等等容易产生大量数据的行业,很多传统行业,譬如医药,教育,采矿,电力等等任何行业,都会有大数据需求。
随着业务的不断扩张和历史数据的不断增加,数据量的增长是持续的。
大数据产业包括新兴的数据分析行业,或者厂商。
如果需要分析大数据,则可以Hadoop等开源大数据项目,或Yonghong Z-Suite等商业大数据BI工具。
❸ 什么是大数据产业
1、大数据产业的提出是我们对信息产业的更深层次的认识,“互联网”、“智慧城市”、渗丛庆“智能制造2025”其核心都在于数据利用,也就是外衣千百个,核心就一家。
2、大数据的产生和技术的迭代解决了许多先前信息化建设解决不了的丛握问题,先前几十年的建设主要的还是完成了信息采集和标准的工作,新兴大数据技术的出现让大规模的数据处理成为现实。
3、大数据带来了新的经济增长极,数据为王,给大家提供了弯道超车的机会。
❹ 阻碍电子政务发展最重要的影响因素说是什么
目前,国内电子政务行业综合服务提供领域竞争格局相对稳定,而系统集成和软件开发领域竞争较为激烈。未来随着智慧城市发展对政府电子政务提出更高的要求,将引入更多的竞争者参与竞争。
综合服务提供竞争格局稳定,系统集成、软件开发竞争激烈
目前,我国电子政务市场参与者主要包括几家大型的全国性经营企业和众多的区域性经营企业。其中,全国性经营企业的竞争要点主要有客户基础、企业背景和资质;而区域性企业的竞争要点主要有跨地域扩张能力、产品方案和标杆项目。全国性和区域性的代表企业分别是太极股份和榕基软件。
以上数据及分析均来自于前瞻产业研究院《中国电子政务发展前景与投资战略规划分析报告》。
❺ 大数据产业迎来大发展时代
大数据产业迎来大发展时代
日前,国务院印发《促进大数据发展行动纲要》(以下简称《纲要》),提出将全面推进我国大数据发展和应用,加快建设数据强国,2017年底前形成跨部门数据资源共享共用格局;2018年底前建成国家政府数据统一开放平台。
业内专家分析认为,此次发布的《纲要》与7月初国务院发布的《关于积极推进“互联网+”行动的指导意见》,构成规范发展中国互联网新经济发展和社会转型升级的“姊妹篇”,其发布和实施对于促进中国大数据产业和互联网新经济的持续健康发展将产生深远的影响。
上升至国家战略高度
从《纲要》内容分析,大数据建设已经被上升到了“推动经济转型发展的新动力”高度。从政策落实的角度看,此次《纲要》既给出了时间表,又给出了路线图。其明确提出“2017年底前形成跨部门数据资源共享共用格局”,“2018年底前建成国家政府数据统一开放平台”,这些都让开放的政府大数据变得触手可及。
贵阳大数据交易所总裁王叁寿是《促进大数据发展行动纲要》的起草人之一。在他看来,《纲要》的作用是要激活中国大数据的资产价值,未来我国大数据的市场规模将达到上万亿元。
北京赛智时代信息技术咨询有限公司总经理、合伙人赵刚认为,《纲要》的发布标志着大数据发展上升到了强国战略的高度。《纲要》明确提出,数据已成为国家基础性战略资源,中国将致力于建设数据强国,网络空间数据主权保护是国家安全的重要组成部分。“这个高度的提法是首次提出,彰显和强化了大数据发展和应用在国家战略中的地位。”
易观智库分析师任伟巍也表示:“《纲要》的发布标志着国家从顶层开始重视大数据的建设与应用,对大数据的发展方向起到了非常明确的引导作用,否则完全凭市场需求逆向推动,进程会比较缓慢。”不过他同时也提出建议,那就是应避免口号化,要注重最终能否对各行业产生天然吸引力,并充分为各行业所用,避免建的人多、用的人少。
行业分析人士姜伟超认为,近年来,业界一直在提倡大数据,此次《纲要》的发布将会使大数据在更大的领域内开放共享,将在多个方面产生重大影响。
“《纲要》的发布,一是有助于提高整个社会的效率,为政府决策、经济发展提供重要、科学的参考依据。二是从宏观经济层面对优化产业结构起到推动作用。三是在当前提倡大众创业、万众创新的环境下,有利于推动大数据产业向前发展,增加更多的创新机会。四是在全球化的大环境下,我国以更大的力度、更高的视角推动大数据建设,对我国未来在全球化竞争中抢占先机有着重要意义。”姜伟超说。
企业抓住机遇谋求发展
《纲要》提出,促进大数据发展应以企业为主体,深化大数据在各行业的创新应用。对此,DCCI互联网研究院院长刘兴亮认为,《纲要》强调企业在大数据发展中的主体地位,一方面是因为大数据的相关技术大多掌握在企业手中,而且企业掌握着更庞大的数据库;另一方面是因为促进大数据发展能够推动产业和企业的创新发展,提供客观且科学的决策参考。
阿里巴巴研究院高级专家孟晔认为,大数据的发展更重要的价值在于将数据资源向中小企业开放。“如果能让中小企业和大企业站在同一个起跑线上,就能够更大地发挥它们的创新能力,以后也将会形成‘大数据平台+中小企业/个人’的创新模式。”但他也提醒,大数据最大的效力体现在各行各业的交叉、融合中,并且需要相互共享和开放。“不光是政府数据的共享和开放,企业和企业之间、行业和行业之间的数据也需要共享和开放”。
尽管《纲要》的发布对行业和企业发展有不小的推动作用,但任伟巍建议,要给企业发展创造足够宽松的竞争环境。现在的大数据厂商都不是靠政策优势做起来的,仅凭政策不能打造优秀的厂商,一定要靠竞争、靠技术研发。
姜伟超认为,《纲要》的发布再一次明确彰显了政府对于推动大数据建设的决心和目标,这对相关企业来说也是一个很好的机会。
大数据建设实际上涉及诸多相关领域。企业一方面需要借助大数据提升自身的竞争力,另一方面要积极寻找新的机会,参与大数据建设。“未来可能会有更多的领域,以及之前企业所难触碰到的领域向社会开放,这也从侧面展示了政府继续深化市场经济的决心,对企业来说也预示着更多的机会。”姜伟超表示,《纲要》将对我国未来经济发展产生重要影响,作为企业也应该及早适应这种变化。
十大工程引领行业发展
《纲要》规划了十大重点工程,包括政府数据资源共享开放工程、国家大数据资源统筹发展工程、公共服务大数据工程、万众创新大数据工程以及网络和大数据安全保障工程等。
赵刚认为,《纲要》提出十大工程,是推进大数据发展的抓手。围绕工程的推进,将建立起政府数据统一共享交换平台、政府数据统一开放平台、国家大数据平台、数据中心等一系列国家和地方大数据平台,并在经济社会各个领域推进大数据应用示范和试点,这将兴起大数据建设的热潮,政府和社会将投入大量资金发展大数据,并以大投资来带动大数据市场的繁荣。
姜伟超表示,《纲要》提出的十大工程涉及诸多领域,同时又是系统化的,体现了政府在我国大数据建设方面的力度和决心。十大工程有助于对我国整体的产业结构进行升级,有助于全面提升我国的信息化水平,有助于挖掘新的经济增长点。十大工程既关系宏观战略,又深入民生领域,无论是对国家政府,对行业发展,还是对普通民众都具有一定的积极意义。“未来社会必将是一个更加信息化的,同时又密切联系在一起的社会。大数据的共享与科学有效应用将起到重要作用。”他说。
此外,《纲要》还提出,立足我国国情和现实需要,推动大数据发展和应用在未来5年至10年内逐步实现以下目标:打造精准治理、多方协作的社会治理新模式;建立运行平稳、安全高效的经济运行新机制;构建以人为本、惠及全民的民生服务新体系;开启大众创业、万众创新的创新驱动新格局;培育高端智能、新兴繁荣的产业发展新生态。
任伟巍认为:“这些发展目标在细分行业是能实现的,比如金融、旅游等,毕竟还有至少5年时间。而现在的细分领域大数据厂商活跃起来都还没有5年,时间还是有的。”
赵刚认为,《促进大数据发展行动纲要》将引领我国进入大数据的大发展时代。
以上是小编为大家分享的关于大数据产业迎来大发展时代的相关内容,更多信息可以关注环球青藤分享更多干货
❻ 简述大数据产业的含义
大数据产业是什么
围绕着数据的采集、传输、加工、分析、应用都是大数据产业版
大数据是一个以数据为核心的产业,权是一个围绕大数据生命周期不断循环往复的生产过程,同时也是由多种行业分工和协同配合而产生的一个复合性极高的行业。
目前看国家及行业内对大数据产业细分比较常见的是参考现行的行业分类来划分的,例如金融大数据、物流大数据、电商大数据、交通大数据等等。
融合应用产业:在业务应用中产生大数据,并与行业资源相结合开展商业经营的企业。
基础支撑产业:提供直接应用于大数据处理相关的软硬件、解决方案及其他工具的企业。
数据服务产业:以大数据为核心资源,以大数据应用为主业开展商业经营的企业。
❼ 什么是大数据,大数据时代有哪些趋势
行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等
本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等
产业概况
1、定义:大数据产业覆盖范围广
根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:
2、产业链剖析:大数据产业链庞大
大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;
大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的IT运维等;
大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。
大数据产业上游基础设施具体包括IT设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。
中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。
在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。
产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显著提升
我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。
产业政策背景:优化升级数字基础设施,鼓励大数据产业发展
2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。此后国家相关部门出台了一系列政策,鼓励大数据产业发展。
当前,随着5G、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。
产业发展现状
1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域
——大数据产业规模:2021年超过800亿元
近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的619.7亿元增长至2021年的863.1亿元,复合年增长率达到18.0%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。
——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主
从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,
CCID统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为40.5%、25.7%和33.8%。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。
从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。
CCID统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为19.1%、16.5%、15.2%和13.9%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。
2、细分市场一:金融大数据
——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升
从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。
近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。
——金融大数据应用场景
过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。
3、细分市场二:政府大数据
——政府大数据需求:互联网政务服务用户规模不断提升
从政府领域需求来看,根据中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。截至2021年12月,我国互联网政务服务用户规模达9.21亿,较2020年12月增长9.2%,占网民整体的89.2%。“十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。
——政府大数据应用场景
中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。
4、细分市场三:互联网大数据
——互联网大数据需求:互联网行业规模不断提升
在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。2021年我国规模以上互联网和相关服务企业完成业务收入15500亿元,同比增长21.2%。
2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长0.1%。
注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。
——互联网大数据应用场景
在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。
产业竞争格局
1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区
根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。其中,广东省的大数据企业最多。
2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐
根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。
大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。
政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。
注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。
产业发展前景:大数据将继续保持高速增长
大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。预计2027年我国大数据市场规模将达到2930.9亿元,未来六年复合年增长率为22.6%。
更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。
❽ 大数据在未来有什么样的发展趋势_大数据的未来发展前景
大数据的未来发展趋势主要有以下几点:趋势一:数据资源化
何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
趋势二:与云计算的深度结合大数据离不开云处理,云处理为大数据提供了弹性可拓乱樱宽的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一起助力大数据革命,让大数据营销发挥出更大的影响力。
趋势三:科学理论的突破随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
趋势四:数据科学和数据联盟的成立未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。
趋势五:数据泄露泛滥未来几年数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到安全保障。可以说,在未来,每个财富500强企业都会哗陆丛面临悉孙数据攻击,无论他们是否已经做好安全防范。而所有企业,无论规模大小,都需要重新审视今天的安全定义。在财富500强企业中,超过50%将会设置首席信息安全官这一职位。企业需要从新的角度来确保自身以及客户数据,所有数据在创建之初便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全措施已被证明于事无补。
趋势六:数据管理成为核心竞争力数据管理成为核心竞争力,直接影响财务表现。当“数据资产是企业核心资产”的概念深入人心之后,企业对于数据管理便有了更清晰的界定,将数据管理作为企业核心竞争力,持续发展,战略性规划与运用数据资产,成为企业数据管理的核心。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关;此外,对于具有互联网思维的企业而言,数据资产竞争力所占比重为36.8%,数据资产的管理效果将直接影响企业的财务表现。
趋势七:数据质量是BI(商业智能)成功的关键采用自助式商业智能工具进行大数据处理的企业将会脱颖而出。其中要面临的一个挑战是,很多数据源会带来大量低质量数据。想要成功,企业需要理解原始数据与数据分析之间的差距,从而消除低质量数据并通过BI获得更佳决策。
趋势八:数据生态系统复合化程度加强大数据的世界不只是一个单一的、巨大的计算机网络,而是一个由大量活动构件与多元参与者元素所构成的生态系统,终端设备提供商、基础设施提供商、网络服务提供商、网络接入服务提供商、数据服务使能者、数据服务提供商、触点服务、数据服务零售商等等一系列的参与者共同构建的生态系统。而今,这样一套数据生态系统的基本雏形已然形成,接下来的发展将趋向于系统内部角色的细分,也就是市场的细分;系统机制的调整,也就是商业模式的创新;系统结构的调整,也就是竞争环境的调整等等,从而使得数据生态系统复合化程度逐渐增强。