Ⅰ 5G 技术架构和关键技术
挑战:现在仅实现独立 5G 组网,后续要实现车联网之类的应用,必须提供站间互传的连续覆盖,5G 的最大覆盖范围200-300米。
NGC(Next Generation Core):下一代核心网;
NG-RAN(Next Generation Radio Access Network):下一代接入网。
EPC(Evolved Packet Core):演进包转发核心网;
4G 网络中,网络中的组件称为网元功能。使用的专用网络设备实现某些功能。
5G 网络中,网络组件称为网络功能。使用虚拟化的网络功能亏裤来实现网络功能,便于管理,弹性伸缩。
将专用设备转为虚拟化网络功能。
4G 中,所有设备共享一个通道进行通信。
5G 中,业务被分割在不同的管道内。
用户面功能:编解码、SA、TCP 加速、视频优化、缓存、Web 加速、可靠性。
控制面板功能:注册、移动性管理、安全、服务管理、QoS、鉴权、路由、策略控制、用户数据管理、应用功能。
4G 中,数据需要经过接入网,传入核心网,再穿回来。
5G 中,中心DC负责:信令面集中,简化运维,服务化架构到敏捷运维。本地DC:流量本地化、无缝移动业务锚点。边缘 DC:用户体验提升,原生MEC 能力。历镇
控制信销烂简息传到 DC,用户数据本地处理。
业务之间的隔离:TDM,时分多址;
业务内的隔离:VPN。
BBU 从放置在站点,到放置在汇聚点(放置BBU,需要机房,集中管理成本更低)。
CU/DU的划分:按照延迟划分,延迟要求高的放置在 CU,延迟不敏感的放置在 DU。
Ⅱ 5g的关键技术有哪些
关键技术1:高频段传输。
移动通信传统工作频段主要集中在 3GHz 以下,这使得频谱资源十分拥挤,而在高频段(如毫米波、厘米波频段)可用频谱资源丰富,能够有效缓解频谱资源紧张的现状,可以实现极高速短距离通信,支持 5G 容量和传输速率等方面的需求。
关键技术2:新型多天线传输。
多天线技术经历了从无源到有源,从二维(2D)到三维(3D),从高阶 MIMO 到大规模阵列的发展,将有望实现频谱效率提升数十倍甚至更高,是目前 5G 技术重要的研究方向之一。
关键技术3:同时同频全双工。
最近几年,同时同频全双工技术吸引了业界的注意力。利用该技术,在相同的频谱上,通信的收发双方同时发射和接收信号,与传统的 TDD 和 FDD 双工方式相比,从理论上可使空口频谱效率提高1倍。
关键技术4:D2D。
传统的蜂窝通信系统的组网方式是以基站为中心实现小区覆盖,而基站及中继站无法移动,其网络结构在灵活度上有一定的限制。
关键技术5:密集网络。
在未来的 5G 通信中,无线通信网络正朝着网络多元化、宽带化、综合化、智能化的方向演进。随着各种智能终端的普及,数据流量将出现井喷式的增长。
关键技术6:新型网络架构。
目前,LTE 接入网采用网络扁平化架构,减小了系统时延,降低了建网成本和维护成本。未来5G 可能采用 C-RAN 接入网架构。
Ⅲ 5g网络的组成有哪些
5G网络大致分为三个部分,无线接入网,承载网,核心网。
第纳判五代移动通信技术(英语:5th Generation Mobile Communication Technology 简称5G)是具洞悉改有高速率、低时延和大连接特点的新一代宽带移动通信技术,是实现人机物互联的网络基础设施。陆贺
Ⅳ 5g的三大核心技术
5G的三大核心技术分别是SBA、CUPS和网络切片。
什么是SBA?
SBA(ServiceBasedArchitecture),即基于服务的架构。它基于云原生构架设计,借鉴了IT领域的“微服务”理念。
众所周知,传统网元是一种紧耦合的黑盒设计,NFV(网络功能虚拟化)从黑盒设备中解耦出网络功能软件,但解耦后的软件依然是“大块头”的单体式构架,需进一步分解为细粒度化的模块化组件,并通过开放API接口来实现集成,以提升应用开发的整体敏捷性和弹性。
为此,业界提出了基于CloudNative的设计原则。
CloudNative的使命是改变世界如何构建软件,其主要由微服务架构、DevOps和以容器为代表的敏捷基础架构几部分组成,目标是实现交付的弹性、可重复性和可靠性。
微服务就是指将Monolithic(这个词太难传神翻译了,本文翻译成单体式应用程序)拆分为多个粒度更小的微服务,微服务之间通过API交互,且每个微服务独立于其他服务进行部署、升级、扩展,可在不影响客户使用的情况下频繁更新正在使用或盯的应用。
正是基于这样的设计理念,传统网元先是转换为网络功能(NF),然后NF再被分解为多个“网络功能服务”。
SBA=网络功能服务+基于衫弯和服务的接口。网络功能可由多个模块化的“网络功能服务”组成,并通过“基于服务的接口”来展现其功能,因此“网络功能服务”可以被授权的NF灵活使用。
其中,NRF(NFRepositoryFunction,NF贮存功能)支持网络功能服务注册登记、状态监测等,实现网络功能服务自动化管理、选择和可扩展。
CUPS
CUPS(ControlandUserPlaneSeparation),即控制与用户面分离。目的是让网络用户面功能摆脱“中心化”的囚禁,使其既可灵活部署于核心网(中心数据中心),也可部署于接入网(边缘数据中心),最终实现可分布式部署。
事实上,核心网一直沿着控制面和用户面分离的方向演进。比如,从R7开始,通过DirectTunnel技术将控制面和用户面分离,在3GRNC和GGSN之间建立了直连用户面隧道,用户面数据流量直接绕过SGSN在闹皮RNC和GGSN之间传输。到了R8,出现了MME这样的纯信令节点。
只是到了4.5G和5G时代,这一分离的趋势更加彻底,也更加必要。
其中一大原因就是,为了满足5G网络毫秒级时延的KPI。
光纤传播速度为200km/ms,数据要在相距几百公里以上的终端和核心网之间来回传送,显然是无法满足5G毫秒级时延的。物理距离受限,这是硬伤。
因此,需将内容下沉和分布式的部署于接入网侧(边缘数据中心),使之更接近用户,降低时延和网络回传负荷。
网络切片
5G服务是多样化的,包括车联网、大规模物联网、工业自动化、远程医疗、VR/AR等等。
这些服务对网络的要求是不一样的,比如工业自动化要求低时延、高可靠但对数据速率要求不高;高清视频无需超低时延但要求超高速率;一些大规模物联网不需要切换,部分移动性管理对之而言是信令浪费等等,为此5G要像一把瑞士军刀一样,多功能满足差异化的网络服务。
于是,我们就要把网络切成多个虚拟且相互隔离的子网络,分别应对不同的服务。
当然,这么灵活的切片工作岂是传统大块头的黑盒设备能担当的,自然要虚拟化、软件化,再将网络功能进一步细粒度模块化,才能实现灵活组装业务应用。
因此,3GPP就确认了由中国移动牵头26家公司提出的SBA构架为5G核心网基础构架。
Ⅳ 5G网络架构
5G网络标准分为独立组网模式(SA)和非独立组网模式(NSA)两大类。
独立组网模式是指需要全新打造5G网络环境,如5G基站、5G核心网等。
非独立组网模式是指在现有的4G硬件设施基础上,实施5G网络的部署工作。
Ⅵ 5G接入网由哪些网元组成,有什么不同架构
5G接入网(AN)有无线侧网络架构和固定侧网络架构。
无线侧:手机或者集团客户通过基站接入到无线接入网闹扰,在接入网侧可以通过RTN或者IPRAN或者PTN解决液肢旦方案来解决,将信号传递给BSC/RNC。在将信号传递给核心网,其中核心网内部的网元通过IP承载网来承载。
固网侧:家客和集客通过接入网接入,接入网主要是GPON,包括ONT、ODN、OLT。信号从接入网出来后进入城域网,城域网又可以分为接入层、汇聚层和核心层。BRAS为城域网的入口,主要作用是认证、鉴定、计费。信号从城域网走出来后到达骨干网,在骨干网处,又可以分为接入层和核心层。
(6)5g网络技术架构扩展阅读
5G网络的主要优势在于,数据传输速率远远高于以前的蜂窝网络,最高可达10Gbit/s,比当前的有线互联网要快,比先前的4G LTE蜂窝网络快100倍。另一个优点是较低的网络延迟(更快的响应时间),低于1毫秒,而4G为30-70毫秒。
由于数据传输更快,5G网络将不仅仅为手机提供服务,而且还将成为一般性的家庭和办公网络提供商,与有线网络提供商竞争。以前的蜂窝网络提供了适用于饥谨手机的低数据率互联网接入,但是一个手机发射塔不能经济地提供足够的带宽作为家用计算机的一般互联网供应商。
Ⅶ 5g的三大技术分别是哪些
5g的三大技术的内容如下:
1、超密集异构网络。超密集异构网络技术是移动通信发展到融合阶段的必然产物。随着未来移动通信应用场景的不断丰富,对网络信息传输的要求会随时间和地点呈现出非均匀特性。过去以宏蜂窝为主、以区域覆盖为目的的移动通信网络架构已经很难满足呈指数级增长的细分需求。
2、自组织网络。自规划的目的是动态进行网络规划并执行,同时满足系统的容量扩展、业务监测或优化结果等方面的需求。自配置即新增网络节点的配置可实现即插即用,具有低成本、安装简易等优点。衡消尺自优化的目的是减少业务工作量,达到提升网络质量及性能的桥链效果。
3、内容分发网络。内容分发网络,就是指在传统网络中添加新的层次,即智能虚拟网络。采用大咐高数据分析的方式,CDN系统综合考虑各节点连接状态、负载情况以及用户距离等信息,通过将相关内容分发至靠近用户的CDN服务器上,实现用户就近获取所需的信息。