导航:首页 > 网络数据 > php大数据敏感词过滤

php大数据敏感词过滤

发布时间:2023-05-13 15:56:33

① PHP如何解决网站大数据大流量与高并发

  1. 使用缓存,比如memcache,redis,因为它们是在内存中运行,所以处理数据,返回数据非常快,版所以可以应对权高并发。

2.增加带宽和机器性能,1M的带宽同时处理的流量肯定有限,所以在资源允许的情况下,大带宽,多核cpu,高内存是一个解决方案。

3.分布式,让多个访问分到不同的机器上去处理,每个机器处理的请求就相对减少了。

简单说些常用技术,负载均衡,限流,加速器等

② php能做大数据分析吗

数据挖掘现在用的比较多的是python。
数据分析这块现在用的比较多的是scala。
php不适合做大数据分析

③ 大数据敏感文字比如打电话发微信

大数据敏感文字主要是以个人信息为主、比如手机号、银行卡、身份证、地址、姓名、车牌号等,包括能够体现个人信息的有关证件如护照、港澳通行证、毕业证、军官证等等。商业方面主要有组织机构代码、营业执照代码等。
大数据敏感文字一般是说敏感数据,主要包括客户资料、技术资料、个人信息等高价值数据,这些数据以不同形式存在于用户资产中。敏感数据的泄露会给企业带来严重的经济和品牌损失。
大数据敏感文字通过设置敏感字段标注问题来解决。数据仓库里,多多少少会有一些敏感字段,一旦泄露危害很大。而数据仓库需要尽可能方便让用户使用,同时又要保护敏感字段不能随意访问,一方面需要知道哪些字段是敏感的,另一方面是对敏感字段做更高级别的权限控制。

④ php,mysql大数据查询,分表查询,自动分表

兄弟连里面肯定有,自己去看看目录然后挑合适自己看的就好了

⑤ 微软小冰nlp知识库

1.微软小冰的工作原理
微疯客我为你回答,类似小冰这样的产品说简单也简单,说复杂也复杂。

单纯从外面看你会觉得小冰与去年人人网上流行的小黄鸡类似,但在技术实现上有本质的差异。此类应用的大致流程都是:用户输入一段话(不一定只是单词)->后端语义引擎对用户输入的语句进行语义解析->推断用户最可能的意图->调用对应的知识库、应用、计算引擎->返回结果给用户。

1、最初级的实现方法:关键词匹配建一个关键词词库,对用户输入的语句进行关键词匹配,然后调用对应的知识库。此种方式入门门槛很低,基本上是个程序员指行都能实现,例如现在微信公众平台的智能回复、诸多网站的敏感词过滤就是此类。

但此种方式存在诸多问题,例如:a、由于是关键词匹配,如果用户输入的语句中出现多个关键词,此时由于涉及关键词权重(与知识库的关键词对比)等等问题,此时关键词匹配的方法就不擅长了b、不存在对用户输入语句语义的理解,导致会出现答非所问的现象。当然在产品上对回答不上的问题就采用卖萌的方式来规避掉。

c、基本上无自学习能力,规则只能完全由人工维护,且规则基本是固定死的。d、性能、扩展性较差。

还是上面的一句话中包含多个关键词的例子,采用普通程序语言来做关键词匹配,性能奇差。即便采用一些文本处理的算法来做(例如Double-array trie tree),也很难满足大规模场景需求。

2、稍微高级点的实现方法:基于搜索引擎、文本挖掘、自然语言处理(NLP)等技术来实现相对于1的关键词匹配,此种实现方法要解决的核心的问题可以大致理解为:根据一段短文本(例如用户问的一句话)的语义,推测出用户最可能的意图,然后从海量知识库内容中找出相似度最高的结果。具体技术实现就不细说了。

举一个很粗糙的例子来简单说一下此种实现方法处理的思路(不严谨,只是为了说明思路)。假如用户问:北京后天的温度是多少度?如果采用纯搜索引擎的思路(基于文本挖掘、NLP的思路不尽相同,但可参考此思路),此时实际流程上分御悄成几步处理:1、对输入语句分词,得到北京、后天、温度3个关键词。

分词时候利用了预先建好的行业词库,“北京”符合预先建好的城市库、“后天”符合日期库、“温度”符合气象库2、将上述分词结果与规则库按照一定算法做匹配,得出匹配度最高的规则。假定在规则库中有一条天气的规则:城市库+日期库+气象库,从而大致可以推测用户可能想问某个地方某天的天气。

3、对语义做具体解析,知道城市是北京,日期是后天,要获取的知识是天气预报4、调用第三方的天气接口,例如中国天气网-专业天气预报、气象服务门户 的数据5、将结果返回给用户以上例子其实很粗糙,实际上还有诸多问题没提到:语义上下文、语义规则的优先级等等。例如用户上一句问:北京后天的温度是多少度?下一句问:后天的空气质量呢?这里实际上还涉及语义上下文、用户历史喜好数据等等诸多问题。

此种处理方法存在的最大问题:规则库还主要依赖于人工的建立,虽然有一定的学习能力,但自我学习能力还是较弱。可以借助一些训练算法来完善规则,但效果并不是很好。

而这也是目前流行的深度挖掘技术所擅长的。3、当下时髦且高级的玩法:基于深度挖掘、大数据技术来实现这是cornata、google now等后端的支撑技术,至于小冰,感觉应该是以2为主+部分领域知识的深度挖掘。

并非原创,转自 hu。
2.微软小冰的工作原理
微疯客我为你回答,

类似小冰这样的产品说简单也简单,说复杂也复杂。单纯从外面看你会觉得小冰与去年人人网上流行的小黄鸡类似,但在技术实现上有本质的差异。

此类应镇逗渣用的大致流程都是:用户输入一段话(不一定只是单词)->;后端语义引擎对用户输入的语句进行语义解析->;推断用户最可能的意图->;调用对应的知识库、应用、计算引擎->;返回结果给用户。

1、最初级的实现方法:关键词匹配

建一个关键词词库,对用户输入的语句进行关键词匹配,然后调用对应的知识库。

此种方式入门门槛很低,基本上是个程序员都能实现,例如现在微信公众平台的智能回复、诸多网站的敏感词过滤就是此类。

但此种方式存在诸多问题,例如:

a、由于是关键词匹配,如果用户输入的语句中出现多个关键词,此时由于涉及关键词权重(与知识库的关键词对比)等等问题,此时关键词匹配的方法就不擅长了

b、不存在对用户输入语句语义的理解,导致会出现答非所问的现象。当然在产品上对回答不上的问题就采用卖萌的方式来规避掉。

c、基本上无自学习能力,规则只能完全由人工维护,且规则基本是固定死的。

d、性能、扩展性较差。还是上面的一句话中包含多个关键词的例子,采用普通程序语言来做关键词匹配,性能奇差。即便采用一些文本处理的算法来做(例如Double-array trie tree),也很难满足大规模场景需求。

2、稍微高级点的实现方法:基于搜索引擎、文本挖掘、自然语言处理(NLP)等技术来实现

相对于1的关键词匹配,此种实现方法要解决的核心的问题可以大致理解为:根据一段短文本(例如用户问的一句话)的语义,推测出用户最可能的意图,然后从海量知识库内容中找出相似度最高的结果。

具体技术实现就不细说了。举一个很粗糙的例子来简单说一下此种实现方法处理的思路(不严谨,只是为了说明思路)。

假如用户问:北京后天的温度是多少度?

如果采用纯搜索引擎的思路(基于文本挖掘、NLP的思路不尽相同,但可参考此思路),此时实际流程上分成几步处理:

1、对输入语句分词,得到北京、后天、温度3个关键词。分词时候利用了预先建好的行业词库,“北京”符合预先建好的城市库、“后天”符合日期库、“温度”符合气象库

2、将上述分词结果与规则库按照一定算法做匹配,得出匹配度最高的规则。假定在规则库中有一条天气的规则:城市库+日期库+气象库,从而大致可以推测用户可能想问某个地方某天的天气。

3、对语义做具体解析,知道城市是北京,日期是后天,要获取的知识是天气预报

4、调用第三方的天气接口,例如中国天气网-专业天气预报、气象服务门户 的数据

5、将结果返回给用户

以上例子其实很粗糙,实际上还有诸多问题没提到:语义上下文、语义规则的优先级等等。

例如用户上一句问:北京后天的温度是多少度?下一句问:后天的空气质量呢?这里实际上还涉及语义上下文、用户历史喜好数据等等诸多问题。

此种处理方法存在的最大问题:规则库还主要依赖于人工的建立,虽然有一定的学习能力,但自我学习能力还是较弱。可以借助一些训练算法来完善规则,但效果并不是很好。而这也是目前流行的深度挖掘技术所擅长的。

3、当下时髦且高级的玩法:基于深度挖掘、大数据技术来实现

这是cornata、google now等后端的支撑技术,至于小冰,感觉应该是以2为主+部分领域知识的深度挖掘。

并非原创,转自 hu。
3.微信机器人怎么弄得
微信机器人比微软小冰更人性化更易操作的个人微信机器人来了。不需要添加为好友,它同样在被用户添加为好友后,能拉到微信群中群聊,但它不会查看你的朋友圈。比起窥视用户的隐私,它更感兴趣的是调侃你的朋友们。

微信机器人比微软小冰更人性化更易操作的个人微信机器人来了。不需要添加为好友,它同样在被用户添加为好友后,能拉到微信群中群聊,但它不会查看你的朋友圈。比起窥视用户的隐私,它更感兴趣的是调侃你的朋友们。

微信机器人特色

1.赋予软硬产品流畅自然的中文聊天能力

精准的语义分析,可正确识别用户意图

支持多种上下文结构,满足连续对话及多重对话需要

基于DeepQA技术,匹敌人类回答问题能力

具备自学能力,产品越来越聪明

2.支持可自定义的NLP智能知识库系统

基于NLP技术的高智能知识库,满足不同场景的个性化及商业需求

3.融合上百个生活场景实用功能

打包超过500种实用生活服务功能,支持自然语言唤醒,在对话与聊天中满足生活需求
4.那个微软小冰一开始跟她聊的很好,没问题,怎么到最后,回答的不是
您好,WP8酷七网团队为你解答:微软小冰是中国团队2014年5月29日发布一款智能聊天机器人,“微软小冰” *** 了中国近7亿网民多年来积累的、全部公开的文献记录,凭借微软在大数据、自然语义分析、机器学习和深度神经网络方面的技术积累,精炼为1500万条真实而有趣的语料库(此后每天净增0.7%),通过理解对话的语境与语义,实现了超越简单人机问答的自然交互。

是通过云计算、大数据、深度神经网络等技术,让机器逐渐能够具有一种基于数据相关性所产生的基本智能。毕竟和人的大脑思维不同难免会出错。

满意请采纳,不懂请追问。
5.微软小冰除了聊天还会干什么
微软亚洲互联网工程院在2014年5月29日发布一款人工智能伴侣虚拟机器人,并取名“微软小冰”。

微软小冰除了智能对话之外,”微软小冰“还兼具群提醒、网络、天气、星座、笑话、交通指南、餐饮点评等实用技能。

二代小冰完全专属于用户,在跨平台的移动互联网应用中,帮助用户完成越来越多的事务,并不断自我完善升级

微软表示,第三代小冰整合微软多项全球领先的人工智能图像与语音识别技术,除了原有的长程情感对话能力,还具备能看、能听和能说的全新人工智能感官。

具体来说就是,第三代小冰现在支持识图功能,能够“看”到用户发送的图片甚至视频内容,并根据图片内容进行相应对话。这主要得益于微软在图片识别技术方面的突破,据微软以前的新闻称,微软识图技术已经接近人类。除此之外,第三代小冰现在也能够开口说话了,而不只是文字回复。

所以小冰是一个正在成长的伴侣型人工智能。

⑥ php 更新大数据时很慢

没必要一次性查出100W条。每次请求3-5W数据update,分页用递归。
控制好变量内存,不要内存溢出。

⑦ php 怎么解决 大数据量 插入数据库(1次几千条数据)

$safe_mode = (boolean)ini_get('safe_mode');
$max_execution_time
= is_numeric(ini_get('max_execution_time'))
? intval(ini_get('max_execution_time'))
: intval(get_cfg_var('max_execution_time'))
;
foreach
。。抄。。。
if (!$safe_mode) {
set_time_limit($max_execution_time);
}
endforeach;

如果你担心时间的话,可以把下面那句话加到循环里。

⑧ adminer.php适合大数据管理吗

可以。
Adminer是一个类似于phpMyAdmin的MySQL管理客户端。整个程序只有一个PHP文件,易于使用和安装。Adminer支持多语言(已自带11种翻译语言文件,可以按自己的需求翻译相应的语言)。支持PHP4.3+,MySQL 4.1+以上的版本。提供的功能包括:
1:创建,修改,删除索引/外键/视图/存储过程和函数。
2:查询,合计,排序数据。
3:新增/修改/删除记录。
4:支持所有数据类型,包括大字段。
5:能够批量执行SQL语句。
6:支持将数据,表结构,视图导成SQL或CSV。
7:能够外键关联打印数据库概要。
8:能够查看进程和关闭进程。
9:能够查看用户和权限并修改。
10:管理事件和表格分区(MySQL5.1才支持)

⑨ phpcms 真的有千万级的数据承载吗

就算是也不用上,哪有那么的查询量啊!就算有,硬件也不支持,带宽出口也存在问题

⑩ PHP-大数据量怎么处理优化

大数据的话可以进行以下操作:

  1. 减少对数据库的读取,也就是减少调用数据库,

  2. 进行数据缓存,

  3. 利用数据库的自身优化技术,如索引等

  4. 精确查询条件,有利于提高查找速度

阅读全文

与php大数据敏感词过滤相关的资料

热点内容
win10usable 浏览:629
网站空间怎么开启ip访问 浏览:943
找不到指定的素材文件 浏览:429
笔记本怎么拷文件夹里 浏览:729
在文件管理中找不到下载好的音频 浏览:627
linuxu盘文件挂载 浏览:105
ios网络唤醒 浏览:133
iphone5c电信4g 浏览:118
如何制作指定网站快捷方式 浏览:482
江西电网招聘进什么网站 浏览:816
巨龙之主城升级条件 浏览:356
c读取文件夹下所有文件 浏览:767
java中main方法必须写在类外面 浏览:905
linux查找文本 浏览:225
设某文件系统采用多级目录结构 浏览:59
电脑里的文件无法删除提示找不到 浏览:707
ios微信无法更新655 浏览:223
抖音收藏文件怎么发送到微信 浏览:208
app里的支付代码怎么写 浏览:469
tin格式的文件如何转dem格式的 浏览:942

友情链接