Ⅰ “大数据”如何接地气
“大数据”如何接地气
8月19日,国务院常务会议通过《关于促进大数据发展的行动纲要》,提出要通过促进大数据发展,提升创业创新活力和社会治理水平。在上述国务院常务会议中,大数据被定义为“基础性战略资源”。促进大数据发展,有利于推动大众创业、万众创新,改造升级传统产业,培育经济发展新引擎和国际竞争新优势。《纲要》强调,使开放的大数据成为促进创业创新的新动力。让各类主体公平分享大数据带来的技术、制度和创新红利。
1.产业 开放:数据创业全面爆发
案例:
在日前举行的“云上贵州”大数据商业模式大赛总决赛上,涌现了很多实用的大数据应用。其中,获得一等奖的“东方祥云”项目设想为全国15万座水电站、水库提供免费来水预报,帮助合理调度用水,据估算可为这些单位信息化改革节省90%的成本。
《纲要》提出,使开放的大数据成为促进创业创新的新动力。对此,阿里云总裁胡晓明表示,这将极大地推动数据经济的发展。他认为,在数据处理技术时代,数据就是生产力。“数据创业会在明年全面爆发,会有更多的人参与到为政府、企业提供数据服务、数据能力、数据交易、数据撮合中来。”
网络、阿里淘宝和支付宝、腾讯QQ和微信、银行业、移动运营商、公交卡、各种手机App……在各行各业,许多有价值的大数据潜力正待挖掘。今年5月,成立仅一个月的贵阳大数据交易所推出的《2015年中国大数据产业白皮书》显示,预计到2020年,中国大数据产业市场规模将超过这个市场去年规模的10倍,由2014年的767亿元扩大至8228.81亿元。
“中国的大数据时代才刚刚开始,各路群雄创新商业模式、抢占战略高地。传统产业中藏有海量的宝贵数据,只是没有利用起来。”清华大学数据科学研究院执行副院长韩亦舜说。
大数据的“新玩法”可谓超乎想象,但大数据的利用价值远不止如此。以中国公路物流行业为例,其市场价值已达亿万元级,而90%以上运力为个体车主,空驶率达30%以上,大数据应用可以充分利用物流资源。
中国工程院院士、中国互联网协会理事长邬贺铨表示,硬件、软件和服务三者之和,也仅仅是狭义的大数据产业,广义的大数据产业的范围和规模都更大。通过大数据挖掘的服务,大数据可以利用在各行各业,提高生产效率,支撑节能降耗,促进经济发展,因此广义的大数据产业的产值,更多地体现在工业、农业、交通运输、建筑等产业中。事实上,大数据分析在社会福利和民生服务上的效益很显著,并不是简单地用GDP可以衡量的。这是我国实现跨越式发展的宝贵机会。
“大数据加速了信息技术向传统产业渗透,成为新产业革命的重要引擎。”邬贺铨表示。
2.政府 共享:消除信息孤岛
案例:
8月17日,河北省承德市政府与神州数码签署市民融合服务平台及企业融合服务平台战略合作协议。至此,神州数码与近40个城市签署智慧城市战略合作协议,形成了一系列卓有成效的解决方案,成为中国市场领先的“智慧城市专家”。
事实上,在我国,各级政府的交通、医疗、就业、市政、民政等各个部门都拥有大量的统计数据,但由于没有共享机制和价值挖掘,这些数据一直在“沉睡”。“已有的数据首先要使用起来,发现闲置的价值;那些原本没有,但事实证明对自己有用的数据要赶紧采集、挖掘新价值。”韩亦舜说。
此次《纲要》提出,要推动政府信息系统和公共数据互联共享,消除信息孤岛,加快整合各类政府信息平台,避免重复建设和数据“打架”,增强政府公信力,促进社会信用体系建设。优先推动交通、医疗、就业、社保等民生领域政府数据向社会开放,在城市建设、社会救助、质量安全、社区服务等方面开展大数据应用示范,提高社会治理水平。
神州数码董事局主席郭为指出,此次通过的《纲要》强调消除信息孤岛,实际上就是要求将分散在各个部门的政府服务及公共服务进行统一,这些服务和大数据将来都有助于大数据领域企业的发展。郭为分析说,此举还会对大众创业、万众创新带来明显的推动力。在政府数据开放的要求和规则下,大数据领域的企业可以通过城市公共信息服务平台汇集城市的各类基础性数据,通过平台实现数据共享。以此为基础,广大年轻人和创业者就可以利用政府开放数据和其他相关开放数据,开发出成千上万为百姓民生服务的丰富多彩的应用产品,进一步营造大众创业、万众创新的氛围。
“数据既具有一般资产的价值,又具备一般资产不具备的属性。”韩亦舜说,“一般资产你有了,我就没有;把我的给了你,我就没有了。但数据不一样,把我的数据给了你,我的数据还在,这就决定了大数据时代需要人们的心胸更开阔。大数据时代,1+1产生的价值将会被无限放大,远远大于2,数据的叠加会发生化学反应。”
“美国将大数据分析作为国家战略来推动,政府带头进行数据开放。美国联邦政府建立统一数据开放门户网站,为社会提供信息服务并鼓励挖掘与利用。中国很多部门拥有的数据互不沟通,很难共享,导致信息不完整或重复收集等。因此,中国需要有国家层面的大数据战略、开放数据的措施及法规等。”邬贺铨说,政府应通过体制机制改革打破数据割据与封锁,应注重公开信息,重视数据挖掘。
3.法制 安全:要防止数据被滥用
案例:
2012年2月16日,《纽约时报》刊登了一篇题为《这些公司是如何知道您的秘密的》的报道。文中介绍了这样一个故事:一天,一位男性顾客怒气冲冲地来到一家折扣连锁店向经理投诉,因为该店竟然给他还在读高中的女儿邮寄婴儿服装和孕妇服装的优惠券。但随后,这位父亲与女儿进一步沟通发现,自己女儿真的已经怀孕了。
这一故事,经常被作为大数据挖掘能力的典型例证。但在专业人士看来,这一案例体现出的并不是大数据的“聪慧”,而是大数据的“傲慢”,个人隐私并没有得到足够尊重。
“我今天上淘宝网购物,淘宝有我个人数据,我的行为数据是属于淘宝还是属于我?目前国际法律认为这个数据属于消费者。淘宝可以用,可用于提升用户体验,但如果淘宝把该数据卖给第三方就不行。”百分点董事长苏萌说,但如果淘宝卖出的不是原始数据而是其分析结果,这种第三方分享的形式在美国目前大部分市场上是认可的,如IBM等企业也在利用这些数据为第三方提供服务。
但有业内人士认为,大数据在涉及交换、分析、挖掘时,个人信息是无法直接过滤的。这些个人隐私数据散落在中介、银行、保险、航空公司等机构间,危险性可能不大。但如果被共享之后,又被系统整合、相互印证的话,消费者的个人基本信息,甚至性格、爱好以及生活轨迹等信息将被他人一览无余,很多普通人将变成“透明人”。
韩亦舜认为,目前,隐私问题存在着利己主义的悖论。“举例来讲,上海跨年夜发生的踩踏事件,技术上可以看到人流的变化趋势,是完全可以预警、预防的,悲剧的发生直接关系着数据伦理问题。数据安全或者保护数据就一定对吗?这里也有一个伦理问题。”
“在美国,一些公司把‘底层’的详细个体数据去除掉,这样能规避掉一些隐私和安全问题。”清华大学苏州研究院大数据中心副主任赵勇表示,从大数据监管来说,“最适合的是政府”。上海已成立大数据局,这是对数据管理的专业政府机构。最核心的管理是从法制上界定“数据拥有者是谁”“使用者是谁”“使用权限如何定义”“谁是受益者”等。
以上是小编为大家分享的关于“大数据”如何接地气的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅱ 大数据时代,运营商的身法与心法
大数据时代,运营商的身法与心法
我始终相信,无论在哪里,有什么职位,做什么工作,如果内心没有足够的动力、期盼与爱的话,一个人是无法产生强烈的使命感与责任感的,或者说,没有幸福感。
最近读完了《幸福的方法》,对书中一段话非常有感触:"忙碌奔波型是未来的奴隶,享乐主义型是现在的奴隶,而虚无主义型则是过去的奴隶。"在运营商工作的我们都经历过从通信业黄金十年带来的"金饭碗"、行业遭遇"高原平台期"的铜饭碗,甚至全社会"人人得而诛之以后快"的"纸饭碗",无论是企业还是身处其中的个人,都在感受着巨大的压力与阻力。
于是,一些人选择了"享乐主义"式生存,日复一日在单位混日子;一些人则选择了"虚无主义"式生存,沉浸在过去的辉煌,躺在功劳簿上过日子;还有一些人选择"忙碌奔波"式生存,开不完的会、做不够的汇报、写不尽的方案,虽终日忙忙碌碌却无所作为。正是如此,才有了我上篇文章中写到的"四种人"——那些想走又能走的人最终选择了离开这里,那些想走却不能走的整日抱怨体制,那些不想走也不能走的昏昏度日,剩下那些能走却不想走的痛苦挣扎……
一、运营商正在经历什么?
借用双城记那段经典开场白:这是一个最好的时代,这是一个最坏的时代。对于运营商这样天生依靠人口红利、规模红利的传统企业,未来的日子或许并不好走。无论是从媒体的口诛笔伐,还是用户的人人喊打,亦或是员工的纷纷出离,种种迹象都在表明这个行业早已从大象快跑的“神坛”跌落,变得迟钝、缓慢甚至有些狼狈了。
可十年前绝不是这样。三十年前更加不是。
《大跨越:中国电信业三十春秋》的开篇语这样写道:从经济瓶颈到社会先导,从全球末游到用户总量世界第一,改革开放三十年中国电信业实现了举世瞩目的大跨越!这一切是怎么得来的?这本生动再现改革开放30年来中国通信业辉煌历程的著作选择了两个有意义的时间点,1978年跟2008年,前者是中国正式吹响改革开放号角的关键一年,而后者则是代表了通信业黄金十年的关键一年。
字里行间都可以读到中国通信业经历过怎样的辉煌,可以感受到从业者那种由衷的自信与荣耀。时代巨变,昔日巨头创造了比以往更加令人瞩目的经营业绩,却在政治地位以及行业形象上连连败走麦城。
时至今日当我们再次谈论运营商,你想到了什么?是财务报表上无比闪耀的光辉业绩,还是面对行业内外竞争暗战的困惑焦虑;是建成一张张4G、4G 网络的骄傲欣喜,还是管道化、低值化、边缘化的郁闷心酸;是对KPI下多少就能完成多少的自信得意,还是对基层不断涌现离职潮的始料未及。
是运营商真的做错了什么吗?可能并不是。
放眼看看这个时代吧!这是一个在和同行不断抗衡,却无奈被OTT抄了后路的时代;一个到处充斥着机会,细看时却满目危机的时代;一个传统大机构失势瓦解,个人自由连接全面崛起的时代……
这是一个唯变不破的大时代。在这个时代里,竞争对手变了、游戏规则变了、用户习惯也变了,曾经习以为常的一切突然间发生了天翻地覆的变化。话音、短信这些传统业务正在加速下滑,流量虽然成为新的增长点,却不得不面临着“提速降费”的巨大压力。可以说,在这样的时代背景下,运营商像是被困的巨兽,想挣扎却又充满无力感,想改变却又害怕不确定,想突破却又找不到突破口……
唯一的方法大概就剩下三个字:豁出去。
二、运营商该怎么办?
对于眼下的运营商来说,出路无非两条,要么精耕存量客户,挖掘更大的价值点;要么开辟新市场,寻找行业的破局地。关于精耕存量市场,已经有太多这方面的文章,这里不再赘述。我想重点谈谈新市场。
1.新市场在哪里?
日前,互联网教父、科技商业预言家的凯文·凯利在斯坦福大学进行长达3小时的分享,畅谈他对未来20年重大科技商业潮流的见解。我对其中一个观点很感兴趣,他说不管你现在做什么行业,你做的生意都是数据生意。
数据!
无论是风生水起的移动互联网,还是改变世界的芸芸众生,他们都在通过运营商的网络来获取信息。
2014年三月在北京举行的一场大数据产业推介会上,阿里巴巴集团创始人马云在主题演讲中发表了他的观点——“人类正从IT时代走向DT时代。IT时代是以自我控制、自我管理为主,而DT时代,它是以服务大众、激发生产力为主的技术。”
我们都知道,今年的双11全球狂欢节中,阿里巴巴天猫用时不到12小时就打破了去年创下的571亿元的交易额,最终将记录锁定在912亿,其中无线交易占比71%,全球产生成交的国家和地区达到205个。
巨量交易额的背后是什么?是阿里越来越强大的供货和物流系统?还是传统零售业的全面没落?其实都不是的。我以为这背后体现了阿里巴巴强大的数据分析和挖掘能力。在这样的购物节中,最重要的问题是商家要备多少货?而这可以通过平台历史销售大数据,预测货品需求,为商户提供库存依据,提升库存效率和有效性。
而在百货商店时代,购物数据只有通过人工才有可能统计完并且不一定准确,但是阿里巴巴会把每个人的历史购物和浏览数据都留在云上。因此,淘宝可不光是一个电商平台,更是顾客的大数据平台。
阿里巴巴集团副总裁涂子沛在讲到这个概念的时候举了一个更容易理解的案例:请你预测全国哪些地区会有更多的二孩出生?按照传统的数据统计,估计只能依靠人口普查、各地市区县统计部门的层层上报,不但会有偏差而且还会滞后。而在阿里巴巴,只需要统计哪些区域的孕婴用品销量激增就可以了,不但真实而且更加便捷。
运营商也是一样的。你以为运营商只是通信管道的提供者?其实或许还是信息适配的服务商。在过去,我们使用的文件、文件夹、桌面这些东西都是停留在本地的。我还记得那个时候最好的备份工具大概是移动硬盘或者是蓝光光盘之类的东西。而进入网络时代之后,数据就出现在网页上、链接里。现在的云上有标签、有流量、有新闻,还有各种各样我们需要的信息。云、数据化才是这个时代的关键词。要知道,这些所有的信息都是通过运营商的网络传输的,就和从淘宝上销售的商品信息一样,除了信息本身,它的发送端和接收端或许才是我们关心的重点。
于是,将合适的信息主动推送给需要的人,就是运营商能提供的大数据服务了。
2.新市场有多大?
中国云计算技术与产业联盟理事长吴基传曾指出:大数据是云计算服务的基础,是构架云平台最基本的要素,没有对海量信息的分析的大数据,就没有为所有信息消费者获取有价值的信息的可能性。
因此在商业界,大数据已经开始成为很多企业的生意。《2015年中国大数据交易白皮书》显示,预计到2020年,中国大数据产业市场规模将超过这个市场去年规模的10倍,由2014年的767亿元扩大至8228.81亿元。
2015年8月19日,国务院常务会议通过《关于促进大数据发展的行动纲要》,这或许意味着,大数据在中国将逐渐步入正轨,进入到顶层设计时代,这无疑将加速经济发展引擎的进一步开发。
从运营商的角度来看呢?以中国移动为例,我们有超过8.2亿用户,110万4G基站,经营分析系统里有10B以上的数据,我们的10086每分钟都有海量用户的呼叫,实际上所有这些动作每天都在产生大量的数据。那么,这些数据到底有多大,集中以后会是个什么效果?
有人曾经做过测算,一个省公司一天的数据要上百P,这些数据集中在一点传输到中国移动(贵安)大数据中心,需要重建一个中国移动的CMNET,也就是中国移动Internet的骨干网。
所以某种意义上来说,运营商拥有采之不尽用之不绝的数据富矿,站在金矿上总比无矿可挖强,这也是我判断运营商或许会在大数据时代“触底反弹”的依据之一。
3.还有什么不确定因素?
虽说前途可期,但毕竟是一个全新的领域。在新领域就一定有新的游戏规则,也会有相应的规则适应过程。
在过去的几年中,大数据的概念在产业界引发了无数的争议和讨论,甚至长期出现在Gartner的新兴技术成熟度曲线(也称新兴技术炒作周期报告)中。原因非常简单,一项新技术多被谈及概念,虽然在媒体上屡屡曝光,但应用案例寥寥。
因此,大数据越来越被看做是评论界的谈资,而非真正意义上的产业。
在贵阳成立的全球第一家大数据交易所,通过电子系统面向全球提供数据交易服务,计划2020年数据清洗交易量年达1万PB、年总额3万亿。然而,成立至今,这个深孚众望的机构撮合的交易记录也不过3000多笔。“有意愿交易大数据的企业和机构还不多。”交易所工作人员如是说。
除此之外,还有几个关键不确定因素在影响着大数据产业发展。
A.技术能力不足。IT作为后端的支撑手段,大量通过外包或采购方式实现,所以在自身软件开发和大数据平台运维、大数据新技术应用、大数据分析挖掘方面能力相当有限。
B.数据“墙”大量存在。很多数据是分散在不同的系统中的,经过长时间的“竖井”式运作,已经形成了难以突破的壁垒。以中国移动为例,B域主要是经营分析数据、O域主要是网络运维数据、M域主要是管理信息数据,但这三域的IT系统分别由三个不同的部门负责,整合难度较大,较难形成“1 1>2”的数据融合效果。
C.组织架构不匹配。目前看,很少有机构会设置专门的部门去集中各种散落的数据,更别提对这些数据进行标准化的管理和维护了。
D.思维观念的滞后。如果说技术、资金、人才方面的劣势都可以通过后天的努力来补足,那么意识层面的缺失就需要相当长时间的培育了。
除了以上说的几点,大数据交易的安全性、定价的合理性、客户信息的保密性,都在一定程度上影响着大数据业务的规模和发展空间。
三、运营商玩大数据的心法与身法
运营商究竟该怎么玩儿大数据呢?窃以为先要回答好三个问题:一是数据在哪里?二是数据放哪里?三是数据怎么用?
1.数据在哪里?
都说我们正在经历一个全新的商业时代——分享经济的时代,消费者正在放弃传统的、效率低下的企业,转而投入分享型企业的怀抱,来获取他们想要的产品和服务。Uber让座驾更好地分享,Airbnb让空闲的房屋更好地分享,八戒网让创意和设计更好地分享……现在看,一切可以分享的都是价值数据。
在分享经济的时代,真正分享的是有效的供需关系。因此,在分享经济中,更重要的其实是创建供需场景,建立供需联系。
数据也是相同的道理。随着移动互联网、云计算、物联网等新一代信息技术的爆发式发展,智能手机、平板电脑、可穿戴设备以及遍布各个角落的传感器,正在越来越多地接入到运营商网络。各种交互数据、传感数据正源源不断从各行各业迅速生成。这些数量庞大、种类广泛、迅速产生和更新的大数据,蕴含着前所未有的社会价值和商业价值。
如何能够有效挖掘并体现出数据的价值是亟待解决的问题。窃以为,关键就在于建立数据使用的场景并搭建数据交易平台。
比如说,城市规划设计院需要对新区进行商业价值评估,可以通过运营商的网格数据分析提供区域人口及经济状况解析;再比如,医疗机构需要在一段时期对药物及医疗设备做储备,可以通过医保报账平台统计该区域的医疗诊断及药物使用情况,预测出该区域可以发生的大规模疾病,从而及时储备相关资源。
重要的是,帮助数据消费者更加迅速有效地找到他们需要的数据,并促成双方交易。
2.数据放哪里?
如此大规模的数据存放在哪里也是考验大数据产业的要素之一。要知道并不是所有的机构都有足够的资源去建设自己的数据中心。而在这方面,运营商恰好可以提供服务。
通信行业有个词叫做“电信级服务”,意思是通信服务要具备不间断运行、大容量、高稳定性、可靠性等特点。而要达到这些条件,就需要完备的QoS保障机制,而其中重要一环就是设施先进、管理规范的通信机房。
因此可以说,在数据机房方面,通信运营商具有先天的优势。
能否将此作为运营商进入大数据市场的切入点呢?开放、合作就成了这个部分的关键词。前文说过,传统机构中有很多数据与信息孤岛,要想打破不断构筑的“数据墙”,首先是要将他们集中化的存储、管理、运营。因此,运营商的高标准数据中心或许只是一个必要而非充分条件,要让源自不同领域的数据发生“化合作用”的前提是将这些数据存放在运营商的数据中心。
ICT基础设施有连接和存储的作用,其产生的数据通过不同的终端存储下来,这些数据在应用程序中使用才会有价值。而运营商同时具备连接和存储两项功能。
面向未来,运营商数据中心将成为网络的中心,构建面向业务的敏捷、柔性、绿色的云IT基础架构将使运营商数据中心成为新一代ICT基础设施的驱动中心。
3.数据怎么用?
运营商现在最大的挑战是什么?是端到端的质量保障不足导致用户体验还不够好吗?是受到OTT业务的冲击导致传统业务快速下滑吗?还是业务量收剪刀差不断加大、投资压力日趋吃紧吗?个人认为都不是的。我们最大的挑战在于用户往往满足于现有的业务。这会让我们产生严重的路径依赖,从而也会形成“自满”情绪。
事实上,运营商现在面临着三大重要转变:一是从关注功能向关注最终用户体验转变;二是从提供语音和带宽向提供丰富、开放的ICT融合信息服务转变;三是从基于人口红利的增长向应用创新增长转变。这三个转变带来了商业模式、运营模式、研发模式和科技创新的转变,将驱动电信行业从封闭走向开放的数字化运营。
数字化运营,至少有三件事可以做:一是盘点数据资产;二是建立计算能力;三是开放数据平台。按照贵州移动芈大伟总经理的思路,运营商大数据发展路径分为1.0、2.0和3.0三个版本。
大数据1.0主要针对运营商内部分析,建设重点以数据整合和能力构建为主,为数据价值发掘奠定基础,重点支撑精准营销和精确建网;大数据2.0主要针对数据价值提升,重点是逐步拓展对内对外数据价值挖掘的能力;大数据3.0主要针对数据变现,聚焦重点客户和行业,构建数据生态系统,逐步凸显外部收入。
目前,运营商在IT系统和网络系统上积累了很多数据资产(当然如果处置不当也可能会变成数据遗产……),通过SDN和NFV等IT技术重构的通信网络,将会形成全新的弹性、智能的网络架构。而网络IT化,就要求建立以云数据中心为核心的网络架构,数据中心将成为ICT基础设施的核心,数据中心的布局和规划决定未来网络的架构,也决定了未来的竞争力。
伴随20多年的互联网发展,掌握未来的“联接一代”和“数字元人”已经长成。相比上一代人,他们的沟通、交友、娱乐、消费、工作、学习等行为方式和思维模式,已经发生深刻的变化,他们对于数字社会和互联网的依赖与生俱来,代表着互联网时代的新消费行为。
运营商新的业务运营系统不再是简单的支持系统,更不是简单的营销界面在线化,而是连接运营商、客户和合作伙伴,连接网络、应用和内容的价值创造系统和生态链系统。传统的线下营业厅或将大幅减少甚至消失,取而代之的,是用户可以全在线模式按需、实时定制享受各项服务,运营商通过大数据分析洞察客户和精确营销,提供更加智能的客户服务。
从购买产品走向购买服务,商业世界的游戏规则正在发生根本上的变化,商家和用户之间的关系从交付那一刻才刚刚开始。
互联网之父劳伦斯·罗伯茨曾讲过:“自网络诞生以来,我们只实现了网速的提高,而在提升网络性能及其他方面毫无进步。”在这方面,运营商正在积极从消费体验出发打造新型的业务运营系统,新系统不再是简单的业支系统和网管系统,更不是简单的营销在线化,而是连接运营商、客户和合作伙伴,连接网络、应用和内容的价值创造系统。
后记
对于运营商来说,传统通信的黄金十年也早已过去,创新增长的白金十年或许才刚开始。站在时代交替的十字路口,我满脑子都只有一个想法——“或许我没有赶上通信业的黄金十年,但我一定不会再错过大数据时代的白金十年”。
Ⅲ 什么是大数据,大数据时代有哪些趋势
行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等
本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等
产业概况
1、定义:大数据产业覆盖范围广
根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:
2、产业链剖析:大数据产业链庞大
大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;
大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的IT运维等;
大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。
大数据产业上游基础设施具体包括IT设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。
中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。
在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。
产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显著提升
我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。
产业政策背景:优化升级数字基础设施,鼓励大数据产业发展
2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。此后国家相关部门出台了一系列政策,鼓励大数据产业发展。
当前,随着5G、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。
产业发展现状
1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域
——大数据产业规模:2021年超过800亿元
近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的619.7亿元增长至2021年的863.1亿元,复合年增长率达到18.0%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。
——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主
从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,
CCID统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为40.5%、25.7%和33.8%。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。
从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。
CCID统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为19.1%、16.5%、15.2%和13.9%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。
2、细分市场一:金融大数据
——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升
从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。
近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。
——金融大数据应用场景
过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。
3、细分市场二:政府大数据
——政府大数据需求:互联网政务服务用户规模不断提升
从政府领域需求来看,根据中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。截至2021年12月,我国互联网政务服务用户规模达9.21亿,较2020年12月增长9.2%,占网民整体的89.2%。“十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。
——政府大数据应用场景
中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。
4、细分市场三:互联网大数据
——互联网大数据需求:互联网行业规模不断提升
在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。2021年我国规模以上互联网和相关服务企业完成业务收入15500亿元,同比增长21.2%。
2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长0.1%。
注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。
——互联网大数据应用场景
在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。
产业竞争格局
1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区
根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。其中,广东省的大数据企业最多。
2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐
根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。
大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。
政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。
注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。
产业发展前景:大数据将继续保持高速增长
大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。预计2027年我国大数据市场规模将达到2930.9亿元,未来六年复合年增长率为22.6%。
更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。
Ⅳ 如何拥抱“大数据时代”
汹涌澎湃的大数据浪潮,正携带着巨大商机,撞击传统经济的概念和思维。大数据孕育和驱动下的新产品、新服务、新产业层出不穷,并日益深刻地改变着每个人的日常生活。一个基于技术进步的“大数据时代”正在来临。
中国有句成语,叫“窥一斑而知全豹”。回望人类发展的历史长河,囿于技术限制的“抽样数据”,和建立在此“有限数据”基础上的假设、推理、论证,恰如“窥管知豹”一样,是人类在无法获得“全体数据”的条件限制之下,探索未知领域时无法选择的唯一途径。
在互联网基础上发展起来的社交网络、电子商务、移动通信、可穿戴设备等“云计算”技术,让“抽样数据”迅速让位“全体数据”,“全体数据”即“大数据”时代的来临,使“知全豹”不仅成为可能,而且变得越来越容易。
宽带资本董事长田溯宁说:“以云计算为基础的信息存储、分享和挖掘手段,可以便宜、有效、快捷地将这些大量、高速、多变化的终端数据存储下来,并随时进行分析和计算。”
“全豹”当然比“一斑”更能反应事物的本质。《大数据时代》的作者维克托认为,大数据使人类第一次有机会和条件,在非常多的领域和非常深入的层次,获得和使用全面数据、完整数据和系统数据,深入探索现实世界的规律,获取过去不可能获取的知识,得到过去无法企及的商机。
田溯宁认为,大数据正在成为巨大的经济资产,是新时代的“矿产”与“石油”,并将带来全新的创业方向,商业模式和投资机会。
的确,大数据正成为资本“热恋”的对象。从Facebook、谷歌,到网络、九次方,五湖四海的资本如过江之鲫,正在加速向“大数据”领域集结。成立于2010年的九次方大数据,2014年、2015年两次融资,就募得资金近10亿元,得到了博信资本、建银财富、当代集团、IDG资本等18家顶尖基金的追捧。
《2015年中国大数据产业白皮书》显示,我国大数据市场规模2014年达到767亿元,预计到2020年将超过8000亿元。而申万宏源的报告分析称,10年后“大数据”可撬动万亿元级GDP。
美好的前景,并不能掩盖前行的曲折。稀缺是任何资源的基本属性。“大数据”发展的瓶颈,同样在于数据的“可获取性”。中国政府网披露的信息显示,目前我国信息数据资源80%以上掌握在各级政府部门手里,“深藏闺中”而未能与社会共享,造成了极大的浪费。
身处大数据时代,人们生活所需的导航、气象、房屋、医疗、就业等信息,往往都来自政府的信息数据开放;产业发展所需的战略思考、布局规划、落地方案等,往往也要依托对政府信息数据的挖掘、重组、混搭。庞大的手机用户和应用市场,造就了中国大数据资源的极端丰富性。解决这些由大规模数据引发的问题,探索以大数据为基础的解决方案,是中国产业升级、效率提高的重要手段。
贵阳大数据交易所执行总裁、九次方大数据创始人王叁寿认为,大数据将成为继土地之后政府手中最值钱的资源。他说,激活政府手中的大数据资源,让它们走出政府的“深闺大院”,作为要素参与市场,既是简政放权的现实需要,也应该是供给侧改革的重要内容,更是拥抱大数据经济的必由之路。
流动的要素才能创造价值。开放、流通的数据是时代发展的要求。目前美国政府已创建了Data.gov网站,为大数据敞开了大门;英国、印度也有“数据公开”运动;我国近年来也崛起了贵阳大数据交易所等一批数据交易机构,但作为数据主体的政府依然动作缓慢。
数据的挖掘和应用,不仅是公司竞争力的核心,也必将成为国家竞争力的标志。在我国产业转型升级的过程中,以大数据思维的创新方式解决问题,推动供给侧改革,创建新的产业群,实现“中国制造”向“中国创造”“中国智造”转型,意义显得尤为重要。
纵观近代历史,历次技术革命,中国都落在了时代的后面。而这次以互联网为基础的大数据变革,中国与世界的距离最小,在很多领域甚至还是领跑者。田溯宁说:“只要我们以开放的心态,创新的勇气拥抱‘大数据时代’,就一定能抓住历史赋予中国创新的机会。”
Ⅳ 大数据 掌握话语权要关注基础技术
大数据:掌握话语权要关注基础技术
《2015年中国大数据交易白皮书》显示,预计到2020年,中国大数据产业市场规模将是2014年规模的10倍,由2014年的767亿元扩大至8228.81亿元。全球大数据市场高速增长,已经成为全球IT领域中的增长亮点。在中国尽管大数据仍处于起步阶段,但各地发展大数据的积极性较高,行业应用推广迅速。在这个热情高涨的大数据市场,中国要想进一步释放大数据的价值,掌控大数据的技术话语权,必须关注大数据的基础技术。
眼下,虽然中国对大数据的热情很高,但我们必须看到目前中国在大数据关键技术上的布局其实是有所欠缺的。目前世界各国都在抢先布局大数据的关键技术、基础技术,因为从目前的技术架构和技术基础来看,用现成的技术来解决大数据的问题还面临诸多的挑战。不久前,IBM中国研究院院长沈晓卫接受《中国电子报》记者采访时坦言,我们要想真正从数据中获得洞察、获得价值,需要更高效、更智能的数据处理和分析平台,以及相应的工具。其一,传统的IT技术,需要有更大的突破。比如物联网处理系统需要一秒钟处理上百万信息,比如对非结构化的数据进行存储和处理,需要新的技术。其二,需要引入物理模型来模拟物理世界。比如对天气的理解,比如对疾病的风险控制的理解,比如对智能工厂的理解,都需要构建大量的物理模型,并挑出更合适的模型,对物理世界作出更好的模拟和理解。其三,需要更强大的认知计算,要求认知计算有更强大的自然语言的能力、更强的机器学习能力等。
基于对市场需求和技术趋势的判断,事实上国外IT巨头在大数据的关键技术上投入了大量人力、物力和财力来进行关于大数据关键技术的研发。我们大家都知道现在谈及大数据的利用,一定都会提及开源的Hadoop技术,事实上对于大数据的利用仅仅依靠Hadoop是不够的。我们朝向产业互联网推进时面临非常多的挑战,我们的计算架构、计算模式也面临很大挑战。比如传统的计算机分析和数据整理方式,首先是收集数据,然后储存在数据库程序中,然后在收到请求后搜索这些数据。这是一个高效的处理方式,但却是一个紧绷的结构,而且通常会造成时间的浪费。而在流计算当中,高级软件的运算法则在接收流数据时就开始对其进行分析。流计算在实时数据分析领域具有巨大的应用空间,包括天气、江河、电力、股票交易等等。但目前,中国的IT产业在流计算方面并没有太多的话语权。面对大数据的挑战,有非常多类似流计算的新技术,关键技术都需要中国IT企业做更多的布局,只有这样,我们的大数据发展,大数据利用才不会变成“无根”的产业。
事实上不仅仅是在平台和工具等基础技术维度,中国要想在大数据领域拥有更大的话语权,更好地释放数据的价值,还必须在数据模型的维度、在数据科学家等维度进行大量的投入。目前全球前1500强的企业都有自己的数据科学家。据国外职业人士社交网站LinkedIn公布的2014年最受雇主喜欢、最炙手可热的25项技能,统计分析和数据挖掘技能位列榜首。研究机构Gartner预测,2015年,全球将新增440万个与大数据相关的工作岗位,25%的组织将设立首席数据官职位。
不久前,阿里云宣布启动阿里云大学合作计划AUCP,联合国内8所高校开设云计算与数据科学专业方向,目标是到大学里培养大数据的科学家。应该说阿里巴巴是国内企业中“大数据意识”觉醒比较早的企业。对于大数据这样的应用学科的人才培养,需要充分借助企业的资源。在国外企业中,IBM对于全球大数据的人才培养投入了巨大资源,已与全球1000多所大学一同合作,构建一个输送数据科学家的“通道”。
推进大数据应用需要大量的数据科学家,需要教育体系更重视大数据的人才培养,需要更多的领先企业参与进来,仅仅有阿里巴巴或者是IBM是远远不够的。
以上是小编为大家分享的关于大数据 掌握话语权要关注基础技术的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅵ 如何实现大数据交易
大数据时代,数据成为数字经济的关键生产要素,以数据为基础,以人工智能为主要驱动力的新型经济形态正在蓬勃发展。大数据产业发展的核心在于数据自由流通,而数据交易就是实现数据有序流通的关键一环。
近日,发源地大数据对我国大数据交易产业进行了深度研究,指明了未来发展路径。
2011年至2014年这四年间,我国大数据处于起步发展阶段,大数据的市场规模增速稳定,每年均保持在20%以上。
2015年,大数据市场规模已达到98.9亿元,同比增长30.7%。
2016年,大数据市场规模增速迎来高潮,达到45%,市场规模继续扩大,超过160亿元。
预计2017年至2020年,大数据的市场增速稳定。
我国主要的大数据交易平台分布在西南、华中和华北地区,均属于国内第一批崛起的大数据交易平台。
从当前的发展来看,中西部发展势头强劲,产业发展进入良性循环,是国内最早规划并实施大数据产业发展的地区。
东部地区则依托经济优势,聚集效应开始显现。就目前而言,以北京、上海、广州为中心向四周辐射,形成以京津冀地区、长江三角洲地区和珠江三角洲地区为集团枢纽的沿海大数据走廊格局,是东部地区大数据交易平台建设的最大特点。
1.大数据交易平台建设进入井喷期。
数据交易平台是数据交易行为的重要载体,可以促进数据资源整合、规范交易行为、降低交易成本、增强数据流动性,成为当前各地促进数据要素流通的主要举措之一。从全国范围来看,2015年前成立并投入运营的有北京大数据交易服务平台、贵阳大数据交易所、长江大数据交易所、东湖大数据交易平台、西咸新区大数据交易所和河北大数据交易中心。2016年新建设的有哈尔滨数据交易中心、江苏大数据交易中心、上海大数据交易中心以及浙江大数据交易中心。据有关数据预测,到2016年年底全国类似的交易平台数量可能达到15到20个[1]。
2.大数据交易变现能力有所提升。
在国家政策的推动鼓励下,数据交易从概念逐步落地,部分省市和相关企业在数据定价、交易标准等方面进行了有益的探索。随着数据交易类型的日益丰富、交易环境的不断优化、交易规模的持续扩大,我国数据变现能力显著提高。据《2016年中国大数据产业白皮书》不完全统计,2015年我国大数据相关交易的市场规模为33.85亿元,预计到2016年国内大数据交易市场规模将达到62.12
亿元,2020年将达到545亿元。
3.大数据交易仍整体处于起步阶段。
从整体发展水平来看,我国大数据交易仍处于起步阶段,突出表现在以下几个方面:一是数据交易主要以单纯的原始数据“粗加工”交易为主,数据预处理、数据模型、数据金融衍生品等的内容的交易尚未大规模展开。二是数据供需不对称使得数据交易难以满足社会有效需求,数据成交率和成交额不高。三是数据开放进程缓慢一定程度上制约了数据交易整体规模,影响数据变现能力。四是数据交易过程中缺乏全国统一的规范体系和必要的法律保障,无法有效破解数据定价、数据确权等难题。
Ⅶ 中国目前在大数据行业的发展情况如何
我国大数据产业开始已进入深化阶段
中国大数据产业从萌芽到如今渐成体系,已走过将近10个年头。“十四五”开局之年,大数据产业也进入了集成创新、深度应用的新阶段。大数据在医疗、工业、交通等领域的融合应用技术加快创新突破,大数据融合应用重点从虚拟经济转变为实体经济;大数据底层技术方面,信息安全、模式识别、语言工程、计算机辅助设计、高性能计算等加快突破,大数据技术领域逐渐补齐短板,并进一步强化长板。
—— 更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》
Ⅷ 认清现实吧 中国大数据产业的痛点和困难
认清现实吧 中国大数据产业的痛点和困难
大数据作为一个新兴的产业,一直在处于舆论的风口浪尖。就像互联网+的概念一样,大数据被神话了,被送上了“宗教”的神坛。大数据企业总是有一个担心,生怕大数据被捧得的太高,将来可能会被摔的很惨。
2015年中国大数据产业的热度从贵阳大数据交易所开始,到9月国务院的2015第50号文《促进大数据发展行动纲要》进入高峰,相信10月份的乌镇互联网大会上,大数据还会是一个大的热点。
大数据论坛上,数据产品和解决方案被介绍的很多。数据给企业带来的具体价值、数据应用场景、大数据产业的痛点介绍的很少。中国大数据产业经历着很多痛苦,大数据产业前景很好,但是大数据企业却很难做大,很难实现质的飞跃。中国大数据产业的痛点和困难如下。
1 大数据企业众多而弱小,很难实现产业优势中国大数据企业大概有200多家,将近60%集中在北京,以小微企业为主,年销售额达到十亿人民币的企业几乎没有。大数据产业处于春秋时代早期,各家诸侯割地而立,每家占领了一块小的细分领域,很难做大,都面临着同行的激烈竞争,有的领域例如舆情监控已成为红海。
大数据企业人数大多在几十人到几百人,少有千人以上的企业。没有一家大数据企业可以统领一个行业,没有一家企业占有细分市场10%的份额,没有一家大数据企业建立了行业标准,领导行业发展。
中国大数据产业处于极度分散状态,优秀的人才分布在不同企业,很难形成人才合力。各家企业规模小,很难在企业做深做大,很难利用大数据帮助企业实现业务提升。大多数企业的工具和数据很难满足企业整体的数据要求,中国的数据挖掘和分析产品也很难和国外的产品进行竞争。
大数据产业如果要形成产业优势,必须需要一批领军企业。参考国外大数据产业,中国在大数据基础架构,数据产品,数据工具、数据清洗和数据挖掘、数据分析、数据人才都需要产生一批标杆企业。每个领军企业都规模应该在千人以上,销售额应该在百亿以上,否则很难形成技术和人才优势,也很难利用大数据帮助客户实现业务提升。
贵阳大数据交易所《2015年中国大数据交易白皮书》提到2014年中国大数据市场规模为767亿元。这个数字看上去不错,估计其实真正和大数据工具和大数据产品相关的不足20%(业务价值提升)。大多数的经费都用于大数据基础平台(存储和计算)、咨询、报告等和业务价值提升相关度不大的领域。中国大数据市场销售额大多数集中在传统的IT企业例如IBM,Oracle,EMC,Intel,华为,联想等。真正大数据企业所有市场份额加起来可能就在百亿元左右。
中国大数据企业规模过小,领军企业缺少,行业过于分散,这些都是制约中国大数据产业发展的因素,也是产业做大的一个痛点。
2 外部数据是一个个孤岛,数据价值低数据是大数据产业发展的基础,具有商业价值的数据可以帮助企业洞察客户、数字化运营、风险管控、精准营销、预测和决策等。具有商业价值的数据和商业分析真正能够帮助企业提升业务,创造出新的价值。
中国的大数据市场还不成熟,很多大数据企业拥的数据都是片段的数据,很难形成完整的,具有商业价值的数据。大数据市场的数据质量和企业的数据需求有较大的差距。外部数据大多处于孤岛状态,数据之间很少流动和整合;孤立、不流动、没有整合的数据很难帮到企业,很多需要数据的企业不得不从多个大数据企业采购数据,效率很低,采购来的数据价值不高,数据整合的难度较大,数据采购的整体费用过高。
大家都看到了数据分散的弊端,于是很多地方都建立了大数据交易市场,帮助大家进行数据交易和数据采购。由于缺少法律保护,很多企业不太想在交易市场进行数据交易,往往还是采用一对一的数据交易,这种交易方式可以保护交易双方的利益。具有商业价值的数据还在开发中,大数据交易市场,缺少大量可以进行交易的数据。大数据交易市场这种商业模式,还需要用很长的时间去证明。
中国质量最好的数据在金融行业、BAT、电信运营商,这些企业比较谨慎,很难向外部输出数据。这三大行业自身的主营业务也不在数据,其数据产品生产和输出的愿望也不强烈。政府的数据正在逐步开放,但是其数据质量、集中度、输出方式等多存在很大多挑战。在中国大规模的数据开放,至少需要3年时间才能达到商业应用要求。
3 大多数企业客户,对数据商业应用敏感度低大多数企业对数据有需求,但是其对数据商业敏感度很低。对数据商业应用的场景以及数据技术了解很少。即使是数据商业敏感度较高的银行,至少要沟通三次以上,其才能够建立起数据价值理念。其他行业例如制造业,房地产业,零售业,他们的数据商业敏感度更低。甚至万科的王石也大声疾呼,不要和房地产业谈大数据应用,房产行业数据还不全,很多还是手工数据。于是某个领先的电商开始帮助万科进行数据规划建设,研究大数据在房地产行业的应用。
已有的大数据企业商业案例中,大部分都是大数据企业主动去找客户谈合作,为企业提供数据产品、数据工具或数据技术,目的是帮助企业提升业务。但是这种商业模式很累,市场很难被引爆,被动的数据商业应用,往往和业务结合较弱,无法迅速帮助企业利用数据提升业务,同时也无法解决业务发展瓶颈。
企业内部人士深度了解业务需求,他们缺少的是市场数据和消费者反馈,缺少的数据分析方法和工具。企业内部人士更应该成为大数据商业应用的主力,参加一些行业活动,从需求出发,主动寻找数据和解决方案。移动互联网时代,商业竞争策略很清晰,一个是快,一个是要利用数据进行决策。
大数据产业的发展,不仅仅是大数据企业自身的事情,也是各家企业自身的事情。企业客户也应该依据业务需要,主动到市场寻找数据和解决方案,提升数据商业敏感度,从业务场景出发,寻找具有价值的数据。
4大数据技术和产品同业务结合深度不够市场上所有大数据企业和客户都面临一个难题,就是数据解决方案同客户业务结合的深度不够,数据对业务整体推动效果不如期望,这也是大数据产业爆发的一个痛点。由于外部数据质量、企业用户数据敏感度、企业管理方式、商业数据人才等问题,大数据解决方案很难和业务深度结合。
大数据核心价值就是揭示事务发展规律,帮助企业利用数据进行科学决策。目前大数据的商业应用领域主要集中在数据采集、数据存储、数据计算、用户画像、精准营销等领域。大数据最具商业价值的预测和辅助决策功能并没有被充分利用。特别是在重大战略决策方面,大数据的作用并不明显。企业的产品开发,市场策略,战略决策还是依靠过去的精英决策和经验主义。未来社会只有两类企业,一种是利用数据发展的企业,另外一种是不重视数据被淘汰的企业。
大数据企业如果想发展壮大,如果想成为行业领先的企业,其必须放弃短期利益,深入到客户的运营中去,了解客户的数据,了解客户的业务,了解客户的商业需求。同时利用数据了解客户,了解市场,了解业务场景。数据和业务深度结合的核心是掌握正确的数据、正确的方法、正确的工具。业务人员要懂数据,技术人员要懂业务。复合型数据人才是数据生意的关键,业务人员掌握数据技术的门槛较高,但是技术人员了解业务的门槛很低,复合性人才倾向于从技术人才培养开始。
企业内部的数据人才和大数据企业的数据人才需要互相学习,了解对方环境和需求,在同一个平台上进行对话和沟通。数据团队需要深入了解业务场景和背后的规律,从业务出发,从场景出发,从数据出发,将大数据解决方案同业务深度结合,利用数据推动业务发展,发挥大数据预测规律的核心价值。
5 专业数据挖掘工具和人才缺失传统的数据挖掘工具和BI系统存在很久了,通过各类报表展示,让管理层了解企业运营信息,过去的确帮助企业提高管理水平,达到了预期目的。
在大数据时代,企业需要的是实时数据,需要的是高效工具,需要的是决策支持和预测。传统的数据挖掘工具的性能和灵活性已经不能满足企业的需要,另外非机构化数据的应用也对传统数据工具提出了挑战。BI领域中的SAS,SPSS,TD等数据工具越来越被边缘化,R语言正在成为数据统计和可视化的新宠。
数据的时间价值正在得到重视,特别是金融企业,所有的业务部门都期望在最短的时间里,看到资金使用情况,客户交易情况,风险管控情况。企业越早了解信息,就会越早进行决策,时间就是Money。过去数据需求可能是T+5或者T+30,现在的数据需求往往是T+1或者T+0,数据实时性、准确性、相关度被提到了一个非常重要的地位。业务的需求已经很明显了,但是数据工具和人才却是一个很大的挑战。
中国200多家大数据企业,看到了大数据产业的曙光,看到了大数据产业的价值,同时也在经历着大数据企业的痛苦。大数据产业发展很快,市场正在逐步变大,但是其产业优势不明显,优势企业很少,数据商业化较慢,市场还不成熟,客户数据商业敏感度较低,缺乏高质量数据工具和人才。所有大数据企业内心的感受就是,站在了时代的风口,选对了方向和行业,但是发展壮大还是很难。200多家大数据企业正在努力耕耘着大数据产业,痛并快乐着。
以上是小编为大家分享的关于认清现实吧 中国大数据产业的痛点和困难的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅸ 哪些商业应用在数据仓库中即使拥有过期的数据也依然有效
在大数据成为趋势,成为国家战略的今天,如何最大限度发挥大数据的价值成为人们思考的问题。无论是对于互联网企业、电信运营商还是数量众多的初创企业而言,大数据的变现显得尤为重要。谁最先一步找到密码,谁就能够抢占市场,赢得发展。在探索大数据商业模式的同时,大数据正加速在各行各业的应用,大数据不仅为人们的购物、出行、交友提供了帮助,甚至还在高考这样重要的事件中发挥作用。大数据产业具有无污染、生态友好、低投入高附加值特点,对于我国转变过去资源因素型经济增长方式、推进“互联网+”行动计划、实现国家制造业30年发展目标有战略意义。前几年,国内大数据产业讨论较多、落地较少,商业模式处于初探期,行业处于两种极端:一种是过热的浮躁带来了一定的泡沫和产业风险;一种是怀疑大数据只是炒作,依然坚持传统管理理念、经营模式。但是进入2015年之后,大数据产业告别了泡沫,进入更务实的发展阶段,从产业萌芽期进入了成长期。当前,如何将大数据变现成为业界探索的重要方向。B2B大数据交易所国内外均有企业在推动大数据交易。目前,我国正在探索“国家队”性质的B2B大数据交易所模式。2014年2月20日,国内首个面向数据交易的产业组织—中关村大数据交易产业联盟成立,同日,中关村数海大数据交易平台启动,定位大数据的交易服务平台。2015年4月15日,贵阳大数据交易所正式挂牌运营并完成首批大数据交易。贵阳大数据交易所完成的首批数据交易卖方为深圳市腾讯计算机系统有限公司、广东省数字广东研究院,买方为京东云平台、中金数据系统有限公司。2015年5月26日,在2015贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会上,贵阳大数据交易所推出《2015年中国大数据交易白皮书》和《贵阳大数据交易所702公约》,为大数据交易所的性质、目的、交易标的、信息隐私保护等指明了方向,奠定了大数据金矿变现的产业基础。咨询研究报告国内咨询报告的数据大多来源于国家统计局等各部委的统计数据,由专业的研究员对数据加以分析、挖掘,找出各行业的定量特点进而得出定性结论,常见于“市场调研分析及发展咨询报告”,如“2015~2020年中国通信设备行业市场调研分析及发展咨询报告”、“2015~2020年中国手机行业销售状况分析及发展策略”、“2015年光纤市场分析报告”等,这些咨询报告面向社会销售,其实就是O2O的大数据交易模式。各行各业的分析报告为行业内的大量企业提供了智力成果、企业运营和市场营销的数据参考,有利于市场优化供应链,避免产能过剩,维持市场稳定。这些都是以统计部门的结构化数据和非结构化数据为基础的专业研究,这就是传统的一对多的行业大数据商业模式。数据挖掘云计算软件云计算的出现为中小企业分析海量数据提供了廉价的解决方案,SaaS模式是云计算的最大魅力所在。云计算服务中SaaS软件可以提供数据挖掘、数据清洗的第三方软件和插件。业内曾有专家指出,大数据=海量数据+分析软件+挖掘过程,通过强大的各有千秋的分析软件来提供多样性的数据挖掘服务就是其盈利模式。国内已经有大数据公司开发了这些架构在云端的大数据分析软件:它集统计分析、数据挖掘和商务智能于一体,用户只需要将数据导入该平台,就可以利用该平台提供的丰富算法和模型,进行数据处理、基础统计、高级统计、数据挖掘、数据制图和结果输出等。数据由系统统一进行管理,能够区分私有和公有数据,可以保证私有数据只供持有者使用,同时支持多样数据源接入,适合分析各行各业的数据,易学好用、操作界面简易直观,普通用户稍做了解即可使用,同时也适合高端用户自己建模进行二次开发。大数据咨询分析服务机构及企业规模越大其拥有的数据量就越大,但是很少有企业像大型互联网公司那样有自己的大数据分析团队,因此必然存在一些专业型的大数据咨询公司,这些公司提供基于管理咨询的大数据建模、大数据分析、商业模式转型、市场营销策划等,有了大数据作为依据,咨询公司的结论和咨询成果更加有说服力,这也是传统咨询公司的转型方向。比如某国外大型IT研究与顾问咨询公司的副总裁在公开场合曾表示,大数据能使贵州农业节省60%的投入,同时增加80%的产出。该公司能做出这样的论断当然是基于其对贵州农业、天气、土壤等数据的日积月累以及其建模分析能力。政府决策咨询智库党的十八届三中全会通过的《中共中央关于全面深化改革若干重大问题的决定》明确提出,加强中国特色新型智库建设,建立健全决策咨询制度。这是中共中央文件首次提出“智库”概念。近几年,一批以建设现代化智库为导向、以服务国家发展战略为目标的智库迅速成立,中国智库数量从2008年的全球第12位跃居当前第2位。大数据是智库的核心,没有了数据,智库的预测和分析将为无源之水。在海量信息甚至泛滥的情况下,智库要提升梳理、整合信息的能力必然需要依靠大数据分析。研究认为,93%的行为是可以预测的,如果将事件数字化、公式化、模型化,其实多么复杂的事件都是有其可以预知的规律可循,事态的发展走向是极易被预测的。可见,大数据的应用将不断提高政府的决策效率和决策科学性。自有平台大数据分析随着大数据的价值被各行各业逐渐认可,拥有广大客户群的大中型企业也开始开发、建设自有平台来分析大数据,并嵌入到企业内部的ERP系统信息流,由数据来引导企业内部决策、运营、现金流管理、市场开拓等,起到了企业内部价值链增值的作用。在分析1.0时代,数据仓库被视作分析的基础。2.0时代,公司主要依靠Hadoop集群和NoSQL数据库。3.0时代的新型“敏捷”分析方法和机器学习技术正在以更快的速度来提供分析结果。的企业将在其战略部门设置首席分析官,组织跨部门、跨学科、知识结构丰富、营销经验丰富的人员进行各种类型数据的混合分析。大数据投资工具证券市场行为、各类指数与投资者的分析、判断以及情绪都有很大关系。2002年诺贝尔经济学奖授予了行为经济学家卡尼曼和实验经济学家史密斯,行为经济学开始被主流经济学所接受,行为金融理论将心理学尤其是行为科学理论融入金融中。现实生活中拥有大量用户数据的互联网公司将其论坛、博客、新闻报道、文章、网民用户情绪、投资行为与股票行情对接,研究的是互联网的行为数据,关注热点及市场情绪,动态调整投资组合,开发出大数据投资工具,比如大数据类基金等。这些投资工具直接将大数据转化为投资理财产品。定向采购线上交易平台数据分析结果很多时候是其他行业的业务基础,国内目前对实体经济的电子商务化已经做到了B2C、C2C、B2B等,甚至目前O2O也越来越流行,但是对于数据这种虚拟商品而言,目前还没有具体的线上交易平台。比如服装制造企业针对某个省份的市场,需要该市场客户的身高、体重的中位数和平均数数据,那么医院体检部门、专业体检机构就是这些数据的供给方。通过获取这些数据,服装企业将可以开展精细化生产,以更低的成本生产出贴合市场需求的服装。假想一下,如果有这样一个“大数据定向采购平台”,就像淘宝购物一样,可以发起买方需求,也可以推出卖方产品,通过这样的模式,外加第三方支付平台,“数据分析结论”这种商品就会悄然而生,这种商品不占用物流资源、不污染环境、快速响应,但是却有“供”和“需”双方巨大的市场。而且通过这种平台可以保障基础数据安全,大数据定向采购服务平台交易的不是底层的基础数据,而是通过清洗建模出来的数据结果。所有卖方、买方都要实名认证,建立诚信档案机制并与国家信用体系打通。非营利性数据征信评价机构在国家将公民信息保护纳入刑法范围之前,公民个人信息经常被明码标价公开出售,并且形成了一个“灰色产业”。为此,2009年2月28日通过的刑法修正案(七)中新增了出售、非法提供公民个人信息罪,非法获取公民个人信息罪。该法条中特指国家机关或者金融、电信、交通、教育、医疗等单位的工作人员,不得将公民个人信息出售或非法提供给他人。而公民的信息在各种考试中介机构、房产中介、钓鱼网站、网站论坛依然在出售,诈骗电话、骚扰电话、推销电话在增加运营商话务量的同时也在破坏整个社会的信用体系和公民的安全感。虽然数据交易之前是交易所规定的经过数据清洗的数据,但是交易所员工从本质上是无法监控全国海量的数据的。数据清洗只是对不符合格式要求的数据进行清洗,主要有不完整的数据、错误的数据、重复的数据三大类。因此,建立非营利性数据征信评价机构是非常有必要的,将数据征信纳入企业及个人征信系统,作为全国征信系统的一部分,避免黑市交易变成市场的正常行为。除了征信评价机构之外,未来国家公共安全部门也许会成立数据安全局,纳入网络警察范畴,重点打击将侵犯企业商业秘密、公民隐私的基础数据进行数据贩卖的行为。结语:大数据已经从论坛串场、浮躁的观点逐步走向国家治理体系建设、营销管理、生产管理、证券市场等方面,其商业模式也多种多样。市场经验表明,存在买卖就存在商品经济,具体哪种商业模式占主流将由市场决定。而最终的事实将证明,大数据交易商品经济必然成为“互联网+”的重要组成部分。
Ⅹ 如何评价《大数据标准化白皮书》
居委会或者村委会