㈠ 大数据的三大主要来源
1、开源数据
开源数据包括了互联网数据、移动数据网数据,互联网平台和移动互回联网平台通过采、编答、发或者通过用户互动产生的数据,公之于众,供网民或用户访问、浏览。
2、业务数据
业务数据产生于各单位的信息化系统中,尤其是内部的信息化系统,我们统称为业务系统。在目前的单位业务系统中,存在于单位的OA系统或者CRM之中,其中蕴含了大量的工作数据和交易数据,以及客户管理数据,包括交易数据、流水数据、记帐数据、借款数据、贷款数据等业务数据,这些数据构建了每天的系统日志,同时又是帐户余额、信用额度、购买能力等的有力补充,这些数据不仅对生产系统起到计费支撑作用,同时也是用户(银行客户、电力客户、担保公司等)进行相关决策的重要基础,所以目前很多单位需要对这些数据进行查询统计和分析。
3、线路数据
无论是互联网还是各种内网,任何的网络行为都需要经过“线路”进行链接和交互,而在这条线路上,要经过无数的路由交换得以完成,这条线路在完成链接的同时,也记录与存贮了大量的数据,我们统称为线路数据。
㈡ 大数据系统的数据如何获取
1、从数据库导入
在大数据技术风靡起来前,关系型数据库(RDMS)是主要的数据分析与处理的途径。发展至今数据库技术已经相当完善,当大数据出现的时候,行业就在考虑能否把数据库数据处理的方法应用到大数据中,于是 Hive、Spark SQL 等大数据 SQL 产品就这样诞生。
2、日志导入
日志系统将我们系统运行的每一个状况信息都使用文字或者日志的方式记录下来,这些信息我们可以理解为业务或是设备在虚拟世界的行为的痕迹,通过日志对业务关键指标以及设备运行状态等信息进行分析。
3、前端埋点
为什么需要埋点?现在的互联网公司越来越关注转化、新增、留存,而不是简单的统计 PV、UV。这些分析数据来源通过埋点获取,前端埋点分为三种:手工埋点、可视化埋点、自动化埋点。
4、爬虫
时至至今, 爬虫的数据成为公司重要战略资源,通过获取同行的数据跟自己的数据进行支撑对比,管理者可以更好的做出决策。而且越难爬虫获取竞争对手的数据,对于公司来说是越有价值。
㈢ 大数据如何获取
生活中到处都有数据,所有获取数据的途径也有很多,如:
淘宝店
假如我们开了一个淘宝的的话,我们就可以从淘宝里面的数据魔方这个运用里面获取大量的数据,这些数据我们需要好好分析。
微信公众号
利用微信公众号,我们也能够获得很多的大数据,我们投放广告,每天有每天的数据统计,每月有每月的数据统计,这些都是大数据时代下的小数据。
网络推广
我们利用网络推广来进行广告投放,这也是获取大数据的一种方式,利用网络推广来获取我们需要的各种大数据,不过,这需要我们先进行前期的投入。
智汇推
智汇推是腾讯旗下的一款商业的广告产品,我们也能够通过我们自己的广告模式来获取我们需要的最大化的数据,和其他的推广方式一样,这里也有每天的数据分析,我们同样可以获得大数据。
头条号
还有就是现在比较火的头条了,我们利用头条来进行我们自己公司的广告推广,从而获得我们需要的一些数据,进行统计,进行分析,得出结论,进而进行合理的投放,获得利益。
微博
微博也是一种获得大数据的推广方式之一,我们可以通过微博来进行企业的活动推广,进而从每日、每月的数据中获得我们需要的信息,让我们的推广模式进行改变,为企业节约成本,为企业带来收益。
㈣ 网络大数据在什么地方获取
社区、论坛、微博、知乎、FACEBOOK、Twitter、Ins等社交媒体
网络、搜狗、360、谷歌、必应、雅虎等搜索引擎
美团、大众点评、58同城、赶集网等信息分类网站
企查查、天眼查等企业工商信息API
智联、BooS直聘、拉勾、中华英才、领英等招聘网站
阿里巴巴、慧聪、商业新知、软服之家等ToB类平台或行业网站
政府数据开放平台
北京市政务数据资源网、上海市政府数据服务网、天津市信息资源统一开放平台、开放广东、浙江政务服务网“数据开放”专题网站、武汉市政务公开数据服务网、长沙市政府门户网站数据开放平台、苏州市政府数据开放平台、成都市公共数据开放平台、数据开放--四川省人民政府网站……
国家相关部门统计信息网站
中国人民银行、中国银行业监督管理委员会、中国证券监督管理委员会、中国银保险监督管理委员会、中国国家统计局……
国外数据开放网站
纽约政府开放数据平台、美国官网数据超市、新加坡政府开放数据平台、休斯顿市开放数据门户网站、Academic Torrents、hadoopilluminated.com、美国人口普查局、世界银行开放数据搜索网站、费城开放数据平台……
资源节选自:
【Open Data】国外开放数据中心及政府数据开放平台汇总
最全的中国开放数据(open data)及政府数据开放平台汇总
㈤ 不属于合法的大数据获取的途径是什么
不属于合法的大数据获取的途径是:
通过不正当手段获取
如何获得大数据?也就是上面提到的物联网系统与传统信息处理系统,还有互联网应用程序,也就是网络和应用程序。因此,如果我们想获得大数据,我们必须从这三个渠道获得。
㈥ 如何获取大数据
问题一:怎样获得大数据? 很多数据都是属于企业的商业秘密来的,你要做大数据的一些分析,需要获得海量的数据源,再此基础上进行挖掘,互联网有很多公开途径可以获得你想要的数据,通过工具可以快速获得,比如说象八爪鱼采集器这样的大数据工具,都可以帮你提高工作效率并获得海量的数据采集啊
问题二:怎么获取大数据 大数据从哪里来?自然是需要平时对旅游客群的数据资料累计最终才有的。
如果你们平时没有收集这些数据 那自然是没有的
问题三:怎么利用大数据,获取意向客户线索 大数据时代下大量的、持续的、动态的碎片信息是非常复杂的,已经无法单纯地通过人脑来快速地选取、分析、处理,并形成有效的客户线索。必须依托云计算的技术才能实现,因此,这样大量又精密的工作,众多企业纷纷借助CRM这款客户关系管理软件来实现。
CRM帮助企业获取客户线索的方法:
使用CRM可以按照统一的格式来管理从各种推广渠道获取的潜在客户信息,汇总后由专人进行筛选、分析、跟踪,并找出潜在客户的真正需求,以提供满足其需求的产品或服务,从而使潜在客户转变为真正为企业带来利润的成交客户,增加企业的收入。使用CRM可以和网站、电子邮件、短信等多种营销方式相结合,能够实现线上客户自动抓取,迅速扩大客户线索数量。
问题四:如何进行大数据分析及处理? 大数据的分析从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?1. 可视化分析。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。2. 数据挖掘算法。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。3. 预测性分析。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。4. 语义引擎。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。5.数据质量和数据管理。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。大数据的技术数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。数据存取:关系数据库、NOSQL、SQL等。基础架构:云存储、分布式文件存储等。数据处理:自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解(NLU,Natural Language Understanding),也称为计算语言学(putational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。数据挖掘:分类(Classification)、估计(Estimation)、预测(Predic胆ion)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化......>>
问题五:网络股票大数据怎么获取? 用“网络股市通”软件。
其最大特色是主打大数据信息服务,让原本属于大户的“大数据炒股”变成普通网民的随身APP。
问题六:通过什么渠道可以获取大数据 看你是想要哪方面的,现在除了互联网的大数据之外,其他的都必须要日积月累的
问题七:通过什么渠道可以获取大数据 有个同学说得挺对,问题倾向于要的是数据,而不是大数据。
大数据讲究是全面性(而非精准性、数据量大),全面是需要通过连接来达成的。如果通过某个app获得使用该app的用户的终端信息,如使用安卓的占比80%,使用iPhone的占比为20%, 如果该app是生活订餐的应用,你还可以拿到使用安卓的这80%的用户平时网上订餐倾向于的价位、地段、口味等等,当然你还会获取这些设备都是在什么地方上网,设备的具体机型你也知道。但是这些数据不断多么多,都不够全面。如果将这部分用户的手机号或设备号与电子商务类网站数据进行连接,你会获取他们在电商网站上的消费数据,倾向于购买的品牌、价位、类目等等。每个系统可能都只存储了一部分信息,但是通过一个连接标示,就会慢慢勾勒出一个或一群某种特征的用户的较全面的画像。
问题八:如何从大数据中获取有价值的信息 同时,大数据对公共部门效益的提升也具有巨大的潜能。如果美国医疗机构能够有效地利用大数据驱动医疗效率和质量的提高,它们每年将能够创造超过3万亿美元的价值。其中三分之二是医疗支出的减少,占支出总额超过8%的份额。在欧洲发达国家, *** 管理部门利用大数据改进效率,能够节约超过14900亿美元,这还不包括利用大数据来减少欺诈,增加税收收入等方面的收益。
那么,CIO应该采取什么步骤、转变IT基础设施来充分利用大数据并最大化获得大数据的价值呢?我相信用管理创新的方式来处理大数据是一个很好的方法。创新管道(Innovation pipelines)为了最终财务价值的实现从概念到执行自始至终进行全方位思考。对待大数据也可以从相似的角度来考虑:将数据看做是一个信息管道(information pipeline),从数据采集、数据访问、数据可用性到数据分析(4A模型)。CIO需要在这四个层面上更改他们的信息基础设施,并运用生命周期的方式将大数据和智能计算技术结合起来。
大数据4A模型
4A模型中的4A具体如下:
数据访问(Access):涵盖了实时地及通过各种数据库管理系统来安全地访问数据,包括结构化数据和非结构化数据。就数据访问来说,在你实施越来越多的大数据项目之前,优化你的存储策略是非常重要的。通过评估你当前的数据存储技术并改进、加强你的数据存储能力,你可以最大限度地利用现有的存储投资。EMC曾指出,当前每两年数据量会增长一倍以上。数据管理成本是一个需要着重考虑的问题。
数据可用性(Availability):涵盖了基于云或者传统机制的数据存储、归档、备份、灾难恢复等。
数据分析(Analysis):涵盖了通过智能计算、IT装置以及模式识别、事件关联分析、实时及预测分析等分析技术进行数据分析。CIO可以从他们IT部门自身以及在更广泛的范围内寻求大数据的价值。
用信息管道(information pipeline)的方式来思考企业的数据,从原始数据中产出高价值回报,CIO可以使企业获得竞争优势、财务回报。通过对数据的完整生命周期进行策略性思考并对4A模型中的每一层面都做出详细的部署计划,企业必定会从大数据中获得巨大收益。 望采纳
问题九:如何获取互联网网大数据 一般用网络蜘蛛抓取。这个需要掌握一门网络编程语言,例如python
问题十:如何从网络中获取大量数据 可以使用网络抓包,抓取网络中的信息,推荐工具fiddler
㈦ 查询网贷大数据去哪里查
查询网贷大数据可以通过第三方平台进行查询。网贷大数据各大平台查询方式简单多样,只要提交姓名,身份证以及手机号就可以获得一份详细的查询报告。
大数据信用查询、运营商报告查询、查询网贷黑名单、网贷申请记录、逾期记录、个人贷款记录,个人网贷记录,个人多头借贷记录,个人互联网金融P2P平台贷款记录等各种数据。
拓展资料
一、如何查询个人信用报告
1、央行查询个人征信报告
一般可以去两个地方,第一个就是央行的当地的总行,直接带上自己的身份证以及自己的有效的证件,可以直则宏接去银行总行找客服经理填写申请表后就可以办理你要查询个人征信的业务了。
2、网上查询个人信用报告
如果你已经确定自己在网络上进行了几次贷款,但是想知道这些贷款的记录有没有上征信系统。其实你可以直接上网进行搜索,查本数据。即可查询到自己的个人信用评旅灶分,找到这个微信小程序即可。如果在网上有逾期记录或者在多个平台有借贷记录,那么你的各种记录都会被大数据风控,这时你的网贷平台就会频频被拒的,甚至连你的花呗借呗也会被关闭。
二、进入网贷黑名单如何消除?
1、去网贷平台查询自己的详细借贷记录,看自己借贷的款项,以免不法分子利用自己的个人信息进行的借贷,如发现不是自己借贷的,而是他人或者不法分子盗用,应该立即报警,然后联系借贷平台说明情况。
2、查询完自己的详细借贷记录后,然后确认是自己借贷的款项,这时孙镇册应该把自己拖欠的款项,全部还清然后再联系相应平台的客服,让他们平台进行消除。
㈧ 大数据获取方法有哪些
UCI:经典的机器学习、数据挖掘数据集,包含分类、聚类、回归等问题下的多个数据集。很经典也比较古老,但依然活跃在科研学者的视线中。
国家数据:数据来源中华人民共和国国家统计局,包含了我国经济民生等多个方面的数据,并且在月度、季度、年度都有覆盖,全面又权威。
亚马逊:来自亚马逊的跨科学云数据平台,包含化学、生物、经济等多个领域的数据集。
figshare:研究成果共享平台,在这里可以找到来自世界的大牛们的研究成果分享,获取其中的研究数据。
github:一个非常全面的数据获取渠道,包含各个细分领域的数据库资源,自然科学和社会科学的覆盖都很全面,适合做研究和数据分析的人员。
㈨ 大数据排查是通过什么来进行排查的呢
电话排查。
大数清山据排查一般是根据手机信号获取的,并不是靠身份证登袜拍记的。目前大数据排查的方式主要有三种:
第一种则是根答好中据手机信号,通过追踪疫情发生地所停留过10分钟以上的手机号来定位出可能对风险人员,而这也是最常用的排查方式,同时具有很高的真实性和准确度。
第二种则是通过社会交往信息得知,比如附近小区、市场人员接触者等等,主要会通过电话调查、摸排走访等方式得出结论。
第三种则是通过物品信息确认,比如确诊病例接触过的物品,流通后可能与之有过接触的人员,以及传染源可能污染的其他物品来快速排查可能传染的人员。
㈩ 互联网公司是如何获取用户大数据的
这个问题很大,大数据可以是一种技术类型,也可以是一种应用类型,我们就用头条这个场景来简单分析一下吧。
数据量
大数据应用和纳孙分析,最大的价值就在于数据量的大,这个大不单单指数尘野据存储大小,还在于用户量、覆盖面、精细程度。用户数量越大越好,但是同时覆盖面越广,对用户采洞兄链集数据的细分程度越细,应用价值也越高,这就是大数据采集的价值。
我们作为用户,在头条系的所有产品上的操作都会留痕,这些留痕就是大数据采集的过程,比如我现在正在回答这个问题,这个问题本身上有自带标签或者某些属性的,那我也会被打上标记,后面会通过算法向我推送对应的内容。这里的回答问题就是采集过程,向我推送内容就是应用过程。
我们经常浏览和搜索的内容,都是这个逻辑,通过这些逻辑,我们会被打上“兴趣”和“行为”标签,这些获取数据的过程是贯穿在我们使用产品的全过程的,需要什么信息就看产品定义,理论上来说,大数据场景,数据越精细越有价值。
持续性
收集数据的过程是持续性的,唯一不同的是触发条件可能有所不同。比如进入内容详情页是通过点击来触发,你是否对某个内容感兴趣是通过停留时长、互动来触发,通过持续不断的收集数据,保证数据量级,让结果更加准确。
数据的新鲜度
除了数据量和持续收集,在应用价值上,数据的新鲜度是很重要的一个指标。假如你是个沉默用户,所有数据分析结果都是很久以前的,那应用价值就不高。所以产品会通过很多唤醒、激活手段,让你保持活跃,不断更新数据内容。