❶ 数据挖掘学习心得体会
数据挖掘包括理论和实践两方面。自己学习是没有办法达到企业招聘要求,因为很多知识点需要实践,如果报名个培训机构就不会存在这种问题,知名的培训机构都有实践课程,推荐选择【达内教育】。
数据挖掘的就业前景非常广泛,最重要的作用,是可以帮助企业了解用户。这方面最有代表性的就是电商。通过【大数据】可以分析用户的行为,精准定位目标客群的消费特点、品牌偏好、地域分布等,从而进行针对性地推广营销。随着互联网时代的发展,大数据在金融,医疗,交通,电商等多个领域都有应用,近年来人工智能,物联网迅速发展,如电子医疗,智能手环,智能家居等,物联网背景下人们的行为数据会以指数的形式进行增长。所以目前是大数据人才稀缺的状态,因此大数据的就业领域是很宽广,但是对人才的要求都比较高。感兴趣的话点击此处,免费学习一下
想了解更多有关数据挖掘的相关信息,推荐咨询【达内教育】。该机构已从事19年IT技术培训,并且独创TTS8.0教学系统,1v1督学,跟踪式学习,有疑问随时沟通。该机构26大课程体系紧跟企业需求,企业级项目,课程穿插大厂真实项目讲解,对标企业人才标准,制定专业学习计划,囊括主流热点技术,助力学员更好的学习。达内IT培训机构,试听名额限时抢购。
❷ 数据挖掘学习心得体会
正如柏拉图所说:需要是发明之母。随着信息时代的步伐不断迈进,大量数据日积月累。我们迫切需要一种工具来满足从数据中发现知识的需求!而数据挖掘便应运而生了。正如书中所说:数据挖掘已经并且将继续在我们从数据时代大步跨入信息时代的历程中做出贡献。
数据挖掘应当更正确的命名为“从数据中挖掘知识”,不过后者显得过长了些。
数据挖掘——从大量数据中挖掘有趣模式和知识的过程。作为作为知识发现过程,他通常包括数据处理、数据集成、数据变换、模式发现、模式评估和知识表示六个步骤。
数据挖掘处理数据之多,挖掘模式之有趣,使用技术之大量,应用范围之广泛都将会是前所未有的;而数据挖掘任务之重也一直并存。这些问题将继续激励数据挖掘的进一步研究与改进。
关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。
❸ 新手入门数据分析心得体会
【导读】作为非科班出身的零肢磨租基础小白,想要入行做数据分析师,坦白来讲是有点难度的,很多时候一脸茫然,不知道该从何入手,为了帮助大家有层次有顺序的渐进系统学习,下面是小编对新手入门数据分析心得体会,一起来看看吧!
❹ 读《大数据时代》心得体会
读《大数据时代》心得体会(一)
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
读《大数据时代》心得体会(二)
信息时代的到来,我们感受到的是技术变化日新月异,随之而来的是生活方式的转变„„我们这样评论着的信息时代已经变为曾经。如今,大数据时代成为炙手可热的话题。笔者在这说明信息和数据,只是试图首先说明信息、数据的关系和不同,也试图说明,为什么信息时代转变为了大数据时代?大数据时代带给了我们什么?
信息和数据的定义。维基网络解释:信息,又称资讯,是一个高度概括抽象概念,是一个发展中的动态范畴,是进行互相交换的内容和名称,信息的界定没有统一的定义,但是信息具备客观、动态、传递、共享、经济等特性却是大家的共识。数据:或称资料,指描述事物的符号记录,是可定义为意义的实体,它涉及到事物的存在形式。它是关于事件之一组离散且客观的事实描述,是构成信息和知识的原始材料。数据可分为模拟数据和数字数据两大类。数据指计算机加工的“原料”,如图形、声音、文字、数、字符和符号等。从定义看来,数据是原始的处女地,需要耕耘。信息则是已经处理过的可以传播的资讯。信息时代依赖于数据的爆发,只是当数据爆发到无法驾驭的状态,大数据时代应运而生。这是否是《大数据时代》一书所未曾阐述的背景材料?
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
读《大数据时代》心得体会(三)
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了Google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20XX年美国的H1N1的爆发地与传播方向以及可能的潜在患者的事情。Google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时Google的预测与政府数据的相关性高达97%,这也就意味着Google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本<总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了IBM追求高精确性的电脑翻译计划的失败与Google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系Google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以Google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
读《大数据时代》心得体会(四)
利用周末,一口气读完了涂子沛的大作《大数据》。这本书很好看,行文如流水,引人入胜。书中,你读到的不是大数据技术,更多是与大数据相关的美国政治、经济、社会和文化的演进。作为一名信息化从业者,读完全书,我深刻感受到了在信息化方面中国与美国的各自特色,也看到了我们与美国的差距。有几个方面的体会,但窥一斑基本能见全貌。
一是政府业务数据库公开的广度和深度。近年来,随着我国信息公开工作的推进,各级政府都在通过政府门户网站建设积极推进网上政务信息公开,但我们的信息公开,现阶段还主要是政府的政策、法律法规、标准、公文通告、工作职责、办事指南、工作动态、人事任免等行政事务性信息的公开。当然,实时的政府业务数据库公开也已经取得很大进步。在中国政府门户网,可以查询一些公益数据库,如国家统计局的经济统计数据、环保部数据中心提供的全国空气、水文等数据,气象总局提供的全国气象数据,民航总局提供的全国航班信息等;访问各个部委的网站,也能查到很多业务数据,如发改委的项目立项库、工商局的企业信用库、国土资源部的土地证库、国家安监总局的煤矿安全预警信息库、各类工程招标信息库等等。这是一个非常大的进步,也是这么多年电子政务建设所取得的成效和价值!但是,政务业务数据库中的很多数据目前还没有实现公开,很多数据因为部门利益和“保密”等因素,还仅限于部门内部人员使用,没有公开给公众;已经公开的数据也仅限于一部分基本信息和统计信息,更多数据还没有被公开。从《大数据》一书中记录的美国数据公开的实践来看,美国在数据公开的广度和深度都比较大。美国人认为“用纳税人的钱收集的数据应该免费提供给纳税人使用”,尽管美国政府事实上对数据的公开也有抵触,但民愿不可违,美国政府的业务数据越来越公开,尤其是在奥巴马政府签署《透明和开放的政府》文件后,开放力度更加大。DATA.GOV是美国联盟政府新建设的统一的数据开放门户网站,网站按照原始数据、地理数据和数据应用工具来组织开放的各类数据,累积开放378529个原始和地理数据集。在中国尚没有这样的数据开放的网站。另外,由于制度的不同,美国业务信息公开的深度也很大,例如,网上公布的美国总统“白宫访客记录”公布的甚至是造访白宫的各类人员的相关信息;美国的FedSpending网站,能够逐条跟踪、记录、分析联邦政府每一笔财政支出。这在中国,目前应该还没有实现。
二是对政府对业务数据的分析。目前,中国各级政府网站所提供的业务数据基本上还是数据表,部分网站能提供一些统计图,但很少能实现数据的跨部门联机分析、数据关联分析。这主要是由于以往中国政务信息化的建设还处于部门建设阶段。美国在这方面的步伐要快一些,美国的DATA.GOV网站,不仅提供原始数据和地理数据,还提供很多数据工具,这些工具很多都是公众、公益组织和一些商业机构提供的,这些应用为数据处理、联机分析、基于社交网络的关联分析等方面提供手段。如DATA.GOV上提供的白宫访客搜索工具,可以搜寻到访客信息,并将白宫访客与其他微博、社交网站等进行关联,提高访客的透明度。
三是关于个人数据的隐私。在美国,公民的隐私和自有不可侵犯,美国没有个人身份证,也不能建立基于个人身份证号码的个人信息的关联,建立“中央数据银行”的提案也一再被否决。这一点,在中国不是问题,每个公民有唯一的身份信息,通过身份证信息,可以获取公民的基本信息。今后,随着国家人口基础数据库等基础资源库的建设,公民的社保、医疗等其他相关信息也能方便获取,当然信息还是限于政府部门使用,但很难完全保证整合起来的这些个人信息不被泄露或者利用。
数据是信息化建设的基础,两个大国在大数据领域的互相学习和借鉴,取长补短,将推进世界进入信息时代。我欣喜地看到,美国政府20XX年启动了“大数据研发计划”,投资2亿美元,推动大数据提取、存储、分析、共享、可视化等领域的研究,并将其与超级计算和互联网投资相提并论。同年,中国政府20XX年也批复了“十二五国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。开放、共享和智能的大数据的时代已经来临!
我精心推荐
❺ 学习数学建模的心得体会
一年一度的全国数学建模大赛在今年的9 月22 日上午8 点拉开战幕,各队
将在3 天72 小时内对一个现实中的实际问题进行模型建立,求解和分析,确定
题目后,我们队三人分头行动,一人去图书馆查阅资料,一人在网上搜索相关信
息,一人建立模型,通过三人的努力,在前两天中建立出两个模型并编程求解,
经过艰苦的奋斗,终于在第三天完成了论文的写作,在这三天里我感触很深,现
将心得体会写出,希望与大家交流。
1. 团队精神:
团队精神是数学建模是否取得好成绩的最重要的因素,一队三个人要相互支
持,相互鼓励。切勿自己只管自己的一部分(数学好的只管建模,计算机好的只
管编程,写作好的只管论文写作),很多时候,一个人的思考是不全面的,只有
大家一起讨论才有可能把问题搞清楚,因此无论做任何板块,三个人要一起齐心
才行,只靠一个人的力量,要在三天之内写出一篇高水平的文章几乎是不可能的。
2. 有影响力的leader:
在比赛中,leader 是很重要的,他的作用就相当与计算机中的CPU,是全队
的核心,如果一个队的leader 不得力,往往影响一个队的正常发挥,就拿选题来说,有人
想做A 题,有人想做B 题,如果争论一天都未确定方案的话,可能就
没有足够时间完成一篇论文了,又比如,当队中有人信心动摇时(特别是第三天,人可能
已经心力交瘁了),leader 应发挥其作用,让整个队伍重整信心,否则可能导致队伍的前
功尽弃。
3. 合理的时间安排:
做任何事情,合理的时间安排非常重要,建模也是一样,事先要做好一个规
划,建模一共分十个板块(摘要,问题提出,模型假设,问题分析,模型假设,
模型建立,模型求解,结果分析,模型的评价与推广,参考文献,附录)。你每
天要做完哪几个板块事先要确定好,这样做才会使自己游刃有余,保证在规定时
间内完成论文,以避免由于时间上的不妥,以致于最后无法完成论文。
4. 正确的论文格式:
论文属于科学性的文章,它有严格的书写格式规范,因此一篇好的论文一定
要有正确的格式,就拿摘要来说吧,它要包括6 要素(问题,方法,模型,算法,结论,特色)
,它是一篇论文的概括,摘要的好坏将决定你的论文是否吸引评委的目光,但听阅卷老师
说,这次有些论文的摘要里出现了大量的图表和程序,这都是不符合论文格式的,这种论
文也不会取得好成绩,因此我们写论文时要端正态度,注意书写格式。
5. 论文的写作:
我个人认为论文的写作是至关重要的,其实大家最后的模型和结果都差不
多,为什么有些队可以送全国,有些队可以拿省奖,而有些队却什么都拿不到,
这关键在于论文的写作上面。一篇好的论文首先读上去便使人感到逻辑清晰,有
条例性,能打动评委;其次,论文在语言上的表述也很重要,要注意用词的准确
性;另外,一篇好的论文应有闪光点,有自己的特色,有自己的想法和思考在里
面,总之,论文写作的好坏将直接影响到成绩的优劣。
6. 算法的设计:算法的设计的好坏将直接影响运算速度的快慢,建议大家多用数学软件(
Mathematice,Matlab,Maple, Mathcad,Lindo,Lingo,SAS 等),这里提供十种数学
建模常用算法,仅供参考:
1、 蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决
问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必
用的方法)
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数
据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)
3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多
数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通
常使用Lindo、Lingo 软件实现)
4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算
法,涉及到图论的问题可以用这些方法解决,需要认真准备)
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算
法设计中比较常用的方法,很多场合可以用到竞赛中)
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些
问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,
但是算法的实现比较困难,需慎重使用)
7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很
多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种
暴力方案,最好使用一些高级语言作为编程工具)
8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计
算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替
积分等思想是非常重要的)
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分
析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编
写库函数进行调用)
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文
中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问
题,通常使用Matlab 进行处理)
以上便是我这次参加这次数学建模竞赛的一点心得体会,只当贻笑大方,不
过就数学建模本身而言,它是魅力无穷的,它能够锻炼和考查一个人的综合素质,
也希望广大同学能够积极参与到这项活动当中来。
❻ 企业数字化转型中,进行大数据建模分析有什么好处
题主您好,据我所知,中大咨询的文章中有提到过,大数据建模的具体好处如下:1、基专于大数据形成用属户画像,获取用户偏好和使用习惯,可以使企业的产品更有竞争优势。2、通过客户精准营销提高消费体验和顾客粘度,增加销售及提升企业名牌形象。3、通过数据挖掘和在此基础上的科学预测,及时发现企业短板或管理漏洞,降低企业损失。4、利用数据反馈指导企业的下一轮产品设计方向,有利于企业的产品创新,如果以上回答对你有帮助,请采纳,谢谢了。。
❼ 创建有效的大数据模型的6个技巧
创建有效的大数据模型的6个技巧
数据建模是一门复杂的科学,涉及组织企业的数据以适应业务流程的需求。它需要设计逻辑关系,以便数据可以相互关联,并支持业务。然后将逻辑设计转换成物理模型,该物理模型由存储数据的存储设备、数据库和文件组成。
历史上,企业已经使用像SQL这样的关系数据库技术来开发数据模型,因为它非常适合将数据集密钥和数据类型灵活地链接在一起,以支持业务流程的信息需求。
不幸的是,大数据现在包含了很大比例的管理数据,并不能在关系数据库上运行。它运行在像NoSQL这样的非关系数据库上。这导致人们认为可能不需要大数据模型。
问题是,企业确实需要对大数据进行数据建模。
以下是大数据建模的六个提示:
1.不要试图将传统的建模技术强加于大数据
传统的固定记录数据在其增长中稳定且可预测的,这使得建模相对容易。相比之下,大数据的指数增长是不可预测的,其无数形式和来源也是如此。当网站考虑建模大数据时,建模工作应该集中在构建开放和弹性数据接口上,因为人们永远不知道何时会出现新的数据源或数据形式。这在传统的固定记录数据世界中并不是一个优先事项。
2.设计一个系统,而不是一个模式
在传统的数据领域中,关系数据库模式可以涵盖业务对其信息支持所需的数据之间的大多数关系和链接。大数据并非如此,它可能没有数据库,或者可能使用像NoSQL这样的数据库,它不需要数据库模式。
正因为如此,大数据模型应该建立在系统上,而不是数据库上。大数据模型应包含的系统组件包括业务信息需求、企业治理和安全、用于数据的物理存储、所有类型数据的集成、开放接口,以及处理各种不同数据类型的能力。
3.寻找大数据建模工具
有商业数据建模工具可以支持Hadoop以及像Tableau这样的大数据报告软件。在考虑大数据工具和方法时,IT决策者应该包括为大数据构建数据模型的能力,这是要求之一。
4.关注对企业的业务至关重要的数据
企业每天都会输入大量的数据,而这些大数据大部分是无关紧要的。创建包含所有数据的模型是没有意义的。更好的方法是确定对企业来说至关重要的大数据,并对这些数据进行建模。
5.提供高质量的数据
如果组织专注于开发数据的正确定义和完整的元数据来描述数据来自何处、其目的是什么等等,那么可以对大数据模型产生更好的数据模型和关系。可以更好地支持支持业务的数据模型。
6.寻找数据的关键切入点
当今最常用的大数据载体之一就是地理位置,这取决于企业的业务和行业,还
有其他用户需要的大数据常用密钥。企业越能够识别数据中的这些常用入口点,就越能够设计出支持企业关键信息访问路径的数据模型。
❽ 我学习大数据的心得体会
大数据培训如火如荼地进行着,想想自己在参加培训之前的犹豫,在加入科多大数据培训班的两个月之后,真心为自己当初的决定感到庆幸。这两个月的时间改变了我很多,刚入学时候的我,多么盼望着早日学成,步入社会迎接各种挑战。可是慢慢的我知道不能急于求成,心急吃不了热豆腐。
还记得转折点是在于有一次周考结束后,看着自己的成绩是在是不如人意,正心灰意冷,心想着自己是否不适合这个行业,想要放弃的时候。
老师找到我,开导我说像我这种跨行来到科多参加大数据培训的学员比比皆是。像我们这种零基础学员选择大数据,就要一步一步把基础学牢固,不要想着赶快学完,基础学不牢固在以后的学习中很容易就“崩”掉的。
初入科多,负责任的科多大数据培训讲师的教导,同学们热心的帮助让我对大数据这条路坚定不移。其实在科多大数据培训的这段时间,我知道在求学的道路上一定是困难的艰辛的,但是以后工作的时候就一定会感谢在这么吃苦的自己。
从一开始的java基础,到现在学习的Hadoop技术,从一开始对大数据的陌生,到现在有了一定的项目开发经验,两个月的时间,大数据培训带给自己的不仅仅是知识层面的提升,还有项目经验的实践分享都让我成长了很多。
有多少付出就有多少回报,在科多大数据培训班上,我比别的同学少了一些基础,那我就要努力补回来!在科多,我更是学会了要朝着自己的目标奋勇前进!现在的日子虽然每天学习压力非常大,我必坚持不放弃。
Finally,非常感谢科多大数据培训讲师成为我的人生指路明灯,很感谢科多大数据培训的同学细心的照顾。祝愿科多大数据越办越好,祝愿每一位同学都能找到自己心仪的工作!