⑴ 看看全球十大电信巨头的大数据玩法
看看全球十大电信巨头的大数据玩法
大数据时代,掌握海量数据无疑使自己在这竞争激烈的时代占得先机,对于电信运营商来说,更是如此。通过深度挖掘这些数据,他们正试图打造全新的商业生态圈,实现新的业绩增长点,当然也实现从电信网络运营商到信息运营商的转变。中云网的这篇文章将从全球十大电信运营商的角度分析它们是如何利用大数据的,从中或许可以给你一点启示。
对于电信运营商而言,没有哪一个时代能比肩4G时代,轻松掌握如此海量的客户数据。4G时代,手机购物、视频通话、移动音乐下载、手机游戏、手机IM、移动搜索、移动支付等移动数据业务层出不穷。它们在为用户创造了前所未有的新体验同时,也为电信运营商挖掘用户数据价值提供了大数据的视角。数据挖掘、数据共享、数据分析已经成为全球电信运营商转变商业模式,赢取深度商业洞察力的基本共识。
目前,全球120家运营商中,已经有48%的企业正在实施大数据战略。通过提高数据分析能力,他们正试图打造着全新的商业生态圈,实现从电信网络运营商(Telecom)到信息运营商(Infocom)的华丽转身。从曾经的“管道”到大数据战略融合,电信运营商到底该如何善用大数据?全球10强电信“大佬们”的大数据应用之道及其培育的新经济增长点启示颇多。
1. AT&T:位置数据货币化
AT&T是美国最大的本地和长途电话公司,创建于1877年。2009年,AT&T利用全球领先的数据分析平台、应用和服务供应商Teradata天睿公司的大数据解决方案,开始了向信息运营商的转变。
在培育新型业绩增长点的过程中,AT&T决定和星巴克开展合作,利用大数据技术收集、分析用户的位置信息,通过客户在星巴克门店附近通话或者其他通信行为,预判消费者的购物行为。为此,AT&T挑选高忠诚度客户,让其了解AT&T与星巴克之间的这项业务,并签署协议,将客户隐私的管理权交给客户自己。在获得允许情况下,AT&T将这些信息服务以一定金额交付给星巴克。星巴克通过对这些数据的挖掘,可以预估消费者登门消费的大概时间段,并且预测个人用户行为,并做出个性化的推荐。此外,在iPhone上市伊始,为了解iPhone的市场反响,AT&T还选择与Facebook结成战略联盟,通过对Facebook的非结构化数据进行分析,发现用户对价格、移动功能、服务感知等产品指标的体验情况,从而推出更加准确的电信捆绑服务。
2. NTT:创新医疗行业的社会化整合
NTT是日本最大电信服务提供商,创立于1976年。它旗下的NTTDOCOMO是日本最大的移动通讯运营商,也是全球最大的移动通讯运营商之一,拥有超过6千万的签约用户。
自2010年,NTTDOCOMO利用大数据解决方案,实现了医疗资源的社会化创新,培育了医疗信息服务增长点。面对日本社会的老龄化趋势,NTTDOCOMO想到了通过搭建信息服务平台,满足用户的个性化医疗需求。因此,NTTDOCOMO和Teradata天睿公司进行充分合作,利用其大数据解决方案,建立自己的资料库。通过开设MedicalBrain和MD+平台,聚合大量的医疗专业信息,网聚了大批医疗行业专业人士。这使用户和各种专业医疗和保健服务提供商共同拥有了符合标准的、安全可靠的生命参数采集和分发平台。在这个平台上,NTTDOCOMO能够根据用户的以往行为洞察其个性化需求,再将这些需求反馈至对应的医疗人员,帮助用户获得高价值的信息反馈。
3. Verizon:数据仓库促进精准营销
Verizon是美国最大的本地电话公司、最大的无线通信公司之一,也是全世界最大的印刷黄页和在线黄页信息提供商。它在美国、欧洲、亚洲、太平洋等全球45个国家经营电信及无线业务。
随着年轻一代用户成为电信消费主力人群,通过多媒体、社交媒体等渠道了解他们的消费行为成为Verizon的营销重点。因此,Verizon成立精准营销部门(PrecisionMarketingDivision),利用Teradata天睿公司的企业级数据仓库,对用户产生的结构化、非结构化数据进行挖掘、探索和分析。在大数据解决方案的帮助下,Verizon实现了对消费者的精准营销洞察,并且向他们提供商业数据分析服务,同时在获得允许情况下,将用户数据直接向第三方交易。此外,这些对用户购买行为的洞察也为Verizon的广告投放提供支撑,实现精准营销。凭借着获取的消费者行为的洞察力,Verizon还决定进军移动电子商务,形成自己全新的业绩增长点。
4. 德国电信:智能网络培育新增长点
德国电信是欧洲最大的电信运营商,全球第五大电信运营商。旗下T-Systems是全球领先的ICT解决方案和服务供应商。
正是T-Systems将德国电信带上了大数据的发展快车道。基于拥有全球12万平方米数据中心的优势,T-Systems提出了“智能网络”的概念。通过实时获得汽车、医疗以及能源企业的数据,T-Systems先后开发了车载互联网导航系统、交通意外自动呼叫系统以及声控电邮系统,以及能源网开发解决方案,实现电量的供需平衡。此外,它还通过设计安全的传输方式和便捷的解决方案,将医生和患者对接,提供整合的医疗解决方案。
5. Telefónica:大数据支撑用户体验优化
Telefónica创立于1924年,是西班牙的一家大型跨国电信公司,主要在西班牙本国和拉丁美洲运营,它也是全球最大的固定线路和移动电信公司之一。
Telefónica一直将用户体验视为企业发展重点。Telefónica启动一个针对移动宽带网络的端到端用户体验管理项目,并建立了一个包含60多个用户体验指标的系统,支持无线网络控制器(RNC)、域名系统(DNS)、在线计费系统(OCS)、GPRS业务支撑节点(SGSN)、探针等各种网络节点的信息采集。所有采集来的信息经过整合后存储到数据库中,为后续的用户体验测量提供数据支撑。
6. Vodafone:动态数据仓库支持商业决策
沃达丰是跨国性的移动电话运营商,现为全球最大的流动通讯网络公司之一。
Vodafone在大数据应用方面取得了丰硕成果。早在2009年,旗下SmarTone-Vodafone就委托Teradata天睿公司为其完成动态数据仓库的部署,使企业所有管理人员可以根据信息轻松制定最佳决策。它主要通过开放API,向数据挖掘公司等合作方提供部分用户匿名地理位置数据,以掌握人群出行规律,有效地与一些LBS应用服务对接。这些大数据解决方案极大提高了SmarTone-Vodafone的市场领导力。
7. 中国移动:客户投诉智能识别系统降低投诉率
中国移动通信集团公司是中国规模最大的移动通信运营商,也是全球用户规模最大的移动运营商。
在中国移动近实现客户数量迅猛增长的同时,相应也带来了客户投诉量的增长。
为了辨别客户投诉的真实原因、发现问题、改进产品、提升服务体验,中国移动和Teradata天睿公司进行了密切合作。Teradata为其配置了基于CCR模型的客户投诉智能识别系统,以投诉内容为源头,通过智能文本分析,实现了从发现问题到分析问题,再到解决问题以及跟踪评估的闭环管理。经过一段时间使用,仅中国移动某省级公司,就实现全网投诉内容的智能识别:769个投诉原因被识别,配合业务部门提出37个产品优化建议,协助优化11个产品;优化不满意点58个,消除368,295客户的潜在不满隐患,每年节约成本达540万。
8. 法国电信:数据分析改善服务水平
法国电信是法国最大的企业,也是全球第四大电信运营商,拥有全球最大的3G网络Orange。
为了优化用户体验,法国电信旗下企业Orange采用Teradata天睿公司大数据解决方案,开展了针对用户消费数据的分析评估。Orange通过分析掉话率数据,找出了超负荷运转的网络并及时进行扩容,从而有效完善了网络布局,给客户提供了更好的服务体验,获得了更多的客户以及业务增长。同时,Orange承建了一个法国高速公路数据监测项目。面对每天产生500万条记录,Orange深入挖掘和分析,为行驶于高速公路上的车辆提供准确及时的信息,有效提高道路通畅率。
9. 意大利电信:数据驱动的个性化业务
意大利电信是欧洲最大的移动运营商之一,同时也是基于单一网络提供GSM系列服务的领先欧洲运营商。
面对固网业务的下滑,意大利电信构建了面向全业务运营的客户数据仓库,以适应市场、销售、客户服务等领域的业务规则和需要。通过对客户数据的洞察,有效地预测收入状况与客户行为的关联性,推出了诸多个性化产品满足客户需求。意大利电信推出的NapsterMobile音乐业务就提供包括手机铃声、艺术家肖像墙纸以及接入NapsterMobile歌曲目录等个性化服务,直接拉动了企业业绩。
10. KDDI:数据管理服务是核心
KDDI是日本知名的电信运营商,在世界多个国家设有子公司。
通过大数据资产,提供数据管理服务是KDDI的核心业务之一。KDDI利用自身优势,以数据中心为核心,向企业提供包括云计算服务在内的信息通讯综合服务。KDDI于2000年开始在中国开展为日系及当地企业提供数据管理服务,业务发展迅猛。2012年,KDDI在北京经济技术开发区建设了当地最大规模数据中心,占地2.5万平米,试图实现2015年海外营业额为2010年2倍的目标。
以4G为代表的移动互联网时代,令信息、互联网行为数据、话单数据、WAP日志/WEB日志、互联网网页、投诉文本、短信文本等结构化数据以及非结构数据呈现几何式增长。面对新型海量数据,传统电信运营商正面临越来越大的挑战:
客户与内容服务提供商联系更加紧密,但对电信企业的忠诚度反而下降;企业无法通过流量内容服务提供商业价值,盈利能力持续下降;“管道化”严重弱化对承载信息的掌控,丧失创新产品、业务发展的基础。
电信运营商需要凭借数据分析来竞争,实现数据价值货币化。同时,利用大数据实现企业从电信网络运营商到信息运营商的转型。通过对数据的分析,了解客户流量业务的消费习惯,识别客户消费的地理位置,洞察客户接触不同信息的渠道等等,电信运营商将获得深度商业洞察力,打造基于大数据的租售数据模式、租售信息模式、数字媒体模式、数据使能模式、数据空间运营模式、大数据技术提供商等全新商业模式。
以上是小编为大家分享的关于看看全球十大电信巨头的大数据玩法的相关内容,更多信息可以关注环球青藤分享更多干货
⑵ 电信属于大数据价值链的哪一类,
电信属于大数据价值链的基础设施层。根据查询相关公开信息显示,在大数据价值链中,基础设施层是指构成大数据基础设施的租神各种硬件、软件和通信设施。电信作为基础设施层的关键组成部分,提供了数据传输、存储、处理、分析和交换等一系列基础设施服务,为上层的数据应用和服务提供支撑和保障。电信行业的技术和服务不但可以提高数据的采集、传输和处理效率,还可以为其他销运行业和企业提供大数据分析、云计算、物联网等高附加值的数据亏型梁服务。
⑶ 大数据时代电信运营商应该采用的运营策略
大数据时代电信运营商应该采用的运营策略
最近几年,大数据在人们视野中出现的频率越来越高,继而也引起人们的关注。国际著名咨询公司IDC、麦肯锡相继发布了有关大数据的研究报告,将其比喻为“未来的金矿”,国内不少互联网公司也开始着手部署各自的大数据战略,作为通信行业的主要参与者和推动者,电信运营商在大数据的时代下开始试点了大数据系统的建设与应用,以充分挖掘企业的数据资产价值,创造新的利润点。
大数据是什么?
关于大数据的定义业界并没有给出一个准确的定位,研究机构Gartner把大数据定义为是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产;维基百将大数据定义为无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合;《著云台》的分析师团队认为,“大数据”通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
大数据时代电信运营商应该采用的运营策略是什么?
1、优化网络:利用大数据分析,可突破传统的智能网优以CDT和MR数据为基础,通过3G基站的流量大数据,可以分析出哪些区域是用户数据流量高消耗区,在这些区域建设4G基站,就能做到既精准又有效;通过对MR大数据的分析,可以知道哪些区域移动网络小区信号覆盖不好,通过关联CRM中的客户信扰册友息和套餐信息,便可排出网络优化的优先顺序;通过LBS系统平台,对移动通信使用者的位置和运动轨迹进行分析,有效统计热点地区的人群出现概率,并进行基站资源配置的优化,提高了资源使用效率。
2、精准营销:中国电信利用大数据处理平台分析呼叫中心海量语音数据,建立呼叫中心测评体系和产品关联分析,为保险公司等提供基于自动语音识别的大数据分析服务;根据使用不同移动终端的用户的月均流量消耗,分析出在哪些移动终端上用户的上网体验最佳、DOU最大,根据该数据就可制定更为科学的终端补贴策略;通过对用户手机的通话、短信和空间位置等信息进行处理,提取用户通信行为的时空规则性和重复性,实现定向精确的终端营销和个性化内容业务推荐。
3、深度拥抱大数据:大数据的时代已经来临,因此电信运营商可以强化规划引导、实现大数据建设全面统筹。电信运营商应针对不同的应用场景选取合适的技术进行大数据建设,在集团和省公司层面分别指定部门统一组织开展整个集团和省公司层面的大数据规划,在规划的指引下,实现大数据建设与应用的全面统筹,包括:清理分散在各部门中的数据资产,开展应用规划,明确应用建设与运营分工,建设运营商集团和省公司层面统一的大数据基础平台等。
4、精细运营:天津网站建设-文率科技建议电信可以使用Hadoop等大数据处理工具,通过分析用户的兴趣图谱、关系图谱、行为定向,再结合自身的业务推出量身定制的服务。如:针对出差较多的商务人士,向他们推荐漫游套餐;对爱好移动上网的用户,向他们提供流量包这本身就属于大数据应用的范畴,而且,运营商通过对业务资源和财务等数据的综合分析,可以让决策层进行快速的市场决策,从而有抢占市场的先机。
5、客户维系:分析用户的终端所支撑的系统,然后向客户推荐比客户目前使用系统更好的系统,如:客户目前使用的终端是支撑的是3G,那么我们可以向客户推荐比3G更好的4G,继而提升客户体验,降低用户流失率;通过分析客户通话对象结构转移、使用量变化、上网行为漂移、套餐饱和度下降,分析出客户离网倾向及缴费异常倾向,及时进行客户维系与挽留。
在大数据的时代止步不前的话只能走向灭亡,天津西青网站建设发现在大数据的时代下中国联通建立了用户上网大数据分析系统,利用收集的用户上网记录解决用户透明消费问题,并使用其中的数据做客户的精细化营销;中国移动建立网络资源的大数据系统,改进对缓槐用户专线提供的速度,建立微营销大数据分析系统,实现定向精确姿猛营销、差异化的合作伙伴后向能力保障和智慧城市管理。
⑷ 什么是idcidc有什么业务
互联网数据中心(InternetDataCenter)简称IDC,就是电信部门利用已有的互联网通信线路、带宽资源,建立标准化的电信专业级机房环境,为企业、政府提供服务器托管、租用以及相关增值等方面的全方位服务。
IDC的业务简介:
业务包括:主机、服务器、托管、虚拟主机、域名注册、企业邮局、邮件系统。
增值服务:主机托管、idc、大型知识库、会员管理、系统集成、虚拟主机、sql数据库、vpn虚拟专网、web应用程序、电子支付、国际域名、国内域名、商业网站、网页设计公司、web服务、后台管理、邮件服务器、网页设计模板。
(4)电信的大数据业务扩展阅读
IDC定义了大数据的四大特征——海量的数据规模(volume)、快速的数据流转和动态的数据体系(velocity)、多样的数据类型(variety)和巨大的数据价值(value)。
大数据推动基础架构向Scale-out发展。因为从比较传统的数据处理方式和大数据的处理方式来讲,我们发现在处理结构化和非结构化数据方面,在对数据进行处理的时候,因为大数据的类型比较复杂,数据量比较肢者御大,可以通过分布式的处理方式把应用复杂分散到分布式系统的各个节点上,
而传统的数据处理将是运算能力非常强、CPU主频非常高的一台机器来处理,而不是大数据这种多个节点、多个CPU核数来处理,这代表了大数据时代发展方向从Scale-up转向Scale-out。”周震刚说。
中国成为全球最重要的大数据市场之一,中国人口数是全球第一,也就造就了全球第一互联网用户数和全球第一的移动互联网用户数,创造数据的规模远远超过嫌哪全球其他各个国家。
大数据给市场带来的将是更广泛的机会,对于中国来说这个市场历岩是非常有前景的。另外各行业的客户和各行业的开发商也应该在大数据市场抓住机会,借助自己的优势创造更多的价值。
参考资料来源:网络-IDC业务
⑸ 中电信数智是铁饭碗吗
是。
根据查询中电信数智官方消息得灶雹知,中电信数智科技有限公司是国企,是中国电信旗下开展大数据和AI业务的科技型、平台型专业公司,而且工作也是比较稳定的。
中电信数智科技有限公司,成立于1996年,是中国电信集团有限公兄辩薯司的全资子公羡者司。
⑹ 电信运营商转型发展如何应用大数据
因此,运营商拥有的是更加名副其实的大数据,如果将这些数据加以应用,必将为运营商带来巨大的商业价值。 大数据为电信行业带来巨大变化 Gartner预测到2020年大约75%的企业都将大数据分析融入其日常经营决策中,未来大数据分析将成为企业经营的一项基本能力。 根据Sysbase的统计分析,电信行业通过在运营中应用大数据,人均产值提升了17%,而在行业价值贡献方面更是排在了所有行业的首位。在电信行业收入增幅日趋放缓的今天,这样的产值增幅无手型敬疑是鼓舞人心的。 通过构建行业大数据分析系统让运营商具备了大数据分析处理的技能,但这只是在大数据时代获得成功的基础;运营商还需要从企业战略和经营思维层面改变,发现新的机遇和模式并付诸实施,才能真正将自己所掌握的大数据资产和大数据技能转变为企业价值。 大数据运用的四个类型 运营商运用大数据主要有四个类型。首先,在市场层面,运营商可以利用大数据对自身的产品进行服务,通过大数据分析用户行为,改进产品设计,并通过用户偏好分析,及时、准确进行业务推荐,强化客户关怀,这样就可以不断改善用户体验,增加用户的信息消费以及对运营商的粘稠度;其次,在网络层面,可毕慎以通过大数据分析网络的流量、流向变化趋势,及时调整资源配置,同时还可以分析网络日志,进行全网络优化,不断提升网络质量和网络利用率;第三,在企业经营层面,可以通过业务、资源、财务等各类数据的综合分析,快速准确地确定公司经营管理和市场竞争策略;第四,在业务创新层面,可以在确保用户隐私不被侵犯的前提下,对数据进行深度加工,对外提供信息服务,为企业创造新的价值。这样,大数据将助力运营商实现从网络服务提供商,向信息服务提供商的转变。 由于大数据产业具有强烈互联网特征,现有的运营模式很难帮助运营商实现大数据产业的迅速发展,这是因为,对于大数据产业,运营商传统的金字塔式的组织结构已经过时,传统架构的信息系统及组织架构已无法应对海量数据和创新型应用,那种由上而下的运营模式无法更接近用户的需求,显然已经阻碍运营商自身大数据产业的纵深发展。根据市场需求,运营商必须全面转向以客户和消费者为中心的运营体系,重新梳理企业的经营模式和组织架构,这就是模式的创新,大数据产业发展要求运营商实现管理经营和市场信息系统完美对接,新型大数据应用必将助力运营商向信息服务模式转型。 面向大数据时代,运营商的及时转型成为必然,否则将有被互联网企业超越的可能性。理论上讲,运营商拥有颇具优势的大数据资源并不是完全不可替代,例如,用户的位置信息就可以通过多种APP应用获得,用户的网络使用信息也可以通过多家互联网企业合作获取,互联网企业通过泛互联网化收集更多的大数据信息。另一方面,多行业的垂直整合将成为趋势,在数据应用层面,行业企业通过多种手段搜集大量的用户数据,将更贴近用户,更理解用户,为其提供更适当的服务,大数据将成为资产更具有战略意义,各个行业及单位都在关注大数据。 根据大数据数量大、时效性要求高、数据种类及来源多租带样化等特征,运营商首先获取更多有用的大数据资源,例如,很多的网络运行信息,包含大量有价值的用户行为和位置信息,这样的信息可以加以利用。有了资源应该加以利用,避免大数据资源的浪费。事实上,一些运营商拥有大数据这样的金山,却似乎无奈坐看并逐渐沦为管道,在不断强化传统市场的效益考核,却好像在忽视大数据价值的流失。 直面数据分析挑战 当然,海量数据的出现、数据结构的改变,也给运营商的大数据管理及分析带来了挑战,一是由于多种业务的发展、市场需求的变化和网络规模的扩大使得运营商大数据迅速的增加,这增加了运营商大数据存储和处理的难度,使得现有数据仓库无法线性扩容,这表明传统的数据仓库无法有效存储日益增长的业务数据;二是由于新型大数据服务不同于传统通信业务分析特点,需要对内容等非结构化、大容量信息进行多用户、多应用、实时有效的分析,传统的架构和数据仓库处理已不能满足新的信息服务需求。因此,运营商需要建立新型大数据中心,来存储、分析和处理海量数据,必要的投入是必不可少的。 大数据产业出现和发展是现代信息技术与互联网时代海量信息的发展到一定阶段的必然结果,大数据应用将是海量数据、现代信息技术与各种社会应用的一次化学反应,必将对当今社会的信息技术、商业模式和相关的法律法规产生深刻的变革。
⑺ 以下哪个属于大数据在电信行业的数据商业化方面的应用
以下个性化推荐,客户细分,数据分析决策,客户体验管理,风险控制属于大数据在电信行业的数据商业化方面的应用。
1、个性化推荐:通过分析用户的通讯记录、消费行为等数据,为用户提供个性化的产品及服务推荐。
2、客户细分:通过对海量用户数据进行分类和聚类分析,将用户按照其特征划分成不同的群体,以便更好地针对不同的用户群体开展营销活动。
3、数据分析决策:拆携通过分析运营数据,如流量、话务量、ARPU等数据,来帮助企业做出更加明智的运营决策。
4、客户体验管理:通过对用户行为和需求的分析,为客户提供更好的服务体验兆闭,并旅猜伏提高用户的满意度。
5、风险控制:通过对用户行为、账单支付情况等数据的分析,识别潜在的风险,及时采取措施进行防范。
⑻ 大数据时代,电信运营商如何“点石成金”
大数据风起云涌。对于大数据中蕴含的商业价值,有人形象地将其称为“数据钻出石油”。充分利用大数据技术,从海量堆积的交互数据中发现带有趋势性、前瞻性的信息,能够孕育出惊人的社会价值和商业价值。 然而,即便放眼全球,我们看到的大数据应用案例还鲜有电信运营商的身影,与互联网领域的诸多探索相比,他们略显平淡,大规模钻出“石油”就更谈不上了。面对这种情况,相信很多业内人士都在思考这些问题:大数据究竟会给电信运营商带来哪些新机遇?大数据时代下的电信运营商面临什么样的挑战?电信运营商今后将如何运筹帷幄、构建面向智慧运营的大数据体系? 从4W到4V: 运营商拥有先天优势 根据信息爆炸时代的特征,业界将大数据总结为“4V”体量(Volume)、多样(Variety)、速度(Velocity)和价值(Value)。体量意味着海量的数据,多样是指数据类型繁多,速度主要指数据被创建和移动的速度快,而价值是处理数据的目标、从各种形式呈现的复杂数据中挖掘有用的东西。 电信运营商作为信息服务的基础服务商,其提供的服务用一个简单的词来概括就是“4W”Who、When、Where、What,在使用服务时,哪些用户、需要联系谁、什么时间、处于什么位置、做些什么,这些信息无疑都需要经过运营商的管道。 对比“4V”和“4W”,我们可以发现两者之间的契合之处,通信用户数以亿计的基数保证了数据的海量和多样性,通信网络的实时承载保证了数据的速度,更重要的是,运营商还可以搜集到用户位置、大体收入等有价值的数据,进而为精准营销提供参考。因此,运营商在掌握用户行为数据方面具有先天优势,这是一般互联网厂商所望尘莫及的。随着智能手机和高速网络的普及,运营商能够获得的用户行为数据还将更为丰富。 数据科学家、《大数据时代》的作者维克托·迈尔·舍恩伯格表示,在大数据时代,拥有数据的公司无疑将取得巨大的成功。因为他们具有洞察力,大数据会提供他们全新的洞察力。从这个角度看,运营商无疑坐拥一座天然的宝藏,但是能否挖掘、提炼出这些矿藏中的价值将决定运营商能否把握住大数据带来的机遇。 由大入微: 构建智慧的大数据体系 由微入大易,由大入微难。对电信运营商来说,将无数具体而微的信息汇集起来其实并不难,真正的难点在于如何点石成金,如何“驾驭”这纷繁复杂的数据,如何存储、整合、分析、汲取出真正有价值的内容,并创造性地使用它。 大流量并不一定带来大数据,电信运营商获得的数据中大部分都是“桀骜不驯”的它们被称为非结构数据,这种数据本身并没有太多价值。目前,电信运营商在大数据方面的探索还仅仅处于起步阶段:一方面,用户的行为、轨迹、状态等数据散在网络各个环节中,形成信息资产的成本非常高;另一方面,运营商大数据挖掘手段还很不充足,如何从庞大的数据中分析出有价值的信息并找到合理的商业模式,提高“驾驭”数据的能力,成为电信运营商面临的挑战。 那么电信运营商该如何去构建面向智慧运营的大数据体系? 对电信运营商来说,可以利用大数据实现自身的精确化营销和精细化运营,在这方面,国内已经有运营商作出了尝试。使用Hadoop等大数据处理工具,通过分析用户的兴趣图谱、关系图谱、行为定向,再结合自身的业务推出量身定制的服务,如针对出差较多的商务人士,向他们推荐漫游套餐;对爱好移动上网的用户,向他们提供流量包……这本身就属于大数据应用的范畴,而且,运营商通过对业务资源和财务等数据的综合分析,可以让决策层进行快速的市场决策,从而抢占市场制高点。 未来,运营商还可以拓展第三方模式,加大开放合作力度,与产业链各个环节开展合作,加快对大数据经营商业模式的探索,不断释放其管道中庞大数据的潜在力量,将数据转化成“真金白银”。在这方面,国外电信运营商的探索给我们提供了思路。西班牙电信去年成立了名为“动态洞察”的大数据业务部门,它可以为客户提供数据分析打包服务,帮助客户把握重大变化趋势。法国电信的移动业务部门也开始尝试挖掘大数据的潜在价值,比如,它承建了一个法国高速公路数据监测项目,对每天产生的几百万条记录进行分析,从而提高了道路通畅率。更具颠覆性的是Verizon,其数据业务的盈利收入在其整个业务中占比非常高,其中就有联合第三方机构对其用户群进行大数据分析,再将有价值的信息提供给政府或企业获取的额外价值。 分析人士指出,数据化程度越高的行业,其大数据的应用场景越多,能够带来的价值也就越高。数据重构商业,虽然国内在这方面的探索还未形成规模,但对运营商来说却代表着前进的方向凭借自身优势,将数据分析包装为服务,提供给政府、商场、银行等第三方机构进行决策,从而实现商业模式的创新,并在与互联网企业的竞争中占得先机。不过,需要明确的是,这里的数据包装并不是非法采集用户个人信息,更不是贩卖用户个性化隐私,真正的大数据应该是用加工实现增值,用分析来指导决策,而非原始数据信息本身的低层次滥用。
⑼ 运营商大数据获客电销数据平台代理靠谱吗
盘云(山东)大数据服务有限公司
这些年,大数据已经提升到了国家级别战略的高度,从2014年大数据正式写入工作报告,到在五中全会的“十三五”规划建设中明确提出,要建设和实施我国的大数据战略,大数据产业的相关政策措施密集出台,涉及到产业转型、治理、科技攻关、产业扶持和安全保障等多个方面。
其中,数拍运营商大数据产业的发展获得各级的大力支持,州茄产业环境持续优化,产业规模快速发展。我国信通院发布的《大数据白皮书》显示,2017年,我国大数据产业规模达4700亿元,同比增长30.6%,预计到2020年产业规模将突破8000亿元。如此巨大的市场,市场内新进的玩家情况又是如何的呢?盘云山东大数据服务有限公司的资深研究员就来为您讲解一下,联通运营商大数据优势到底在哪?
联通发力大数据优势何在?册毕察
首先,电信运营商在大数据产业具有天然优势。
电信运营商依靠自身拥有的庞大客户群,且可以获取用户高频次、高互动性的实时动态轨迹的通话和上网数据。这么看来运营商能够获取到的数据,拥有互联网公司所没能有的量级和详细程度。虽然互联网巨头本身也有大数据资源,但他们的大数据的来源是自身运营的app或者网站采集,而且采集用户使用他们业务时产生的数据更多的是为自己服务。而运营商的数据来自于各个领域,同时运营商的大数据应用不仅限于自身,更多的是应用于各个行业,进行行业深度融合,为行业赋能。
其次,联通大数据公司相较于其他电信运营商在大数据产业具有领先优势。
联通在运营商中率先进行混合所有制改革,加大了创新战略的落地,为联通大数据的能力注入了更强的活力因子。同时联通一直高度重视大数据业务的发展。在三家电信运营商中,联通率先进行了31省的数据集中,一个成立了专业化的大数据公司。经过几年的发展,联通在大数据产业已经积累了深厚经验,构建了标准化的产品和大数据的解决方案,组建了经验丰富、技术领先的队伍。
最后,联通大数据业务是合法合规的业务。
传统渠道购买到的明文电话数据,目前国家已经命令禁止,定义其行为是非法买卖个人信息。但是全国那么多家公司需要开展业务,电话营销又是目前最简单有效的拓客方式,需求那么旺盛又不能一下子没有。运营商大数据这个时候就解决了临时出现的行业空白。通过包括号码加密等一系列手段保护客户隐私,并在政府方面备案,成为了企业需要精准营销时唯一合法合规的数据渠道。
⑽ 南通电信用大数据支撑客户维系服务
南通电信用大数据支撑客户维系服务_数据分析师考试
近年来,中国电信江苏南通分公司以提速降费、内容填充为雏形,制定提速和加装等服务场景的大数据支撑方案,在江苏省内率先试点大数据支撑宽带维系,盘活电信丰富的客户大数据资源,有效提高宽带客户的感知。
南通分公司定制的提速模型主要根据客户上网行为数据,提取后,综合分析偏好、离网风险等标签,通过排比组合确定优先级,梳理高离网风险客户清单。加装模型主要根据客户使用宽带资源属性、上网行为数据梳理有加装iTV产品需求的客户清单,并按优先级高低排序。支撑营销部门基于清单内容,精确化地提供服务,挽留高离网风险客户。南通分公司以宽带现网存量客户为试点,先规范模型数据,调整参数,明确模型目标数据,以全省大数据平台为接口,利用数据库,从海量原始数据中初步筛选出目标数据;再将前期提取的大文件数据利用关系型数据库二次清洗和筛选比对;最后,根据模型定义的参数值按照优先级高低提取维系服务清单。经过一系列的参数定义、数据分析、数据提取、清洗和二次加工,按照优先级高低,梳理出服务提速目标客户。
南通分公司借力大数据分析明确了维系方向,定制有针对性的组织提速、加装等维系服务,提高了电信产品黏性。创新大数据支撑宽带维系,智能获取有离网意向的客户清单,提供和支撑了后向服务评估依据,向前修正和优化模型参数,提高模型预测的准确性和完整性。分公司将与省公司大数据运营中心交流合作,充分挖掘、利用现有大数据平台数据资源,归纳和总结数据处理流程,为构建宽带维系自动化大数据支撑系统打下基础。加强本地前后端联动,与市场部、企信部、创电中心共同讨论优化服务维系方案,将目标客户按区域归类划小,通过提速、加装等途径提高黏性。制定和优化模型后向评估体系,提高外呼成功率、维系成功率,并实时调整模型参数,提高模型预测和评估准确性。
以上是小编为大家分享的关于南通电信用大数据支撑客户维系服务的相关内容,更多信息可以关注环球青藤分享更多干货