❶ IBM Power全面推动大数据分析发展
IBM日前在2015中国大数据技术大会上分享了其在大数据分析领域的最新成果,阐述了面向大数据分析领域的IT基础架构的最新战略。针对企业在认知时代面临的大数据分析工作负载,IBM坚信要以全新的IT基础架构作为支持。凭借产品和解决方案的持续革新,IBM致力于助力大数据应用创新,通过打造基于Power的本地生态系统,全面推动本地大数据分析技术的发展。
随着互联网和移动互联网技术的进一步发展,在数据量激增的同时,数据类型也变得更为复杂多样。如何快速处理这些数据使其产生价值,如何结合结构化与非结构化数据分析进行预测、推理、感知的判断并采取相应行动,成为企业亟须思考的难题。面对当前挑战,企业需要能够处理和分析大量结构化与非结构化数据,具备高可靠性和经济效益的认知系统。未来,随着数据量的进一步增长,企业将需要一个具备更强事务处理能力、更灵活调配系统架构的领先IT 基础架构。
IBM Power一直致力于凭借领先的IT基础架构,满足企业的大数据分析需求,帮助企业实现数字化转型。针对大数据分析与认知工作负载,IBM今年推出了多款Power产品。Power Systems LC服务器基于OpenPOWER基金会创新成果,针对企业大数据分析工作负载,能够提供比同等x86服务器更快的速度及更低的成本,帮助客户实现便捷、快速的部署。此外,IBM不仅凭借基于POWER8的Linux专属服务器帮助用户发展新兴应用,还通过企业级高性能Linux分区服务器为用户的关键应用提供支持,帮助企业发展新兴工作负载、实现业务转型。
着眼未来趋势,IBM坚信认知技术与思维是满足企业发展需要不可或缺的一部分。作为IBM在认知计算领域的卓越代表,沃森(Watson)在大数据处理与分析方面已取得突破性成就,拥有分析海量数据、处理并行复杂数据以及快速判断和应答响应等卓越能力。基于由IBM Power平台构建的高性能运算基础架构的支持,IBM正联合多家合作伙伴,推动沃森的应用。
除了不断革新Power硬件平台,IBM还通过对本地人才的培养推动大数据应用的创新。今年,IBM已联手CSDN成功举办了8期POWER8极限挑战赛,吸引了逾万人次参赛。IBM也成功举办了十余次培训沙龙,为开发者带来更多学习和交流的机会。此外,IBM还以不同形式联合合作伙伴为本地开发者提供基于Power的开源技术创新环境,帮助开发者加速其创新进程。
为提升本地合作伙伴的能力,IBM还与合作伙伴联手,积极推动本地开源技术生态系统的构建。在IBM“中国合伙人”战略的引领下,IBM与CSDN等伙伴联手启动Linux开源生态系统联盟,基于IBM多年来为开源领域提供的先进支持,携手国内ISV、开源技术社区、企业用户、创投公司等多方力量,共同打造一个基于Power技术的开源技术生态圈。IBM还联手OpenPOWER基金会成员推出了全新硬件加速ISV支持计划,为本地ISV免费提供基于RedPOWER服务器以及赛灵思FPGA的云端开发及测试环境,帮助ISV提升大数据、云计算等新兴技术研发能力,促进第二代分布式计算的发展。
IBM副总裁、大中华区硬件系统部总经理郭仁声表示:“认知时代的到来标志着信息技术的发展步入了全新阶段,也对企业的IT基础架构提出了更为严苛的要求。为了帮助企业更好地处理、分析数量庞大的结构化和非结构化数据,IBM Power将凭借扎实的硬件基础和深入的行业洞察,帮助企业构建全新的IT基础架构,更好地应对当前和未来包括大数据在内的种种挑战。”
❷ 2018第十届中国物流信息化大会嘉宾都有谁
7月12日-13日,备受瞩目的2018(第十届)中国蠢茄物流信息化大会将在福州闽江世纪金源会展大饭店隆重开幕。
而近日,参加此次大会的一份人员名单相继在朋友圈里曝光,引发了行业热议。
从曝光的名单来看,出席本次大会的有:
中国交通运输部、工业和信息化部、商务部电子商务司等政府部门领导;
物流及相关行业协会、各地方政府物流工作牵头部门代表;
国内外物流知名企业、园区、仓储负责人;
制造、电商和商贸企业的物流、采购负责人;
为物流产业链提供各项服务的企业管理者;
关注物流业发展的专业投资机构负责人;
智慧物流领域企业负友档郑责人及高层管理人员;
国内外相关组织、物流相关研究和咨询机构、大专院校代表,业内专家、学者及资深人士等。
通过曝光的信息可以看出,此次大会通过人、财、物、流(信息流)等各要素的汇聚,构建了一个完善智慧物流大生态圈。
据悉,2018(第十届)中国物流信息化大会主办方中国物流与采购联合会是经国务院批准设立的中国唯一一家物流与采购行业综合性社团组织,承担着推动中国物流业的发展,推动政府与企业采购事业发展的使命。
承办方中物智福股份有限公司作为一家被纳入国家智库的物流企业,与中国城市科学研究院、北控曙光、中科曙光及众多高校签定战略合作伙伴关系,致力于打造我国智慧物流航母。双方凭借在物流领域的“唯一”与“专业”优势,联手打造一个权威的、智慧的、热闹的行业盛会,从而进一步激发行业创新活力,助力行业跑出中国创新“加速度”。
在这里,你可以掌握第一手行业发展的政策红利,共享产业首脑的思想盛宴;
在这里,你可以学习国外创新理念和模式,拥抱新思维,新变革,探讨物流新机遇;
在这里好颂,你可以和物流巨头企业面对面交流,共同探索物流发展新方向;
在这里,你可以接触智慧物流创新技术,学习如何利用科技更好地为物流行业赋能;
在这里,你可以寻求更多深化交流合作新机遇,共谋建立物流产业链共享经济生态圈。
2018(第十届)中国物流信息化大会以“数字物流引领行业智慧升级”为主题,聚集全球物流霸主、知名品牌商、资本/技术大鳄,创业论道,开拓商机。“共享、共赢”实现“物流+大数据+人工智能+金融”跨界融合下的合作新价值,必将在行业内掀起新一轮风暴。
❸ 国际大数据大会传递哪些新理念
国际大数据大会传递哪些新理念
为进一步促进大数据领域与传统应用行业的深度交流与合作,中国通信学会近日在北京举办“2015中国国际大数据大会”。此次大会以“大数据+”为主题。
解读大数据行动纲要
将推动政府公信力和信用体系的建设
国家统计局信息服务中心大数据研究实验室主任江青说,大数据行动纲要代表国家从顶层设计上推动大数据。
江青主要解读了大数据行动纲要对智慧城市带来的“四化”。她认为智慧城市的核心是大数据,是大数据在城市的应用。纲要有利于智慧城市实现规划科学化、管理动态化、治理精准化、管理服务高效化。
纲要还提出推动政府信息系统和公共数据的互联共享,消除信息孤岛,加快各类政府信息平台,避免数据重复打架,江青认为,这说明了两个问题,一是增强政府公信力,一是提升社会的信用体系,相对应的就是建设政府信息公用平台和政府公信力的平台。
数据开放问题
政府部门和公共企事业单位要率先开放原始的、可机读的数据
中科院院士、北京大学、普林斯顿大学教授、普林科技董事长鄂维南认为现在大数据面临的第一个瓶颈就是没数据,数据孤岛严重,不同部门数据存在在不同的地方。
中国国际经济交流中心副研究员张茉楠认为我国数据的实体化和实体数据化还处在前期阶段,还存在数据安全、数据所属权、数据治理等各方面的问题。
西安未来国际信息公司执行总裁史晨昱提出了如何开放和开放哪些数据。他认为,应首要开放政府部门和公共企事业单位的数据。政府应该建设开放平台或者网站,以满足社会公众对信息资源的使用。开放网站是全球的普遍做法,包括美国、英国都采用这种做法。开放平台应该建立在互联网上,而非建立在电子政务网上。
其次,开放的数据应该是原始的,可机读的数据。原始数据是没有加工处理的数据,可机读是指开放的数据要便于计算机处理加工。数据开放后,政府需要鼓励企业和公众,利用公共信息资源去开发信息产品,服务于社会公众,服务于其他的企业客户或者政府客户。
大数据推动社会共治
国家的治理从原来的政府主导,转向政府、公民、企业、社会共同参与的多元共治模式
张茉楠认为大数据带来的不仅仅是生产力的变革,更是一种生产关系的变革。
大数据改变了政府的角色、企业角色和社会公众的角色,也使整个国家的治理从原来政府主导的治理,开始向政府、公民、企业、社会多元共治的新模式转型。
张茉楠举例说美国环境数据的开放,就是通过一个项目把美国各个州的环境治理数据向公众开放,让公众更多地参与环境治理,由第三方负责监管。整个过程中是政府提出需求,提供服务,公众积极参与,整个社会共同监督管理。
张茉楠认为大数据时代,社会治理主要呈现三大特点,一是从原来的一家独大、政府的独治逐渐转向多元共治。第二,由原来较多的封闭结构向开放型的治理结构转型。特别是在大数据、云计算发展之下,原来公众和政府之间的信息差、知识差已经逐步扁平化。第三,由权力决策机制转向公共决策机制。
数据交易市场
数据产品交易可以活跃信息消费市场,但法律犯规、技术都还不尽完善
史晨昱认为数据服务平台应该非盈利性和商业化并举。非盈利的数据开放网站,负责将政府部门和公共服务企事业单位的数据,免费开放给公众;在此基础上建设的商业化数据服务平台,可以连接信息服务产品的供需双方,开展数据产品交易,以此活跃整个信息消费市场。
亚信数据总裁张浩认为,维护和管理数据对任何一个部门或者企业来讲都是有代价和成本的,通过交易或者是对等交换,容易实现数据价值。但我国目前还面临着问题,第一,本身还没有形成大数据,缺少法律规范让拥有数据的部门开放数据。第二,目前缺少对个人隐私保护的技术。
鄂维南认为数据作为一种商品,有一定的特殊性,每个人都可以使用,可以重复售卖,没有任何消耗。根据经济学观点,数据的价值是零,所以数据交易理论上来说是不可行的。这也是数据交易平台需要突破的悖论。
云计算+大数据
云计算可以让大数据运行更经济化、集约化和精细化
中国移动苏州研发中心大数据项目总监徐萌提出了云计算大数据,她认为,大数据把数据整合起来,这只是粗放的状态,并不是经济的模式。云计算强调经济化、集约化、精细化。云计算可以使得大数据用集约式的平台和方式来运转。
目前来看,云计算大数据的实现需要解决4个问题,第一,统一化的数据管理,即数据从哪来到哪去、共享给谁、怎么共享、权限是什么。第二,明确云计算大数据的概念,大数据是借用云计算来实现服务的。第三,精细化的资源管理,云计算目标就是降低成本,提供更多应用和服务。大数据后续也要演变过来,实现精细化运营,合理调度资源。第四,智能化就是保证多种资源框架可以自动适配。
以上是小编为大家分享的关于国际大数据大会传递哪些新理念的相关内容,更多信息可以关注环球青藤分享更多干货
❹ 第十届中国云计算大会召开
7月24日,第十届中国云计算大会全体会议在北京国家会议中心召开,中国工程院院士、浪潮集团首席科学家王恩东受邀参加大会,作为智能计算能力实体经济的主题演讲.他指出,云计算改变了世界经济结构,以云计算为中心的技术革新,继续推进商业模式革新、经济变革、政府管理能力的升级,加快人类社会进入智力时代.
云计算发展的三个三年
这是中国第十届中国云计算大会,也是云计算转型的第十年.本次大会的主题是集中云上生态赋予数字经济的主题,参加嘉宾包括两院院士、业界专家、国内外学者、IT产业各类企业的上层,会议主题包括云计算回顾和展望、人机融合的块链软件技术研究、人工智能驱动的群智数据采集技术初探、工业物联网、数字转型等多个前沿和热点话题.
下一个热点是工业互联网
云计算的发展对社会经济的影响更加显着,最明显的是创业的简化.根据网易&IT桔子的统计数据,中国互联网竖蠢脊创业公司累计超过62000家,颤音半年内用户数突破亿人,不到余渗3年用户数超过3家.44亿人.没有云计算的支持,这些创业公司不能在这么短的时间内建立支持数亿用户的业务平台.影响更深的是云计算在传统经济领域的渗透.在云计算的推动下,数据资源在各行各业之间迅速流转共享,可以大规模社会化合作,促进第三产业商业模式的升级,如网络金融、网络物流、饮食销售等是建立在云计算技术上的新商业模式.
智能时代最大的挑战是计算力
云计算、人工智能、大数据等下一代信息技术在快速发展的同时,融合,这些信息技术的应用普及,推进人类社会从传统信息时代到智档胡力时代,随着这一变化,人类演出从传统计算时代到智力计算时代.解决当前的挑战,发展智慧计算,关键是建立开放式融合的技术生态,融合早已是IT基础架构不可抗拒的趋势,全球Super推荐全球Super推荐7互联网公司全是采用融合架构,TOP10Win电信运营商采用互联网虚拟化技术,计算、互联网、存储融合,IT和CT融合,IT和OT也融合.
❺ 百度世界2020大会,都展示了什么产品
2020网络世界大会的核心主题其实是AI与人工智能,基于大数据与云技术来实现在各行各业的自动化操作流程,其中展示的较为吸引人眼球的当属Apollo自动驾驶技术,当然,展示的产品肯定也少不了小度智能硬件新品,作为与天猫精灵、小爱同学并称三大智能AI工具的智能产品,小度这一次可谓有了十分长足的提升。
除此之外,值得一提的还有“5G云代驾”,这个基于5G高速度低延时而衍生出的为无人驾驶系统提供的备用系统,在一定程度上也沾了5G的红利,只不过这种低延时到底能做到什么地步,还需要实践来检验。
❻ 百度大数据的介绍
2013年12月06日,中国最具影响、规模最大的大数据领域技术盛会——2013中国大数据技术大会(BDTC 2013)在北京世纪金源大饭店开幕。网络大数据首席架构师林仕鼎从一个大数据系统架构师的角度,分享了应用驱动、软件定义的数据中心计算。
❼ 「SAECCE议程剧透」新能源汽车大数据应用——机遇与融合
导读
新能源 汽车 大数据的利用不仅在 汽车 产业内部释放了巨大的数据红利,未来也必将成为 汽车 产业与其他产业融合的重要纽带。随着我国“新基建”的不断推进,高速低延迟的5G网络覆盖与新能源 汽车 充电桩的建设,势必会加速新能源 汽车 的发展与数据井喷。由此可见,大数据技术在新能源 汽车 上的应用会加快 汽车 产业向信息化与智能化迈进的脚步,而新能源 汽车 大数据与电力等行业的融合还将产生出巨大的蓝海市场。
2020中国 汽车 工程学会年会暨展览会(SAECCE 2020) 将于 2020年10月27-29日 在 上海 汽车 会展中心 举办。迄今为止,SAECCE年会已成功举办26届,成为在国内举办的 汽车 行业标杆活动之一。
本专题分会以 “新能源 汽车 大数据应用——融合与机遇” 为主题,邀请国内外权威专家主旨演讲和互动讨论。通过聚焦“大数据背景下新能源车辆全局优化式能量管理方法研究”等若干议题,共同交流新能源 汽车 大数据应用的主流技术与最新发展趋势,加速新能源 汽车 大数据技术成熟,并加大 汽车 产业的辐射带动能力。
N01:新能源 汽车 大数据应用——机遇与融合
会议时间&地点
2020年10月27日 13:30-18:00
上海 汽车 会展中心
协办单位
吉林大学 汽车 工程学院
会议主席
王震坡
博士/教授/博士生导师,北京理工大学电动车辆国家工程实验室主任、新能源 汽车 国家大数据联盟秘书长
王震坡,教授、博士生导师,北京理工大学电动车辆国家工程实验室主任、新能源 汽车 国家大数据联盟秘书长。入选了教育部“新世纪优秀人才”、北京市“ 科技 北京百名领军人才”、 科技 部“中青年 科技 创新领军人才”、 国家“万人计划”和机械行业“‘十二五’先进 科技 工作者”。主持了国家自然基金重点项目(动力电池系统热失控与安全管理)、国家重点研发计划项目(分布式驱动电动 汽车 集成与控制)、国家863计划项目(电动 汽车 充换电设施设计集成与管理)等纵向项目12项,发表第一作者或通讯作者SCI论文29篇(ESI高被引3篇),第一作者EI论文60余篇。第一作者出版专(译)著4部(“电动车辆动力电池系统及应用技术”入选“十二五”高等教育本科国家级规划教材),授权第一发明人发明专利24项。获国家 科技 进步二等奖1项,省部级科研一等奖3项,二等奖2项(1项排名第一),中国 汽车 工业科学技术一等奖1项(排名第一),北京市教学成果一等奖1项。
联合会议主席
许楠
博士/副教授/博士生导师,吉林大学 汽车 工程学院
许楠,吉林大学 汽车 工程学院车辆工程专业 副教授兼博士生导师,工学博士,博士后,新能源 汽车 国家大数据联盟理事,美国电气电子工程师学会(IEEE)会员,目前担任Applied Energy、IEEE Transaction on Vehicular Technology、IEEE Transaction on Power Electronics、International Journal of Electronics和SAE Journal等国际期刊审稿专家。发表新能源 汽车 领域论文二十余篇,授权发明专利10项,软件著作权13项。作为项目负责人承担国家自然科学基金青年基金项目、国家博士后科学基金面上项目、吉林省 科技 发展计划项目以及企业的合作研究等项目。荣获国家教育部博士生新人奖,入选国家留学基金委国际清洁能源拔尖创新人才培养项目(iCET2019),吉林大学优秀青年教师重点培养计划等。
主要研究城市智能交通系统规划与评价、车辆全局优化式能量管理、人-车-路系统数据挖掘与分析、新能源车辆动力系统控制与评价、开放式绕组电机控制、智能辅助驾驶。
01
演讲嘉宾简介及演讲摘要提前看
大数据+区块链在新能源 汽车 动力电池溯源管理方面的应用研究
刘鹏
北京理工大学副教授,硕士生导师,新能源 汽车 大数据联盟副秘书长
演讲要点
1、新能源 汽车 动力电池发展现状。
2、新能源 汽车 动力电池溯源管理平台建设及应用现状介绍。
3、大数据及区块链技术在新能源 汽车 动力电池溯源管理方面的应用现状及最新研究。
4、动力电池数据管理所面临的问题和挑战。
演讲摘要
概述近年来新能源 汽车 和动力电池发展数据研究现状,以及大数据平台建设及应用状况,并对大数据及区块链技术在新能源 汽车 动力电池溯源管理方面的应用及研究进行介绍,对动力电池数据管理方面所面临的挑战进行分析和展望。
一种基于数据的电动 汽车 全工况行驶能耗评价方法
袁新枚
吉林大学 汽车 工程学院教授
演讲要点
1、电动 汽车 能耗评价的需求。
2、一种新型的电动 汽车 能耗模型及基于数据的能耗评价方法。
3、仿真实验结果及讨论。
4、该方法在高速路充电站规划上的一个应用。
演讲摘要
智能网联新能源 汽车 的能量管理策略
宋珂
同济大学 汽车 学院燃料电池创新研究所所长
演讲要点
1、智能网联 汽车 概述。
2、智能网联 汽车 的通信技术。
3、智能网联新能源 汽车 能量管理技术发展历程。
4、智能网联新能源 汽车 能量管理技术发展趋势。
演讲摘要
智能网联 汽车 与新能源 汽车 将是未来 汽车 技术发展的两个重要方向。当今 社会 和人们对这两项技术的协调发展提出了更高的要求。通过使用智能网联技术(ICT),新能源 汽车 可以与外部世界(例如其他行驶车辆、道路基础设施,互联网等)进行信息实时交互,这就是所谓的车联网系统(V2X)。在对各种交通信息进行深入分析的基础上,车辆可以识别当前行驶状况并对未来驾驶状况进行有效预测,从而实现车辆动力系统能量管理的实时优化,以满足不同驾驶条件下的车辆驾驶需求。这不仅能大大改善新能源 汽车 的燃油经济性,也能够有效缓解了交通拥堵问题。介绍近年来智能网联技术在新能源 汽车 上的应用情况,基于智能网联技术的新能源 汽车 能量管理策略研究现状以及智能网联技术与新能源 汽车 技术协调发展的趋势。
大数据在新能源 汽车 安全风险防控的应用研究
张照生
北京理工大学机械与车辆学院副教授
演讲要点
1、新能源 汽车 安全情况统计分析。
2、新能源 汽车 安全预警与防控方法研究。
3、典型事故案例数据分析。
演讲摘要
基于新能源 汽车 国家监管平台数据,统计分析车辆报警、事故车辆相关情况,从大数据角度分析影响新能源 汽车 安全相关因素,提出新能源 汽车 安全预警和防控方法,并以具体事故案例分析新能源 汽车 预警情况,为新能源 汽车 安全管控及产业 健康 发展提供技术支撑。
大数据背景下新能源车辆全局优化式能量管理方
法研究
许楠
吉林大学 汽车 工程学院 副教授,博士生导师,新能源 汽车 大数据联盟理事
演讲要点
1、新能源车辆能量管理方法研究现状。
2、大数据背景下全局优化式能量管理方法所面临的机遇和挑战。
3、"信息-物质-能量"三层式全局优化架构的建立及应用。
4、全局优化式能量管理平台的应用前景。
演讲摘要
概述近年来新能源车辆能量管理方法研究现状,介绍大数据为全局优化式能量管理带来的机遇,明确全局优化式能量管理方法所面临的问题和挑战,提出“信息-物质-能量”三层式全局优化架构以解决全局优化式能量管理方法实际应用问题。最后,针对全局优化式能量管理平台未来在区域交通能耗优化等方面的应用,提出了相关建议与展望。
数据驱动的锂离子动力电池管理算法 探索 研究
韩雪冰
清华大学车辆与运载学院助理研究员
演讲要点
1、基于云端大数据的电池管理是未来的发展方向。
2、基于数据可以有效的实现电池的安全预警。
3、基于数据可以有效的实现电池的寿命估计。
演讲摘要
在新能源 汽车 使用过程中,伴随着电池的使用,电池性能不断衰减,电池组内单体间的不一致性持续增加,一致性问题还可能导致电池组的失效,引发安全问题。随着云端数据的广泛应用,电动 汽车 的数据能被监测、记录。基于这些数据可以有效的评估电池组一致性、估计电池寿命,进行电池安全预警,实现更加安全可靠的电池管理。
大数据背景下基于储能应用的电动 汽车 电池的
二次利用
班伯源
中国科学院合肥物质科学研究院副研究员
演讲要点
1、退役电动 汽车 电池二次利用的必要性。
2、电动 汽车 锂电池的衰减现象的本质。
3、退役电动 汽车 电池二次利用的关键技术 SOH估算。
4、退役电动 汽车 电池二次利用国内应用实例。
演讲摘要
近年来电动 汽车 (EV)产业飞速发展,为了保证 汽车 的动态性能和行驶安全,电动 汽车 电池在一定服役时间或性能下降后就需要更换。退役 汽车 电池二次利用是将保留了足够的性能的退役电动 汽车 电池组,用于特定的储能系统中。在本报告中整理了锂离子 汽车 蓄电池二次利用的相关法律法规,收集了SOH估算的相关方法,特别是针对目前大数据背景下的提出了整合电动车能源管理系统的SOH估算方法,列举了退役 汽车 电池可能的二次利用的利用场景。最后,根据目前国内退役电动 汽车 电池二次利用的现状,提出了相关建议与展望。
新能源车与外部环境的数据融合带来的机遇和
挑战
王川久
北京泓达九通 科技 发展有限公司董事长
演讲要点
1、大数据让新能源车看的更远,了解的更多,同时我们对车辆也有了更深的了解。
2、车辆与道路交通系统的关系。
3、大数据能给我们带来什么。
4、几个大数据的应用场景。
演讲摘要
新能源 汽车 与外部环境的大数据交换,将使车辆更好的融入道路交通系统,提高整个交通系统的效率,同时车辆的设计、生产、销售、质量控制等各个环节均发挥出与以往不同的作用。
关于SAECCE 2020
2020中国 汽车 工程学会年会暨展览会(SAECCE 2020) 将于 2020年10月27-29日 在 上海 汽车 会展中心 举办,诚邀 汽车 及相关行业的企业高层、技术领军人物、资深专家学者、广大 科技 工作者参与会议。SAECCE以“ 汽车 +,协同创新”为主题,围绕新能源 汽车 技术、智能网联 汽车 技术、 汽车 关键共性技术,深度探讨如何快速推动技术创新,重塑新型产业格局。
中国 汽车 工程学会年会暨展览会(SAECCE)已成功举办26届,成为在国内举办的 汽车 行业标杆活动之一。此外,原定于今年5月在北京召开的第七届国际智能网联 汽车 技术年会(CICV 2020)将和2020中国 汽车 工程学会年会暨展览会(SAECCE 2020)合并举办。
SAECCE2020将组织1天(2场)全体大会、50多场专题分会、20多场(论文交流)技术分会,展览面积约10000平米,预计将吸引3000多位来自政府机构及行业组织、整车企业、零部件企业、高校及科研院所的代表参会及参观。
欢迎广大企业、高校、科研院所等机构、以及广大 科技 工作者通过组团或个人报名的方式积极参与!
02
SAECCE 2020 日程架构
❽ 大数据行业都有哪些大会
2021 WeDataSphere 社区大会(当前未开始)
场活动面向开源大数据领域的开发者和用户,邀请到开放原子开源基金会 TOC 主席堵俊平、WeDataSphere 社区发起人邸帅、天翼云大数据平台技术专家王小刚等嘉宾进行分享。
本次分享既有对开源大数据技术和工具发展趋势的解读,还有开源一站式大数据平台套件 WeDataSphere 最佳实践和优秀案例的分享,更有如何基于开源项目构建企业级数据平台的探讨和交流。
❾ 中国大数据六大技术变迁记
中国大数据六大技术变迁记_数据分析师考试
集“Hadoop中国云计算大会”与“CSDN大数据技术大会”精华之大成, 历届的中国大数据技术大会(BDTC) 已发展成为国内事实上的行业顶尖技术盛会。从2008年的60人Hadoop沙龙到当下的数千人技术盛宴,作为业内极具实战价值的专业交流平台,每一届的中国大数据技术大会都忠实地描绘了大数据领域内的技术热点,沉淀了行业实战经验,见证了整个大数据生态圈技术的发展与演变。
2014年12月12-14日,由中国计算机学会(CCF)主办,CCF大数据专家委员会协办,中科院计算所与CSDN共同承办的 2014中国大数据技术大会(Big Data Technology Conference 2014,BDTC 2014) 将在北京新云南皇冠假日酒店拉开帷幕。大会为期三天,以推进行业应用中的大数据技术发展为主旨,拟设立“大数据基础设施”、“大数据生态系统”、“大数据技术”、“大数据应用”、“大数据互联网金融技术”、“智能信息处理”等多场主题论坛与行业峰会。由中国计算机学会主办,CCF大数据专家委员会承办,南京大学与复旦大学协办的“2014年第二届CCF大数据学术会议”也将同时召开,并与技术大会共享主题报告。
本次大会将邀请近100位国外大数据技术领域顶尖专家与一线实践者,深入讨论Hadoop、YARN、Spark、Tez、 HBase、Kafka、OceanBase等开源软件的最新进展,NoSQL/NewSQL、内存计算、流计算和图计算技术的发展趋势,OpenStack生态系统对于大数据计算需求的思考,以及大数据下的可视化、机器学习/深度学习、商业智能、数据分析等的最新业界应用,分享实际生产系统中的技术特色和实践经验。
大会召开前期,特别梳理了历届大会亮点以记录中国大数据技术领域发展历程,并立足当下生态圈现状对即将召开的BDTC 2014进行展望:
追本溯源,悉大数据六大技术变迁
伴随着大数据技术大会的发展,我们亲历了中国大数据技术与应用时代的到来,也见证了整个大数据生态圈技术的发展与衍变:
1. 计算资源的分布化——从网格计算到云计算。 回顾历届BDTC大会,我们不难发现,自2009年,资源的组织和调度方式已逐渐从跨域分布的网格计算向本地分布的云计算转变。而时至今日,云计算已成为大数据资源保障的不二平台。
2. 数据存储变更——HDFS、NoSQL应运而生。 随着数据格式越来越多样化,传统关系型存储已然无法满足新时代的应用程序需求,HDFS、NoSQL等新技术应运而生,并成为当下许多大型应用架构不可或缺的一环,也带动了定制计算机/服务器的发展,同时也成为大数据生态圈中最热门的技术之一。
3. 计算模式改变——Hadoop计算框成主流。 为了更好和更廉价地支撑其搜索服务,Google创建了Map/Rece和GFS。而在Google论文的启发下,原雅虎工程师Doug Cutting开创了与高性能计算模式迥异的,计算向数据靠拢的Hadoop软件生态系统。Hadoop天生高贵,时至今日已成为Apache基金会最“Hot”的开源项目,更被公认为大数据处理的事实标准。Hadoop以低廉的成本在分布式环境下提供了海量数据的处理能力。因此,Hadoop技术研讨与实践分享也一直是历届中国大数据技术大会最亮眼的特色之一。
4. 流计算技术引入——满足应用的低延迟数据处理需求。 随着业务需求扩展,大数据逐渐走出离线批处理的范畴,Storm、Kafka等将实时性、扩展性、容错性和灵活性发挥得淋漓尽致的流处理框架,使得旧有消息中间件技术得以重生。成为历届BDTC上一道亮丽的风景线。
5. 内存计算初露端倪——新贵Spark敢与老将叫板。 Spark发源于美国加州大学伯克利分校AMPLab的集群计算平台,它立足于内存计算,从多迭代批量处理出发,兼容并蓄数据仓库、流处理和图计算等多种计算范式,是罕见的全能选手。在短短4年,Spark已发展为Apache软件基金会的顶级项目,拥有30个Committers,其用户更包括IBM、Amazon、Yahoo!、Sohu、网络、阿里、腾讯等多家知名公司,还包括了Spark SQL、Spark Streaming、MLlib、GraphX等多个相关项目。毫无疑问,Spark已站稳脚跟。
6. 关系数据库技术进化—NewSQL改写数据库历史。 关系数据库系统的研发并没有停下脚步,在横向扩展、高可用和高性能方面也在不断进步。实际应用对面向联机分析处理(OLAP)的MPP(Massively Parallel Processing)数据库的需求最迫切,包括MPP数据库学习和采用大数据领域的新技术,如多副本技术、列存储技术等。而面向联机事务处理(OLTP)的数据库则向着高性能演进,其目标是高吞吐率、低延迟,技术发展趋势包括全内存化、无锁化等。
立足扬帆,看2014大数据生态圈发展
时光荏苒,转眼间第2014中国大数据技术大会将如期举行。在技术日新月异的当下,2014年的BDTC上又可以洞察些什么?这里我们不妨着眼当下技术发展趋势:
1. MapRece已成颓势,YARN/Tez是否可以再创辉煌? 对于Hadoop来说,2014是欢欣鼓舞的一年——EMC、Microsoft、Intel、Teradata、Cisco等众多巨头都加大了Hadoop方面的投入。然而对于众多机构来说,这一年却并不轻松:基于MapRece的实时性短板以及机构对更通用大数据处理平台的需求,Hadoop 2.0转型已势在必行。那么,在转型中,机构究竟会遭遇什么样的挑战?各个机构如何才能更好地利用YARN所带来的新特性?Hadoop未来的发展又会有什么重大变化?为此,BDTC 2014特邀请了Apache Hadoop committer,Apache Hadoop Project Management Committee(PMC)成员Uma Maheswara Rao G,Apache Hadoop committer Yi Liu,Bikas Saha(PMC member of the Apache Hadoop and Tez)等国际顶尖Hadoop专家,我们不妨当面探讨。
2. 时过境迁,Storm、Kafka等流计算框架前途未卜。 如果说MapRece的缓慢给众多流计算框架带来了可乘之机,那么当Hadoop生态圈组件越发成熟,Spark更加易用,迎接这些流计算框架的又是什么?这里我们不妨根据BDTC 2014近百场的实践分享进行一个侧面的了解,亦或是与专家们当面交流。
3. Spark,是颠覆还是补充? 与Hadoop生态圈的兼容,让Spark的发展日新月异。然而根据近日Sort Benchmark公布的排序结果,在海量(100TB)离线数据排序上,对比上届冠军Hadoop,Spark以不到十分之一的机器,只使用三分之一的时间就完成了同样数据量的排序。毫无疑问,当下Spark已不止步于实时计算,目标直指通用大数据处理平台,而终止Shark,开启Spark SQL或许已经初见端倪。那么,当Spark愈加成熟,更加原生的支持离线计算后,开源大数据标准处理平台这个荣誉又将花落谁家?这里我们一起期待。
4. 基础设施层,用什么来提升我们的网络? 时至今日,网络已成为众多大数据处理平台的攻坚对象。比如,为了克服网络瓶颈,Spark使用新的基于Netty的网络模块取代了原有的NIO网络模块,从而提高了对网络带宽的利用。那么,在基础设施层我们又该如何克服网络这个瓶颈?直接使用更高效的网络设备,比如Infiniband能够带来多少性能提升?建立一个更智能网络,通过计算的每个阶段,自适应来调整拆分/合并阶段中的数据传输要求,不仅提高了速度,也提高了利用率。在BDTC 2014上,我们可以从Infiniband/RDMA技术及应用演讲,以及数场SDN实战上吸取宝贵的经验。
5. 数据挖掘的灵魂——机器学习。 近年来,机器学习领域的人才抢夺已进入白热化,类似Google、IBM、微软、网络、阿里、腾讯对机器学习领域的投入也是愈来愈高,囊括了芯片设计、系统结构(异构计算)、软件系统、模型算法和深度应用各个方面。大数据标志一个新时代的到来,PB数据让人们坐拥金山,然而缺少了智能算法,机器学习这个灵魂,价值的提取无疑变得镜花水月。而在本届会议上,我们同样为大家准备了数场机器学习相关分享,静候诸位参与。
而在技术分享之外,2014年第二届CCF大数据学术会议也将同时召开,并与技术大会共享主题报告。届时,我们同样可以斩获许多来自学术领域的最新科研成果。
以上是小编为大家分享的关于中国大数据六大技术变迁记的相关内容,更多信息可以关注环球青藤分享更多干货
❿ 物联网大数据时代真的到来了吗
真正的大数据时代应该没有喜不喜欢只有愿不愿意。
现阶段通过所谓的大数据功能,搜索引擎、电商平台、社交平台都可以根据用户喜好进行热点推送。除去那些商家花钱的硬推广告之外还是有许多按照个人喜好推送的物件和消息的。以购物为例,某阶段,用户需要某些东西进行了搜索购买,但因为频繁搜索,被半智能的大数据定义为“喜欢”于是进行了相关信息推送。
但这些物件已经购买完毕所以在推送不会因为好奇和喜欢再次重复购买。真正的大数据在这一块可以做的更全面。比如用户购买的是一箱苹果,那么可以智能识别一到两周后再次推送。而用户买的是红酒则自动推送冰桶、启瓶器、高脚杯或是雪碧。所以真正的大数据推送信息不应根据喜欢偏好进行,而是应该通过是否愿意接收这些讯息进行推送。
当真正的大数据时代来临安全也许根本不是问题。
很多人会担心那些出现在互联网身上的安全隐患统统会出现在物联网身上,而在物联网上的安全问题会给人们带来更大的伤害。当然,这很多人之中包括笔者。而经过对大数据的深入了解,和对大数据未来发展的预估。笔者突然发现一个很重要的实时:物联网的正常运行和发展离不开大数据,而真正的大数据要比人类聪明的多。
大数据是集合了人类所有的智慧结晶和数据资源,同时,完善的大数据具有自我手机学习功能。在日前召开的2015中国大数据技术大会上美国俄亥俄州立大学计算机科学与工程系主任张晓东教授表示,现阶段我们所应用的大数据中的数据采集90%源自近两年。而随着移动互联网化的加强和可穿戴设备的兴起,人们的每一个行为和操作都可以被精确采集并收入大数据库。
----