导航:首页 > 网络数据 > 大数据项目风险

大数据项目风险

发布时间:2023-05-09 18:46:45

1. 大数据有什么风险

当大数据充斥各种场合,从马云到释昭慧都侃侃而谈,你还能不懂什么是大数据吗?你也许已经听过无数的大数据神话,但对于大数据仍停留在一知半解阶段,公子义为整理为梳理什么才是真正的大数据。

大数据是什么?

大数据(Big Data)又被称为巨量资料,其概念其实就是过去10年广泛用于企业内部的资料分析、商业智慧(Business Intelligence)和统计应用之大成。但大数据现在不只是资料处理工具,更是一种企业思维和商业模式,因为资料量急速成长、储存设备成本下降、软件技术进化和云端环境成熟等种种客观条件就位,方才让资料分析从过去的洞悉历史进化到预测未来,甚至是破旧立新,开创从所未见的商业模式。

一般而言,大数据的定义是Volume(容量)、Velocity(速度)和Variety(多样性),但也有人另外加上Veracity(真实性)和Value(价值)两个V。但其实不论是几V,大数据的资料特质和传统资料最大的不同是,资料来源多元、种类繁多,大多是非结构化资料,而且更新速度非常快,导致资料量大增。而要用大数据创造价值,不得不注意数据的真实性。

为什么需要大数据?

因为当从人到机器都已经被数据解构,数据不仅仅是欧巴马口中的石油或是黄金,它更是血液,贯穿每个人一生中每个生命阶段。这并非危言耸听,更不是科幻电影,而是正在逐步成真的现实。

大数据的应用广泛

对企业而言,大数据可望提升服务质量、增加管理效率、帮助决策和创造商业模式;对一般民众而言,大数据是另一个自我,它可能比本人更了解本人,为你预先解决每个未知,当一切都开始数据化,你能够不需要数据吗?

大数据一定要很大吗?

虽然大数据的狭义定义是,资料量要在100TB到PB之间,但其实绝大多数的企业,都不符合这个标准,大企业如eBay、亚马逊或AT&T或许符合大数据的标准。但其实资料量只是大数据的其中一个面向,大数据揭示的是一种「资料经济」的精神,而非只是「大」。

「大,是大数据中最无趣的部分。」公子义认为,企业真正要寻找的是非传统的、而且未曾被挖掘过的资料,并且从这些资料中去提炼出价值,这才是对大数据应有的正确认知,而非只是执着于资料大小,只要能从看似毫无意义的数据矿坑中挖掘出金矿,有谁会在意那座矿坑原本是大得像座山还是小得像狗屋呢?和沛科技创办人翟本乔就指出,大数据这个名字容易让人误导,因为真正重要的其实是大智慧。大数据不只是说资料量有多大,速度快和资料量大都可以用技术轻易解决,但种类(Variety)比较需要智慧。

没有大数据就不能用大数据吗?

非也,建置大数据架构与环境的确所费不赀,一般中小企业通常无法轻易投入巨额成本,但大数据时代的精神在于如何妥善利用既有或非传统资料,从中挖掘出新商机,因此即使是中小企业甚或者是新创企业,都能在大数据时代用「大数据」。

数据应该如何建立?

就技术面来说,现在有许多业者开始提供建置成本较低的大数据处理工具和云端系统,有些甚至跟App一样,只要根据自身需求挑选需要购买的功能即可,例如科智提供的工业化数据管理工具即为一例。另一方面,很多时候中小企业其实不需要建设大数据系统。公子义认为,在绝大多数情况下,大数据项目其实不需要建置Hadoop系统,先用小量资料去验证一个概念,是否能将资料转换成商业机会,再来决定要不要建置大数据的作业环境。

大数据领域权威麦尔苟伯格(Viktor Mayer-Schönberger)在《大数据》一书中便提及,大公司有巨量资料的规模优势,但小公司有成本及创新上的优势,小公司因为速度够快、灵活度高,就算维持小规模,还是能够蓬勃发展。

要怎么开始进行大数据项目?

第一步设置专门统筹大数据项目的部门和职衔, 而且层级越高越好,企业领导人必须足够正视大数据的力量,才能带动整个组织重视数据的文化。Etu负责人蒋居裕便指出,大数据其实是管理问题,而非技术问题,缺少跨部门协作,大数据项目很难有个美好的开始。

第二步,切勿陷入大数据迷思,与其急着想用数据变现,不如先回头看看自己企业内部的问题为何,先定义问题,再试图用数据找解方。 阿里巴巴集团副总裁车品觉建议,与其整天想着大数据,不如先整顿自己企业内部的数据,很多时候光是企业内部的数据就问题丛生,不同部门之间的数据无法兼容,「整个数据在一个中小企业里面也是四分五裂,在这个地方没做好的情况下,居然说你想用大数据,其实是有点难以理解。」

大数据从哪来?

任何地方。随着物联网兴起,任何以前不可能产生资料的东西或地方都可能「资料化」。公子义认为大数据的发展可以分成三阶段,正说明了大数据的来源多样化:.com时期、社群网络时期和物联网时期。早在2000年初网络热潮兴起,人们就已经开始研究log资料,搜集使用者的cookie和搜寻行为等。而社群网络如Facebook或Twitter将人们的互动关系数据化,这些社群数据创造了大量的商业价值。而第三阶段物联网时期,可能是最有趣的阶段,无论是机器还是人都开始被数据解构,数据可能来自手表、鞋垫甚至皮带,这些物联网数据将是接下来重要的数据分析对象。

大数据有什么风险?

传统商业分析会有的风险,大数据也都会有,这并非大数据才有的问题,「个资安全问题」一直都存在,只是随着资料来源越来越多且资料量越来越大,资安问题更显迫切罢了。市场研究机构Gartner研究副总裁布莱恩(Brian Prentice)指出,大数据本身并没有资安问题,问题在企业应用资料的方式,Gartner预测2018年,企业违反商业伦理的案件中,有近50%都来自不当的大数据应用。

另一值得关切的是大数据可能带来的「资料独裁问题」,根据大数据领域权威麦尔苟伯格(Viktor Mayer-Schönberger)的说法,资料独裁指的是任由资料来管控我们,盲目受到分析结果的制约,导致滥用或误用资料。例如根据数据分析将人群分类,其实有可能会把个体给标签化,甚至污名化某些族群,想象未来若我们用数据预先打击犯罪,那会是什么情景?

2. 大数据面临哪些安全与隐私问题

(一)大数据遭受异常流量攻击
大数据所存储的数据非常巨大,往往采用分布式的方式进行存储,而正是由于这种存储方式,存储的路径视图相对清晰,而数据量过大,导致数据保护,相对简单,黑客较为轻易利用相关漏洞,实施不法操作,造成安全问题。由于大数据环境下终端用户非常多,且受众类型较多,对客户身份的认证环节需要耗费大量处理能力。由于APT攻击具有很强的针对性,且攻击时间长,一旦攻击成功,大数据分析平台输出的最终数据均会被获取,容易造成的较大的信息安全隐患。
(二)大数据信息泄露风险
大数据平台的信息泄露风险在对大数据进行数据采集和信息挖掘的时候,要注重用户隐私数据的安全问题,在不泄露用户隐私数据的前提下进行数据挖掘。需要考虑的是在分布计算的信息传输和数据交换时保证各个存储点内的用户隐私数据不被非法泄露和使用是当前大数据背景下信息安全的主要问题。同时,当前的大数据数据量并不是固定的,而是在应用过程中动态增加的,但是,传统的数据隐私保护技术大多是针对静态数据的,所以,如何有效地应对大数据动态数据属性和表现形式的数据隐私保护也是要注重的安全问题。最后,大数据的数据远比传统数据复杂,现有的敏感数据的隐私保护是否能够满足大数据复杂的数据信息也是应该考虑的安全问题。
(三)大数据传输过程中的安全隐患
数据生命周期安全问题。伴随着大数据传输技术和应用的快速发展,在大数据传输生命周期的各个阶段、各个环节,越来越多的安全隐患逐渐暴露出来。比如,大数据传输环节,除了存在泄漏、篡改等风险外,还可能被数据流攻击者利用,数据在传播中可能出现逐步失真等。又如,大数据传输处理环节,除数据非授权使用和被破坏的风险外,由于大数据传输的异构、多源、关联等特点,即使多个数据集各自脱敏处理,数据集仍然存在因关联分析而造成个人信息泄漏的风险。
基础设施安全问题。作为大数据传输汇集的主要载体和基础设施,云计算为大数据传输提供了存储场所、访问通道、虚拟化的数据处理空间。因此,云平台中存储数据的安全问题也成为阻碍大数据传输发展的主要因素。
个人隐私安全问题。在现有隐私保护法规不健全、隐私保护技术不完善的条件下,互联网上的个人隐私泄露失去管控,微信、微博、QQ等社交软件掌握着用户的社会关系,监控系统记录着人们的聊天、上网、出行记录,网上支付、购物网站记录着人们的消费行为。但在大数据传输时代,人们面临的威胁不仅限于个人隐私泄露,还在于基于大数据传输对人的状态和行为的预测。近年来,国内多省社保系统个人信息泄露、12306账号信息泄露等大数据传输安全事件表明,大数据传输未被妥善处理会对用户隐私造成极大的侵害。因此,在大数据传输环境下,如何管理好数据,在保证数据使用效益的同时保护个人隐私,是大数据传输时代面临的巨大挑战之一。
(四)大数据的存储管理风险
大数据的数据类型和数据结构是传统数据不能比拟的,在大数据的存储平台上,数据量是非线性甚至是指数级的速度增长的,各种类型和各种结构的数据进行数据存储,势必会引发多种应用进程的并发且频繁无序的运行,极易造成数据存储错位和数据管理混乱,为大数据存储和后期的处理带来安全隐患。当前的数据存储管理系统,能否满足大数据背景下的海量数据的数据存储需求,还有待考验。不过,如果数据管理系统没有相应的安全机制升级,出现问题后则为时已晚。

3. 大数据面临哪些安全与隐私问题

在大数据环境下,人们上传的数据会面临这些问题:
一:数据安全隐患问题;注要表现在(一)大数据遭受异常攻击,造成安全隐患。(二)大数据泄露风险。(三)大数据传输过程的安全隐患。(四)大数据存储管理风险。
二、大数据隐私问题;主要表现在(一)个人隐私保护。(二)传统安全措施难以适配。(三)数据访问控制愈加复杂。

4. 大数据的弊端是什么

大数据的弊端是可能造成数据泡沫风险。大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

结构

大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。

大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

5. 大数据安全层面的风险主要包括

大数据在应用和存储中存在着一系列安全风险,包括以下几个层面:
数据泄露风险:大数据的存储和传输,容易面临数据泄露的风险。这些数据可能是敏感性数据,如个人身份信息、财务信息、医疗记录等。
数据完整性风险:大数据存储和传输中,数据可能会遭受损坏、篡改或丢失,因此需要采取保护措施,保证大数据的完整性。
权限管理风险:“大数据时代”涉及众多数据源,管理人员要对各类数据源的权限进行仔细的分析和考虑,设置合适的权限,避免数据泄漏、篡改等风险。
命令注入风险:黑客利用安全漏洞,通过构造特殊的输入进行攻击,从而在系统内执行恶意命令,造成系统瘫痪、用户数据丢失等风险。
恶意软件攻击:恶意软件是指那些被创建来入侵计算机、网络或移动设备的软件,通过恶意指令来获取敏感数据,窃取隐私信息,或者破坏系统的完整性。
供应链风险:大数据往往依赖于云服务、第三方应用等,这些供应商存在安全问题时,会直接影响大数据的安全。
数据处理风险:大数据可能存在各种数据处理问题,如特征选择错误、处没烂理数据集不准确、应用算法核闭缺陷等,从而导致大数据的隐私和安全问题。
这些安全风险需要引起我们的注意,企业或个人在使用、处理与存储大数据时,应制定安全策略和措施,加强数据管理与安枯氏漏全运维,从而有效地缓解数据的安全风险。

6. 大数据安全面临哪些风险及如何防护

现如今大数据已经逐渐改变了我们的生活方式,成为必不可少的存在,在我们享野首受大数据给我们带来的便利时,安全性无论对于企业还是个人都是必须要解决的重大课题。

总结大数据面临的三大风险问题如下

1.个人隐私问题凸显

例如大数据中的精准营销定位功能,通常是依赖于高度采集个人信息,通过多种关联技术分析来实现信息推广,精准营销。企业会掌握用户大量的数据,不排除隐私部分的敏感数据,一旦服务器遭到不法分子攻击导致数据泄露,很可能危及用户的隐私、财产甚至是人身安全。

2.数据准确与权威性

大数据通过各种渠道获取大量数据进行计算分析,企业通常直接通过分析结果进行支持决策,有时候企业只看结果,却忽略了源头数据的准确性,不准确的数据直接影响大数据分析的结果和企业的利益,错误的指导会对企业带来一定的风险与损失。

3.基础设施维护压力

数据量越大,对基础设施的性能要求就越高,同样对于网络的安全、恢复、防范依赖性就越强,一定程度上对企业设施安全的维护造成了压力,基础设施建设不完善、维护不到位,抱有没出问题就得过且过的态度,时刻面临被攻击的危险可能。

针对上述问题的防护措施如下

1.对用户早脊哗而言

虽然在互联网时代下要完全保护自己的隐私是比较困难的,但也要加强自身信息的防范意识。注册账号时,遵循最少原则,不要随意泄露敏感信息,降陆行低隐私信息被泄露的危险;

2.对企业而言

加强数据安全管理,实现数据的治理与清洗,从源头保证数据的一致性、准确性。首先升级基础服务器环境,建立多重防护、多级互联体系结构,确保大数据处理环境可信度。其次全方位实时监控、审计、防护,防止敏感数据泄露、丢失,确保数据风险可控,并不断通过体系化的大数据安全评估,形成数据安全治理的闭环管理;

3.对政策而言

应该加强对数据信息的保护,对数据的使用进行一定的监管与限制,对非法盗用、滥用数据信息者严惩,之后加强对技术安全研发使用的推广与实施,保证数据安全,加强对数据治理的力度。

大数据时代的到来,可以为我们的生活带来切实的利益,行业的数据规范正在建立并逐步趋于完善,对于我们来说,既不要因为安全风险问题而排斥大数据,也不要疏忽于对个人/企业信息的保护,合理看待和利用大数据,让其发挥真正的价值。

7. 大数据安全层面的风险

外部非授权人员对信息系统进行恶意入侵,非法访问隐私数据。
大数据平台中,B域、M域、O域及DPI信令等各类数据集中存储,一旦发生安全事件则可涉及海量客户敏感信息及公司数据资产。
大数据多部署在云环境晌缓中,由于存储、计算的多层面虚拟化,带来了数据管理权与所有权分离,网络边界模糊等新问题。
大数据平台多使用Hadoop、Hive、第三方组件等开源软件,这些软件设计初衷是为了高效数据处理,系统性安全功能相对缺乏宴敬模,安全防护能力远远滞后业务发展,存在安全漏洞。
敏感数据跨部门、跨系统留存,任一单位或系统安全防护措施不当,均可能发生敏感数据泄漏,造成“一点突破、全网皆稿闷失”的严重后果。

8. 央行大数据36项有风险是什么

央行大数据36项有风险包括信贷风险、操作风险、市场风险、合规风险、技术风险、经营风险等。

9. 关于大数据相关的风险概述 关于大数据相关的风险概述内容是什么

1、数据建设风险操作,主要指在工程建设过程中,对关键系统、关键组件进行变更升级等操作。

2、数据管理风险操作,主要指数据生产运营过程中,对数据模型和数据实例进行定义调整、变更等造成数据异常的操作。

3、数据开放风险操作,主要指数据能力开放过程中,导致数据共享服务中断。

4、或者涉及违规对企业外部提供数据能力和API服务的操作。

5、数据应用风险操作,主要指数据应用服务提供过程中,对数据应用功能及服务内容进行上线变更、回溯更新,导致出现数据展示错误或者影响客户服务感知的操作。

6、数据安全风险操作,主要指在数据全生命周期中,导致对个人用户隐私信息。

7、或者企业运营管理机密信息出现数据泄露、数据丢失、数据篡改等安全问题的操作。

阅读全文

与大数据项目风险相关的资料

热点内容
python所支持的文件格式 浏览:983
gif87a文件 浏览:782
wordstarter2010下载 浏览:803
苹果百分之一的电量 浏览:651
孔的倒角怎么编程 浏览:139
大家用哪个网站找传奇 浏览:462
怎么用qq绑定微信账号密码错误 浏览:461
word文字横版变竖版 浏览:46
js正则表达式整数 浏览:9
dvd视频文件刻录视频dvd 浏览:550
列举四种linux文件系统命令 浏览:348
海尔网站交互功能有哪些 浏览:85
小米手机切换不同网络 浏览:996
xp系统怎样设置开机密码 浏览:604
上传图片伪装为php执行文件 浏览:20
查看数据库的角色 浏览:291
学的计算机编程怎么用专业术语说 浏览:288
appium启动失败 浏览:902
怎么用编程写逆转数 浏览:942
ps关闭图像文件的快捷键 浏览:465

友情链接