『壹』 大数据时代发展历程是什么
可按照时间点划分大数据的发展历程。
『贰』 大数据的发展前途怎么样
大数据的就业前景目前来看是不错的,随着大数据往各垂直领域延伸发展,对统计学、数学专业的人才,数据分析、数据挖掘、人工智能等偏软件领域的需求加大,大数据领域从业人员薪资水平将持续增长,人才供不应求。
大数据就业方向
1、大数据开发方向。所涉及的职业岗位为:大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等;
2、数据挖掘、数据分析和机器学习方向。所涉及的职业岗位为:大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等;
3、大数据运维和云计算方向。对应岗位:大数据运维工程师;
三个方向中,大数据开发是基础。以Hadoop开发工程师为例,Hadoop入门月薪已经达到了8k以上,工作1年月薪可达到1.2w以上,具有2-3年工作经验的hadoop人才年薪可以达到30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径。从近两年大数据方向研究生的就业情况来看,大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。
从近几年招聘情况来看,大数据开发岗位的数量明显比较多,而且不仅需要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。
当前大数据技术正处在落地应用的初期,所以此时人才招聘会更倾向于研发型人才,而且拥有研究生学历也更容易获得大厂的就业机会,读研之后在岗位选择上可以重点考虑一下大数据平台开发,在5G通信的推动下,未来云计算会全面向PaaS和SaaS领域覆盖,这个过程会全面促进大数据平台的发展。
『叁』 大数据的发展趋势有哪些
——更多数据来源及分析请参考于前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。
大数据与AI、5G、IoT等应用为公有云创造了巨大的需求,扮演着大数据基础设施服务提供者的角色,在大数据核心诉求的存储和计算能力上给予不可或缺的支撑。
大数据又赋能公有云行业的发展,将更好地参与到行业应用与数据变现的发展,催生大量的行业应用,为云服务未来扩充发展提供想象空间。积极的国家政策将持续推动各行业企业积极上云,拥抱数字化转型,公有云服务应用场景特别是数据应用不断拓宽。
近几年我国云计算行业的市场规模和渗透率均在持续增长,使得我国公有云市场进入了一个新的发展阶段。除此之外,在5G商用以及AI等技术发展的推动下,我国公有云市场规模始终保持高速增长趋势,根据中国信息通信研究院的数据统计,2018年,中国公有云市场规模达到437.4亿元,较2017年增长65.2%。
2012-2018年中国公有云市场规模统计及增长情况
数据来源:前瞻产业研究院整理
『肆』 大数据专业的前景如何
近些年随着成都的经济发展,许多外地人来到成都打拼、定居,因此也产生了许多的问题,其中大数据专业就业前景应该怎么样就是人们的重点关注问题,小编整理相关内容,欢迎大家阅读,希望这些内容对大家有所帮助。未来3至5年,中国需要180万数据人才,但截至目前,中国大数据从业人员只有约30万人。同时,大数据行业选才的标准也在不断变化。初期,大数据人才的需求主要集中在ETL研发、系统架构开发、数据仓库研究等偏硬件领域,以IT、计算机背景的人才居多。随着大数据往各垂直领域延伸发展,对统计学、数学专业的人才,数据分析、数据挖掘、人工智能等偏软件领域的需求加大。一、大数据主要就业方向2015年9月国务院印发《促进大数据发展行动纲要》,系统部署大数据发展工作。《纲要》明确提出了七方面政策机制,其中第六条就是加强专业人才培养,建立健全多层次、多类型的大数据人才培养体系。目前,大数据主要有三大就业方向:大数据系统研发类、大数据应用开发类和大数据分析类。具体岗位如:大数据分析师、大数据工程师等。“大数据分析师是用适当的统计分析方法对收集来的大量数据进行分析,强调的是数据的应用,侧重于统计层面内容会多一些。比如做产品经理,可以通过数据建立金融模型,来推出一些理财产品。而大数据工程师则侧重于技术,主要是围绕大数据平台系统级的研发,偏开发层面。”华迎教授介绍:“我们把大数据分析在业务中使用的流程总结起来,分为以下几个步骤:数据获取和预处理、数据存储管理、数据分析建模、数据可视化。在这个应用流程中,毕业生可以根据自己的兴趣和特长,在不同的环节选择就业。”二、颂羡兄大数据工作领域目前的大数据工作领域分了以下四大类:1、数据开发工程师:负责数据接入、数据清洗、底层重构,业务主题建模等工作;大数据整体的计算平台开发与应用;2、数据野袭分析师:在拥有行业数据的电商、金融、电信、咨询等行业里做业务咨询,商务智能,出分析派郑报告。3、数据挖掘工程师:在多媒体、电商、搜索、社交等大数据相关行业里做机器学习算法实现和分析。4、科学研究方向:在高校、科研单位、企业研究院等高大上科研机构研究新算法效率改进及未来应用。以上就是小编给大家整理的相关方面的知识,然而书面知识是理论知识,在实践中对于大数据专业就业前景应该怎么样还是要具体情况具体分析,如果大家对此还有疑问的,可以到相关机构部门进行进一步的咨询和了解。希望我的回答对您有帮助!如果您还有任何疑问,欢迎到进行法律咨询,祝您生活愉快!
『伍』 大数据时代下高中数学教学探讨论文
大数据时代下高中数学教学探讨论文
摘要: 大数据时代的到来,为人们的生产生活带来了极大的便利,也为教育教学的创新以及发展带来很大的影响。因此,在大数据时代下,要分析大数据的相关概念,然后对大数据时代下的历枣高中数学教学方式的创新以及应用进行研究,以此来提高高中数学教学的有效性。
关键词: 大数据时代;高中数学;教学方式
信息技术的发展促使了大数据时代的到来,不仅增加了知识获取的途径,也改变了传统的学科教学方式,对促进高中数学教学改革的推进具有重要影响。因此,在大数据时代下,高中数学教师要利用大数据的技术优势,对现存的教学模式进行改革,突出数学教学的时代性,使学生在数学学习中既能够获得相应的知识,还能够树立正确的价值观念,促进高中生数学综合素养的形成,从而促进高中数学学科的健康发展。下面本文将对其进行详细论述。
1大数据相关概念
第一,大数据概念。数据是知识的来源,也是信息的一种记载方式。随着社会的发展和科学的进步,数据数量不断增多,对数据进行记录、测量以及分析的范围也就不断扩大,这标志着人类已经获得越来越多的知识和信息。大数据可以从宏观和微观两个角度去理解,多数学者都是从宏观上对大数据概念进行定义的,即用新的处理模式提高数据出来的执行力,洞察能力以及海量信息的优化能力。大数据具有数据信息量大、种类多种多样、真实性以及实效性强等特点。
第二,大数据分析概念。大数据分析简单来说就是要对大规模的数据进行科学分析,而对这些庞大的数据资源进行分析最根本的目的就是要发现和总结出这些数据中存在的规律以及模式,然后再利用数据的动态性特征去预测事物的未来发展趋势。
2大数据时代下高中数学教学方式的应用
2.1利用大数据转变教师的教学角色
第一,应用大数据技术为教师教学模式的创新提供了机会。大数据时代的到来,传统的教学方法弊端逐渐显现,不仅体现出了与现代社会的不适应,也影响了学生学习积极性的提高。因此,在大数据时代,教师要利用大数据技术开展例如合作链烂液探究、个性化教学等多样化的教学方式,丰富课堂教学形式和内容,使学生不再死板地接受学习内容,而教师也能够根据学生的不同阶段开展针对性的.教学活动。教师教学角色和教学模式的转变,强调了学生在课堂中的主体地位,对活跃课堂气氛,提升课堂教学的有效性具有重要作用。例如:在学习“集合”这节课时,教师就可以采用合作探究的教学方式。首先,结合学生的差异性,将学生分成不同的小组,然后设计不同的问题组织学生进行探究,如:①用什么对集合进行表示?可以用一个元素表示集合吗?集合与元素之间有什么关系呢?②集合都有棚物哪些特征呢,结合具体题目进行判断。之后,小组之间对研究结果进行互相交流。再后教师设计突出本节课重点的习题,给学生锻炼的机会。通过这样的教学方式,不同的学生组织到一起集思广益,互相帮助,不仅有利于促进学生思维的发散,还转变了教师的教学角色,提升了课堂学习效率。
第二,应用大数据技术对学生的学习情况进行深入了解。在传统的课堂教学形式下,教师过于侧重学生学习成绩的提升,忽视对学生的了解,导致教学针对性不强,影响教学效果。通常情况下,教师对学生了解是通过考试以及随堂测试的形式进行侧面分析,但这种分析得出的结果并不准确。但在大数据时代,利用大数据技术教师能够对学生的真实情况进行挖掘,然后根据学生之间的个性差异,对学生进行充分的了解,同时教师利用网络技术能够对学生的兴趣点和薄弱点进行准确判断,从而使自己的教学活动与学生的学习需求相吻合,突出数学教学的针对性。
2.2利用大数据发挥学生的主体作用
第一,应用大数据提升学生的学习兴趣。在以往的教学方式下,学生是知识的接受者,部分教师为了提高教学效率甚至一味地向学生进行知识传输,殊不知这种填鸭式的教学方式,不仅无法激发学生的学习兴趣,还会造成学生的抵触情绪,对学习产生厌烦心理,进而影响数学学科教学效率的提升。因此,在大数据时代下,要充分发挥大数据的优势,利用大数据技术去激发学生的学习兴趣,丰富数学课堂的内容,使学生产生主动求知的欲望,能够积极主动地参与到教师组织的教学活动中来。大数据技术的具体应用可以从以下几个方面进行。首先,教师可以利用计算机平台设计预习内容,然后学生能够通过计算机平台自己完成教师布置的习题,教师之后可以借助大数据进行数据分析,这样教师在授课之前就能够找到学生学习的弱点以及难懂点。例如,教师可以利用大数据对学生在“函数”知识中存在的问题进行分析,然后了解到学生易错点和薄弱的地方,之后据此设计相应的课程教案。这样在课堂上学生就能够根据教师针对性的教学设计进行学习,以此来提升课堂教学的有效性。
第二,应用大数据提升学生的学习自主性。学科教学最关键的就是要提高学生的学习积极性,所以在高中数学教学中教师要注重学生自主性的提升。在高中数学教学中,课后知识巩固与习题练习是提高学生学习成绩的重要组成部分,但以往学生通常都是靠手抄错题的形式进行习题纠错和解答的,这种方式取得的效果并不显著,一是浪费了较多的学习时间,二是形式枯燥,学生学习自主性不高,在整理之后查漏补缺效果也不好。所以在此环节可以应用大数据技术为学生的课后自主学习提供平台。在大数据技术的支持下,教师可以将学生之前做好的试卷或者解答过程的问题输入到计算机系统当中,之后学生通过网络进行问题的下载和解答,以便于学生对问题进行查漏补缺。这种方式相比于传统的纠错形式,具有实时性的特征,有利于学生对纠错内容进行更好的掌握。
第三,应用大数据开展分层式的教学形式。目前我国多数高中数学课堂教学采取的都是班级统一上课的教学形式,模式单一固定,缺乏创新性,不仅不利于激发学生的学习积极性,还会影响学生的个性发挥,进而影响学生的潜能的挖掘。“因材施教”是孔子提出的教学思想,所以在大数据环境下,教师要利用大数据技术采取分层式教学的方式,结合每个学生的差异性,开展不同类型的教学活动。每个学生都是独立存在的个体,在思想、能力以及身心发展上都具有差异性,所以针对不同学生的不同特性开展分层教学活动,不仅能够满足学生层次化的学习需求,还能够有效地激发学生的学习兴趣。同时,教师在数学教学中尝试不同的教学方法,应用创新型的教学模式,也能够很好地活跃课堂氛围,调动学生的课堂参与度,从而达到提升学生学习效果的目的。
2.3利用大数据拓宽学生获取知识的途径
大数据时代下,数据量和知识信息不断扩大,学生能够接触和学习到的内容也不断增多,所以教师要利用网络信息技术,在网络上搜集和整理更多的学习资料和信息,然后结合具体的教学目标和学习内容进行这些信息的分析和处理,以此来提高教师的教学效果。而在大数据环境下,学生也能够利用网络技术自行进行数学资源的获取,不断丰富自身的学习的内容,对抽象的数学知识进行简化。另外,在大数据环境下,教师要为学生提供真实、可靠的数据教学服务,引导学生养成善于开发和应用数据的意识和能力,能够根据自身的需要进行数据的获取,这也能够为教师教学互动的开展提供针对性,促进师生间的共同进步。例如:在学习“数列”这节课时,教师可以在课前引导学生利用网络自己进行课前的预习,对数列这节课的知识有个简单的认识,并能够对基本的知识点以及概念进行理解。之后,在课堂上教师可以利用多媒体技术开展具体的教学活动,将教学知识点直观、形象地展现在学生的面前,在课程结束之后,教师组织学生对自己设计的随堂测试问题进行解答,然后对错题进行整理。这种一系列的教学活动,能够提高学生大数据技术的利用与开发能力,对拓宽学生的知识获取途径,提高学生的学习效率具有关键作用。
2.4利用大数据为家长提供教育平台
家庭在学生教育中具有非常重要的作用,家庭是学生的第一所学校,但以往的高中数学教学对家庭教育并不重视,家长没有广泛地参与到学校教育中去,而学校也没有为家长提供更多学习教育的机会,除了每次家长会之外,教师其他时间很少能见到家长,也就很少能参与学生的学习。但大数据时代,网络技术的应用为家长与学校教育的沟通提供了很宽广的平台,家长可以通过固定的软件进行账号的绑定,然后随时对自己家孩子的上课以及课后情况进行了解,进而更好地了解学生近期的表现情况。同时,家长也可以利用这些软件与教师进行交流,对学生的学习和生活情况进行了解,与教师进行充分的沟通和互动。使家长能够更好地配合学校的教育活动,在提高学生数学学习效果的同时,促进学生的健康成长。
3结语
综上所述,大数据时代下数据数量不断增多,网络技术的应用越发广泛,在此种环境下开展高中数学教学活动,不仅有利于创新教师的教学思想和教学方式,也有利于激发学生的学习兴趣,提高学生对数学学科的学习热情,从而达到大数据促进学科教学效果提升的目的。高中数学是一门综合性学科,能够培养学生的逻辑思维和推理能力,同时数学也是一门与人们日常生活密切相关的一门学科。所以在大数据时代,教师要利用好大数据信息,发挥好信息技术在教学中的优势,不断改善自身的教学角色,突出学生的主体地位,拓宽学生获取知识的途径,加强家长与学校的沟通等,使学生在大数据环境下能够养成乐于学习的好习惯和科学的学习方法,推动高中数学教学效果的有效提升,促进学生身心健康成长。
参考文献
[1]孟越飞.大数据背景下的高中数学教学[J].中小学电教(下半月),2018(1):22.
;『陆』 大数据时代,你觉得大数据的未来发展趋势有哪些呢
区块链技术是指一种全民参与记账的方式。所有的系统背后都有一个数据库,你可以把数据库看成是就是一个大账本。目前是各自记各自的账。
柯斯塔表示,这项技术本质是编译码跟加解密,可以有效加密信息。区块链有很多不同应用方式,美国几乎所有科技公司都在尝试如何应用,最常见的应用是比特币跟其他加密货币的交易。
趋势五:语音识别
语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。
语音识别是通用的无屏幕接口,可以迅速地整合在各项工具上,在智能设备跟手机上很好用,而Amazon的智能喇叭Echo现在发展到第三代,可以开关智能电灯、开口询问就能搜寻信息等。这项产业有个很大优点,就是发展技术的公司都打算把这项技术商品化,像是google、Amazon跟苹果的语音识别技术都可透过授权,使用在其他业者的硬件服务上。
趋势六:人工智能(AI)
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能需要被教育,汇入很多信息才能进化,进而产生一些意想不到的结果。AI影响幅度很大,例如媒体业,现在计算机跟机器人可以写出很好的文章,而且1小时产出好几百篇,成本也低。AI对经济发展会产生剧烈影响,很多知识产业跟白领工作也可能被机器人取代。但他对于AI的态度很正面,这会让生活更好,例如自驾车绝对比人驾车更安全。
趋势七:数字汇流
何为数字汇流?
大约从1995年左有,就陆续有人在讨论所谓“数位汇流”,说有一天电话、电视、音响、电脑与游戏机,将会整合成一个装置。事实上这件事情早就发生了,iPhone 就是这样的装置。但这件事情也还没发生,因为在客厅,你还是需要一个50寸的荧幕和一组6.1声道喇叭,好好去享受你的影音。iPhone 或许可以接上这些周边,但总不能每次老爸的电话一响,大家看到一半的电影就要暂停吧?
所以数位载具会汇流,每个装置都可以兼当另一个装置使用。但那大概不代表每个人都只买一个数位装置,事实上,在不同的使用情境之下,我们还是会需要很不一样的数位装置— 光是萤幕大小就有好多种选项,音响效果、摄影机,都需要不同的配套。
所以数位汇流比较像“iCloud”,也就是说所有的装置会存取同一个远端资料库,让你的数位生活可以完全同步,随时、无缝的切换使用情境。
但除了“载具”的汇流,我更关心的是另一个数位汇流,一个网路商业模式的汇流,或者更明确的说,数字汇流就是“内容”与“电子商务”的汇流。
他认为对未来冲击最大的一项趋势,就是将上述六项趋势合并起来的效果,像是84亿个物联网设备,可用区块链技术加强安全性;智慧城市透过物联网,就能产生海量数据,这些数据需要由人工智能进行分析;虚拟现实和语音识别也需要透过人工智能不断学习,这些科技发展息息相关,相辅相成,所以数字汇流是最重要的趋势。
『柒』 大数据技术的发展趋势有哪些
大数据行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等
本文核心数据:大数据应用领域分布 互联网大数据、金融大数据、政府大数据市场规模 应用场景等
应用领域分布:互联网、政府、金融为大数据主要应用领域
从具体行业应用来看,互联网、政府、金融和电信引领大数据融合产业发展,合计规模占比为77.6%。互联网、金融和电信三个行业由于信息化水平高,研发力量雄厚,在业务数字化转型方面处于领先地位;政府大数据成为近年来政府信息化建设的关键环节,与政府数据整合与开放共享、民生服务、社会治理、市场监管相关的应用需求持续火热。此外,工业大数据和健康医疗大数据作为新兴领域,数据量大、产业链延展性高,未来市场增长潜力大。
互联网大数据领域
——互联网大数据应用场景
在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。
——大数据在互联网领域的应用占比过半,2021年市场规模有望突破3000亿
面对当今快速增长的海量互联网数据和复杂的网络社群关系,如何从中提取有价值信息,建立用户模型,针对不同用户提供针对性产品,以此来提高用户体验,增加用户粘性,是当前互联网行业面对的主要挑战之一。社交网站、电商网站将是最需要大数据技术的两类网站,用户间关联性和消费行为是其关注的主要方面。
根据赛迪数据,我国大数据产业在互联网领域的应用占比约为45.2%。据测算,2017年,中国互联网大数据产业规模达1604.7亿元,2020年约为2887.4亿元。
注:上述互联网大数据市场规模为前瞻根据中国大数据市场规模与互联网大数据所占市场份额数据测算所得,仅供参考。
政府大数据领域
——政府大数据应用场景
中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。
——2020年政府大数据市场规模超900亿元
根据赛迪数据,我国大数据产业在政府领域的应用占比约为14.5%。据此测算,2017年以来,我国政府大数据规模逐年增加。2017年,中国政府大数据产业规模达514.8亿元,2020年约为926亿元左右。
注:政府大数据市场规模为前瞻根据中国大数据市场规模与政府大数据所占市场份额数据测算所得,仅供参考。
金融大数据领域
——金融大数据应用场景
过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。
——大数据在金融领域的应用空间巨大,2020年市场规模已超600亿
金融数据是大数据商业应用最早的数据源,早在1996年摩根大通银行就聘请数学家丹尼尔利用递归决策树统计方法,对抵押贷款用户进行统计分析,帮助银行找到可能提前还款或者未来不会还款的客户。经过一年的运行,基于递归决策树的抵押贷款管理为摩根大通银行创造了近6亿美元利润。
根据赛迪数据,我国大数据产业在金融领域的应用占比约为9.4%。据测算,2017年,中国金融大数据产业规模达333.7亿元,2020年约为600亿元。
注:金融大数据市场规模为前瞻根据中国大数据市场规模与金融大数据所占市场份额数据测算所得,仅供参考。
更多行业相关数据请参考前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。