不带手机只登录微信能同步到大数据吗?不可以
这个不可以除非用电基差脑也就是微信聊天记录备份在电脑上目前微信聊天记录只能同步手机或者是电脑只有这两种设备才可以进行逗锋行迁移如果你手机不登录微信的话是无山哗法进行微信聊天记录同步的如果旧手机还在,
② 实名更改后多久大数据同步更新
大概需要几个月的时间。
实名更改后户籍系统会立即更新,但要过好几个月才会更新到联网核查系统里面,所以暂时还办不了手机卡和银行卡。
支付宝、微信还有手机号、银行卡的所有信息都先不要改,等原来的信息失效了说明新的信息生效了,当然要定期检查是否可以更改支付宝的实名,之后再改这一系列,如果有新的东西需要本人身份证绑定的银行卡、手机号等那就都新办一个。
③ 大数据常用同步工具
一、离线数据同步
DataX
阿里的Datax是比较优秀的产品,基于python,提供各种数据村塾的读写插件,多线程执行,使用起来也很简单,操作简单通常只需要两步;
创建作业的配置文件(json格式配置reader,writer);
启动执行配置作业。
非常适合离线数据,增量数据可以使用一些编码的方式实现,
缺点:仅仅针对insert数据比较有效,update数据就不适合。缺乏对增量更新的内置支持,因为DataX的灵活架构,可以通过shell脚本等方式方便实现增量同步。
参考资料:
github地址:https://github.com/alibaba/DataX
dataX3.0介绍:https://www.jianshu.com/p/65c440f9bce1
datax初体验:https://www.imooc.com/article/15640
文档:https://github.com/alibaba/DataX/blob/master/hdfswriter/doc/hdfswriter.md
Sqoop
Sqoop(发音:skup)是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql…)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
地址:http://sqoop.apache.org/
Sqoop导入:导入工具从RDBMS到HDFS导入单个表。表中的每一行被视为HDFS的记录。所有记录被存储在文本文件的文本数据或者在Avro和序列文件的二进制数据。
Sqoop导出:导出工具从HDFS导出一组文件到一个RDBMS。作为输入到Sqoop文件包含记录,这被称为在表中的行。那些被读取并解析成一组记录和分隔使用用户指定的分隔符。
Sqoop支持全量数据导入和增量数据导入(增量数据导入分两种,一是基于递增列的增量数据导入(Append方式)。二是基于时间列的增量数据导入(LastModified方式)),同时可以指定数据是否以并发形式导入。
Kettle
Kettle是一款国外开源的ETL工具,纯java编写,可以在Window、Linux、Unix上运行,数据抽取高效稳定。
Kettle的Spoon有丰富的Steps可以组装开发出满足多种复杂应用场景的数据集成作业,方便实现全量、增量数据同步。缺点是通过定时运行,实时性相对较差。
NiFi
Apache NiFi 是一个易于使用、功能强大而且可靠的数据拉取、数据处理和分发系统,用于自动化管理系统间的数据流。它支持高度可配置的指示图的数据路由、转换和系统中介逻辑,支持从多种数据源动态拉取数据。
NiFi基于Web方式工作,后台在服务器上进行调度。 用户可以为数据处理定义为一个流程,然后进行处理,后台具有数据处理引擎、任务调度等组件。
几个核心概念:
Nifi 的设计理念接近于基于流的编程 Flow Based Programming。
FlowFile:表示通过系统移动的每个对象,包含数据流的基本属性
FlowFile Processor(处理器):负责实际对数据流执行工作
Connection(连接线):负责不同处理器之间的连接,是数据的有界缓冲区
Flow Controller(流量控制器):管理进程使用的线程及其分配
Process Group(过程组):进程组是一组特定的进程及其连接,允许组合其他组件创建新组件
参考资料
Nifi简介及核心概念整理
官方网站:http://nifi.apache.org/index.html
二、实时数据同步
实时同步最灵活的还是用kafka做中间转发,当数据发生变化时,记录变化到kafka,需要同步数据的程序订阅消息即可,需要研发编码支持。这里说个mysql数据库的同步组件,阿里的canal和otter
canal
https://github.com/alibaba/canal
数据抽取简单的来说,就是将一个表的数据提取到另一个表中。有很多的ETL工具可以帮助我们来进行数据的抽取和转换,ETL工具能进行一次性或者定时作业抽取数据,不过canal作为阿里巴巴提供的开源的数据抽取项目,能够做到实时抽取,原理就是伪装成mysql从节点,读取mysql的binlog,生成消息,客户端订阅这些数据变更消息,处理并存储。下面我们来一起搭建一下canal服务
早期,阿里巴巴B2B公司因为存在杭州和美国双机房部署,存在跨机房同步的业务需求。不过早期的数据库同步业务,主要是基于trigger的方式获取增量变更,不过从2010年开始,阿里系公司开始逐步的尝试基于数据库的日志解析,获取增量变更进行同步,由此衍生出了增量订阅&消费的业务,从此开启了一段新纪元。
ps. 目前内部版本已经支持mysql和oracle部分版本的日志解析,当前的canal开源版本支持5.7及以下的版本(阿里内部mysql 5.7.13, 5.6.10, mysql 5.5.18和5.1.40/48)
基于日志增量订阅&消费支持的业务:
数据库镜像
数据库实时备份
多级索引 (卖家和买家各自分库索引)
search build
业务cache刷新
价格变化等重要业务消息
otter
https://github.com/alibaba/otter
otter是在canal基础上又重新实现了可配置的消费者,使用otter的话,刚才说过的消费者就不需要写了,而otter提供了一个web界面,可以自定义同步任务及map表。非常适合mysql库之间的同步。
另外:otter已在阿里云推出商业化版本 数据传输服务DTS, 开通即用,免去部署维护的昂贵使用成本。DTS针对阿里云RDS、DRDS等产品进行了适配,解决了Binlog日志回收,主备切换、VPC网络切换等场景下的同步高可用问题。同时,针对RDS进行了针对性的性能优化。出于稳定性、性能及成本的考虑,强烈推荐阿里云用户使用DTS产品。
④ 3.阿里大数据——数据同步
数据采集:
数据从业务系统同步进入数据仓库
TT是一种基于生产者、消费者和Topic消息标识喊空羡的消息中间件,将消息数据持久化郑拍到HBase到高可用、分布式亏庆数据交互系统。
这不是kafka?
⑤ DataX大数据量同步优化方案
使用DataX从生产DB拉取数据时,正常的业务场景我们都是通过增量拉取做Merge的方式来限制抽取的数据量,但存在以下几种情况需要做大数据量的同步:
虽然同步数据都是从生产DB的slave节点取数,但大数孝备据量的同步,颂脊长时间访问也可能野慎渗会导致Slave节点的性能下降。