A. 华为大数据集群磁盘显示无效怎么回事
华为大数据集群磁盘显示无效可能是因为以下原因导致的:
1.硬件问题:可能是磁盘本身存在问题,如损坏、故障等,或者磁盘接口连接不良,导致系统无法正常识别磁盘。
2.软件问题:可能是操作系统或应用程序的问题,如未安装或升级驱动程序、缺失依赖库、配置错误、权限不足等,导致吵枝迅系统无法正确识别并使用磁盘。
3.服务问题:可能是某些服务或进程没有启动或运行异常,如存储服务、文件系统服务、网络服务等,导致系统无法正常使用磁盘或读取相关信息。
为了确定具体原因并解决该问题,可以尝试通过以下方式进行排查:
1.检查磁盘状态:使用一些工具或命令检测磁盘状态,例如fdisk、smartctl等,看看是否有损坏或故障的情况。
2.检查操作系统和应搭迹用程序的配置:查看相关配置文件,确认磁盘是否正确添加、挂载、格式化以及相应权限是否正确,同时可以尝试重新安装或升级相关驱动升此程序。
3.检查集群服务状态:检查相关服务的启动情况,重启服务或者节点,查看日志信息以及系统监控,定位问题。
如果以上方法仍无法解决问题,建议联系相关技术支持人员协助排查并提供进一步的帮助。
B. 派出所通知大数据有问题是什么
大数据有问题是指大数据中有不良的信用记录,逾期记录、代偿记录等都属于不良信用记录。
有了不良的信用记录,用户的大数据就会出现问题。而想要解决这个问题,就必须尽快还清逾期的欠款或者代偿的欠款。还清欠款后,逾期记录会在5年以后删除。
C. 网贷说我大数据有问题,要怎么查
查询抄大数据要了解以下几个信息袭:
1、综合信用评分
2、是否命中黑名单
3、网贷申请记录
4、被机构查询记录
综合信用评分就是综合你的资质条件给你的信用进行打分,一般分数越高信用越好,分数越低信用越差,网贷时被拒的可能性越大;是否命中黑名单指的就是你在不在黑名单里,如果在的话网贷被拒的概率就非常大了,而且需要要根据报告了解自己在黑名单的原因;网贷申请记录和被机构查询记录较多,则代表大数据越花,说明近期很缺钱,容易让网贷平台判定你缺乏还款能力,导致网贷被拒。
查询大数据可以在微信搜“征查”点击查询,就可以查询到自己的网贷大数据报告了。
以上的几大要素都可以查询到,会显示你的信用等级分数,是否存在黑名单,网贷申请记录和被网贷平台查询记录都会显示,在查询之前还能看样例模板。
D. 大数据存在的安全问题有哪些
【导读】互联网时代,数据已成为公司的重要资产,许多公司会使用大数据等现代技术来收集和处理数据。大数据的应用,有助于公司改善业务运营并预测行业趋势。那么,大数据存在的安全问题有哪些呢?今天就跟随小编一起来了解下吧!
一、分布式系统
大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。
二.数据存取
大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。
三.数据不正确
网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。
四.侵犯隐私
大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。
五、云安全性不足
大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。
以上就是小编今天给大家整理分享关于“大数据存在的安全问题有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
E. 大数据存在的安全问题有哪些
一、分布式系统
大数据解决方案将数据和操作分布在许多系统中,以实现更快的处理和分析。这种分布式系统可以平衡负载,避免单点故障。但是这样的系统容易受到安全威胁,黑客只要攻击一个点就可以渗透整个网络。
二.数据存取
大数据系统需要访问控制来限制对敏感数据的访问,否则,任何用户都可以访问机密数据,有些用户可能会出于恶意使用。此外,网络犯罪分子可以入侵与大数据系统相连的系统,窃取敏感数据。因此,使用大数据的公司需要检查和验证每个用户的身份。
三.数据不正确
网络犯罪分子可以通过操纵存储的数据来影响大数据系统的准确性。因此,网络犯罪分子可以创建虚假数据,并将这些数据提供给大数据系统。比如医疗机构可以利用大数据系统研究患者的病历,而黑客可以修改这些数据,产生不正确的诊断结果。
四.侵犯隐私
大数据系统通常包含机密数据,这是很多人非常关心的问题。这样的大数据隐私威胁已经被全世界的专家讨论过了。此外,网络犯罪分子经常攻击大数据系统以破坏敏感数据。这种数据泄露已经成为头条新闻,导致数百万人的敏感数据被盗。
五、云安全性不足
大数据系统收集的数据通常存储在云中,这可能是一个潜在的安全威胁。网络犯罪分子破坏了许多知名公司的云数据。如果存储的数据没有加密,并且没有适当的数据安全性,就会出现这些问题。
关于大数据存在的安全问题有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
F. 大数据安全问题有哪些
大数据关系到网络信息安全,比较明显的影响主要表现在以下几个方面
一、规模、实时性和分布式处理大数耐念据的本质特征(使大数据解决超过以前数据管理系统的数据管理和处理需求,例如,在容量、实时性、分布式架构和并行处理等方面)使得保障这些系统的安全更为困难。大数据集群具有开放性和自我组织性,并可以使用户与多个数据节点同时通信。
问题是,开源系统或多数商业系统一般都不包括安全产品。而且许多安全产品无法嵌入到Hadoop或其它的非关系型数据库中。多数系统提供最少的安全功能,但不足以包括所有的常见威胁。在很大程度上,你需要自己构建安全策略。
三、应用程序:面向大数据集群的大多数应用都是Web应用它们利用基于Web的技术和无状态的基于REST的API。基于Web的应用程序和API给这些大数据集群带来了一种最重大的威胁。在遭受攻击或破坏后,它们可以提供对大数据集群中所存储数据的无限制访问应用程序安全、用户访问管理及授权控制非常重要,与重枣冲点保障大数据集群安全的安全措施一样都不可或缺。
G. 大数据需留意的六个安全问题
1、使数据易受攻击
如今,所有数据都是数字化的,并且数量巨大,黑客始终可以在恶意内部人员的帮助下找到进入入侵的方式。如果他们以某种方式可以访问你的关键数据,他们可以根据自己的目的进行修改,甚至删除其中的一些数据。这就是为什么完全依赖物联网、大数据和实时数据分析的公司限制访问并采取某些步骤来检测假数据形成的原因。这是其数据保护协议的关键部分。
2、使访问变得困难
使大数据生态系统有效的另一个重要因素是粒度访问控制。根据等级、权限可以授予不同人员不同级别的主数据访问权限。名义上,访问控制使大数据更加安全。但是,随着组织使用大量数据,增加复杂的控制面板可能变得更加微妙,并可能为更多潜在漏洞打开门户。
3、需要某些安全审核
在每个系统开发中,几乎都是需要安全审核的地方,特别是在大数据不安全的地方。但是,考虑到使用大数据已经带来了广泛的挑战,这些安全审核通常被忽略,这些审核只是添加到列表中的另一件事。这种态度与以下事实结合在一起:许多公司仍需要能够设计和实施此类安全审核的合格人员。
4、分散的框架
使用大数据的公司可能需要在不同系统之间分布数据分析。例如,Hadoop是一种开放源代码软件,旨在在大数据生态系统中进行灵活和分散的计算。但是,该软件初根本没有安全性,因此在分散的框架中有效的安全性仍然是要实现的挑战。
5、数据来源
找到我们的数据来源确实有助于确定违规的来源。你可以使用元数据来跟踪数据流。无论如何,即使对于大型公司,元数据管理也是一个自我战略问题。如果没有正确的框架,实时跟踪此类非结构化数据将是一个挑战。尽管这是一个持续存在的问题,但它并不是大数据问题。
6、实时合规
实时大数据分析在公司的竞争中越来越受欢迎。但是,实时实施这种工具更加复杂,并且还会产生大量的数据。
此类工具的开发方式应使它们在现实中不存在威胁时能够规避对违规行为的错误警告。因此,发现此类错误警告可能很耗时。他们分散了白帽黑客的注意力,使其免受真正的故障和攻击并浪费资源。
关于大数据需留意的六个安全问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
H. 大数据科学家需要掌握的几种异常值检测方法
引言
异常值检测与告警一直是工业界非常关注的问题,自动准确地检测出系统的异常值,不仅可以节约大量的人力物力,还能尽早发现系统的异常情况,挽回不必要的损失。个推也非常重视大数据中的异常值检测,例如在运维部门的流量管理业务中,个推很早便展开了对异常值检测的实践,也因此积累了较为丰富的经验。本文将从以下几个方面介绍异常值检测。
1、异常值检测研究背景
2、异常值检测方法原理
3、异常值检测应用实践
异常值检测研究背景
异常值,故名思议就是不同于正常值的值。 在数学上,可以用离群点来表述,这样便可以将异常值检测问题转化为数学问题来求解。
异常值检测在很多场景都有广泛的应用,比如:
1、流量监测
互联网上某些服务器的访问量,可能具有周期性或趋势性:一般情况下都是相对平稳的,但是当受到某些黑客攻击后,其访问量可能发生显著的变化,及早发现这些异常变化对企业而言有着很好的预防告警作用。
2、金融风控
正常账户中,用户的转账行为一般属于低频事件,但在某些金融诈骗案中,一些嫌犯的账户就可能会出现高频的转账行为,异常检测系统如果能发现这些异常行为,及时采取相关措施,则会规避不少损失。
3、机器故障检测
一个运行中的流水线,可能会装有不同的传感器用来监测运行中的机器,这些传感器数据就反应了机器运行的状态,这些实时的监测数据具有数据量大、维度广的特点,用人工盯着看的话成本会非常高,高效的自动异常检测算法将能很好地解决这一问题。
异常值检测方法原理
本文主要将异常值检测方法分为两大类:一类是基于统计的异常值检测,另一类是基于模型的异常值检测。
基于统计的方法
基于模型的方法
1、基于统计的异常值检测方法
常见的基于统计的异常值检测方法有以下2种,一种是基于3σ法则,一种是基于箱体图。
3σ法则
箱体图
3σ法则是指在样本服从正态分布时,一般可认为小于μ-3σ或者大于μ+3σ的样本值为异常样本,其中μ为样本均值,σ为样本标准差。在实际使用中,我们虽然不知道样本的真实分布,但只要真实分布与正太分布相差不是太大,该经验法则在大部分情况下便是适用的。
箱体图也是一种比较常见的异常值检测方法,一般取所有样本的25%分位点Q1和75%分位点Q3,两者之间的距离为箱体的长度IQR,可认为小于Q1-1.5IQR或者大于Q3+1.5IQR的样本值为异常样本。
基于统计的异常检测往往具有计算简单、有坚实的统计学基础等特点,但缺点也非常明显,例如需要大量的样本数据进行统计,难以对高维样本数据进行异常值检测等。
2、基于模型的异常值检测
通常可将异常值检测看作是一个二分类问题,即将所有样本分为正常样本和异常样本,但这和常规的二分类问题又有所区别,常规的二分类一般要求正负样本是均衡的,如果正负样本不均匀的话,训练结果往往会不太好。但在异常值检测问题中,往往面临着正(正常值)负(异常值)样本不均匀的问题,异常值通常比正常值要少得多,因此需要对常规的二分类模型做一些改进。
基于模型的异常值检测一般可分为有监督模型异常值检测和无监督模型异常值检测,比较典型的有监督模型如oneclassSVM、基于神经网络的自编码器等。 oneclassSVM就是在经典的SVM基础上改进而来,它用一个超球面替代了超平面,超球面以内的值为正常值,超球面以外的值为异常值。
经典的SVM
1
基于模型的方法
2
基于神经网络的自编码器结构如下图所示。
自编码器(AE)
将正常样本用于模型训练,输入与输出之间的损失函数可采用常见的均方误差,因此检测过程中,当正常样本输入时,均方误差会较小,当异常样本输入时,均方误差会较大,设置合适的阈值便可将异常样本检测出来。但该方法也有缺点,就是对于训练样本比较相近的正常样本判别较好,但若正常样本与训练样本相差较大,则可能会导致模型误判。
无监督模型的异常值检测是异常值检测中的主流方法,因为异常值的标注成本往往较高,另外异常值的产生往往无法预料,因此有些异常值可能在过去的样本中根本没有出现过, 这将导致某些异常样本无法标注,这也是有监督模型的局限性所在。 较为常见的无监督异常值检测模型有密度聚类(DBSCAN)、IsolationForest(IF)、RadomCutForest(RCF)等,其中DBSCAN是一种典型的无监督聚类方法,对某些类型的异常值检测也能起到不错的效果。该算法原理网上资料较多,本文不作详细介绍。
IF算法最早由南京大学人工智能学院院长周志华的团队提出,是一种非常高效的异常值检测方法,该方法不需要对样本数据做任何先验的假设,只需基于这样一个事实——异常值只是少数,并且它们具有与正常值非常不同的属性值。与随机森林由大量决策树组成一样,IsolationForest也由大量的树组成。IsolationForest中的树叫isolation tree,简称iTree。iTree树和决策树不太一样,其构建过程也比决策树简单,因为其中就是一个完全随机的过程。
假设数据集有N条数据,构建一颗iTree时,从N条数据中均匀抽样(一般是无放回抽样)出n个样本出来,作为这颗树的训练样本。
在样本中,随机选一个特征,并在这个特征的所有值范围内(最小值与最大值之间)随机选一个值,对样本进行二叉划分,将样本中小于该值的划分到节点的左边,大于等于该值的划分到节点的右边。
这样得到了一个分裂条件和左、右两边的数据集,然后分别在左右两边的数据集上重复上面的过程,直至达到终止条件。 终止条件有两个,一个是数据本身不可再分(只包括一个样本,或者全部样本相同),另外一个是树的高度达到log2(n)。 不同于决策树,iTree在算法里面已经限制了树的高度。不限制虽然也可行,但出于效率考虑,算法一般要求高度达到log2(n)深度即可。
把所有的iTree树构建好了,就可以对测试数据进行预测了。预测的过程就是把测试数据在iTree树上沿对应的条件分支往下走,直到达到叶子节点,并记录这过程中经过的路径长度h(x),即从根节点,穿过中间的节点,最后到达叶子节点,所走过的边的数量(path length)。最后,将h(x)带入公式,其中E(.)表示计算期望,c(n)表示当样本数量为n时,路径长度的平均值,从而便可计算出每条待测数据的异常分数s(Anomaly Score)。异常分数s具有如下性质:
1)如果分数s越接近1,则该样本是异常值的可能性越高;
2)如果分数s越接近0,则该样本是正常值的可能性越高;
RCF算法与IF算法思想上是比较类似的,前者可以看成是在IF算法上做了一些改进。针对IF算法中没有考虑到的时间序列因素,RCF算法考虑了该因素,并且在数据样本采样策略上作出了一些改进,使得异常值检测相对IF算法变得更加准确和高效,并能更好地应用于流式数据检测。
IF算法
RCF算法
上图展示了IF算法和RCF算法对于异常值检测的异同。我们可以看出原始数据中有两个突变异常数据值,对于后一个较大的突变异常值,IF算法和RCF算法都检测了出来,但对于前一个较小的突变异常值,IF算法没有检测出来,而RCF算法依然检测了出来,这意味着RCF有更好的异常值检测性能。
异常值检测应用实践
理论还需结合实践,下面我们将以某应用从2016.08.16至2019.09.21的日活变化情况为例,对异常值检测的实际应用场景予以介绍:
从上图中可以看出该应用的日活存在着一些显著的异常值(比如红色圆圈部分),这些异常值可能由于活动促销或者更新迭代出现bug导致日活出现了比较明显的波动。下面分别用基于统计的方法和基于模型的方法对该日活序列数据进行异常值检测。
基于3σ法则(基于统计)
RCF算法(基于模型)
从图中可以看出,对于较大的突变异常值,3σ法则和RCF算法都能较好地检测出来, 但对于较小的突变异常值,RCF算法则要表现得更好。
总结
上文为大家讲解了异常值检测的方法原理以及应用实践。综合来看,异常值检测算法多种多样 ,每一种都有自己的优缺点和适用范围,很难直接判断哪一种异常检测算法是最佳的, 具体在实战中,我们需要根据自身业务的特点,比如对计算量的要求、对异常值的容忍度等,选择合适的异常值检测算法。
接下来,个推也会结合自身实践,在大数据异常检测方面不断深耕,继续优化算法模型在不同业务场景中的性能,持续为开发者们分享前沿的理念与最新的实践方案。
I. 数据库系统中故障可以分为哪几类
事务故障
系统故障
介质故障
一、事务故障
什么是事务故障
某个事务在运行过程中由于种种原因未运行至正常终止点
事务故障的常见原因
输入数据有误
运算溢出
违反了某些完整性限制
某些应用程序出错
并行事务发生死锁
事务故障(续)
事务故障的恢复
事务故障的恢复:事务撤消(UND)
恢复程序要在不影响其它事务运行的情况下,强行回滚(RBACK)该事务,即清除该事务对数据库的所有修改,使得这个事务象根本没有启动过一样
二、系统故障
什么是系统故障
由于某种原因造成整个系统的正常运行突然停止,致使所有正在运行的事务都以非正常方式终止。
发生系统故障时,内存中数据库缓冲区的信息全部丢失,但存储在外部存储设备上的数据未受影响
系统故障(续)
系统故障的常见原因
操作系统或DBMS
代码错误
操作员操作失误
特定类型的硬件错误(如CPU
故障)
突然停电
系统故障(续)
系统故障的恢复
1.
清除尚未完成的事务对数据库的所有修改
如果DBMS
无法确定哪些事务已更新过数据库,则系统重新启动后,恢复程序要强行撤消(UND
)
所有未完成事务,使这些事务象没有运行过一样。
2.
将已完成事务提交的结果写入数据库
如果DBMS
无法确定哪些事务的提交结果尚未写入物理数据库,则系统重新启动后,恢复程序需要重做(RED
)
所有已提交的事务。
三、介质故障
什么是介质故障
硬件故障使存储在外存中的数据部分丢失或全部丢失
介质故障比前两类故障的可能性小得多,但破坏性最大。
介质故障(续)
介质故障的常见原因
硬件故障
磁盘损坏
磁头碰撞
操作系统的某种潜在错误
瞬时强磁场干扰
介质故障(续)
介质故障的恢复
装入
数据库发生介质故障前某个时刻的数据副本
重做自此时始的所有成功事务
,将这些事务已提交的结果重新记入数据库
故障的种类小结
数据库系统中各类故障对数据库的影响
数据库本身被破坏
(介质故障)
数据库处于不一致状态
数据库中包含了未完成事务对数据库的修改(事务故障、系统故障)
数据库中丢失了已提交事务对数据库的修改(系统故障)
不同类型的故障应采用不同的恢复操作
故障的种类小结(续)
恢复操作的基本原理:简单
原理:利用
存储在系统其它地方的冗余数据
来重建
数据库中已经被破坏或已经不正确的那部分数据
恢复的实现技术:复杂
一般一个大型数据库产品,恢复子系统的代码要占全部代码的10%
以上
J. 辽事通移动大数据怎么不显示
可能是后台没有刷新或者是你网络不好
1、出现这种情况可能是因为周围环境信号差,或者是信号盲区,此时没信号属于正常现象,建议四处移动,寻找信号较好的地方,或者离开信号盲区。
2、也有可能是手机自带的系统出现故障,此时可以把手机关机后再次重启,让手机自动连接网络。
3、另外也有可能是当地移动运营商因某种原因,如雷雨天气、台风天气等出现问题导致信号发射塔出现问题,这种情况只能等待运营商进行抢修后才能连接网络。