导航:首页 > 网络数据 > 国外大数据警务应用

国外大数据警务应用

发布时间:2023-04-27 07:27:43

大数据时代如何贯彻情报主导警务

大数据时代通过情报贯彻情报主导警务。情报主导国家安全我国正处于发展与改革的深水区及攻坚阶段,境内外针对我国的暴力恐怖等破坏国家安全的重大事件时有发生。要想从根本上打击、防范针对国慧哪家安全的恐怖活动,就必须重视、发挥公安情报的前森码作用。安情报分析响应速度必须符春御合秒级定律,要求在秒级范围内给出分析结果,时间过长将失去情报。

Ⅱ 深度解析大数据在公安领域的应用

深度解析大数据在公安领域的应用

近一两年,大数据开始在公安等行业领域得到普及应用,除了行业自身的特殊要求外,大数据也带动了相关行业的需求发展。未来,基于大数据的行业应用会变得更加深入,更多的相关厂商也会涉及其中,大数据在公安领域的商业模式架构逐渐清晰起来。

在安防的细分领域中,大数据在公安及智能交通探索应用得比较早,相关的解决方案和技术也比较成熟,在广西等地也已经有相关的项目落地,大数据应用系统已经上线运营,取得了预期的效果。

项目应用前景看好

以相关的案例来讲,在广西公安厅投入使用的大数据系统中,整个项目是以自治区的总数据为出发点,对每天在所有卡口过道产生的上千万条数据,每年大概三十亿条的数据进行分布式存储和快速检索。在此基础上,后续可以给公安用户提供进一步的解决方案和增值服务,比如已经推出的卡口过车大数据、视频图像大数据和公安情报大数据三方面的解决方案。这些方案提供多种功能的查询,以及基于测控的分析和基站行业的服务,目的就是让公安能快速科学地侦破案件。

在智能交通领域,目前主要应用于车辆的疏导,比如基于不同道路、路口车流量的统计(时、日、月统计等),根据这些统计可以分析不同时段某条道路实时的车流密度、发展方向和趋势等。这些项目的应用已经在很多大城市落地,比如平时大家在公交上看到的移动电视里播放的上下班高峰路段实时画面,就是基于大数据的技术分析所得。从应用上看,用户切实感到便捷好用,所以市场潜力很大,未来的应用会更加广泛。

大数据应用存在的难题

大数据本身是针对数据的存储、检索、关联、推导等有价值的挖掘,这些数据本身来说是通用的。但在安防领域,哪些数据是有用的,哪些是我们需要关心和提取的,这是目前在摸索的问题。也就是说,当前的困难在于如何让技术热点和相关业务进行结合,以提取更有价值的数据。

从技术上分析,有两个技术难点:

第一个难点是如何从非结构化的数据中提取结构化的数据出来。所谓非结构化数据是指在视频里面进行特征的提取,这些可能是人类不能理解和不能处理的;结构化数据则是人可以理解和处理的,比如在视频里有几个活动目标、是人还是车。如果是人,身上穿的是什么样的衣服;如果是车,车牌号是多少、什么样的品牌型号、颜色、行进速度、方向等数据,这些都是可以转化为结构化数据为人所用。目前,安防的数据很多涉及到视频数据,而视频数据本身是不能够被结构化的数据,也就不能被计算机直接所处理。所以未来摆在技术人员面前的课题是如何把视频数据转换成计算机能够处理的结构化或者半结构化数据。

第二个难点是寻找这些数据之间的关联和价值。数据是有关联没关联之分的,我们只能通过工具来找。所有这些存储的特征数据,包括公安行业、平安城市中每天产生的海量视频数据,可以为很多案件的侦查提供有价值的线索。现在技术需要攻克的难题就是能不能把这些数据通过相应的工具模块,通过大数据技术把原来被忽视的数据信息关联起来,找到或提取这些数据之间的相关性,为案件的侦破和方案决策提供科学的数据依据。

公安数据流动的单向性

公安行业每天获取的数据数以千万,如何确保这些数据信息的安全成为行业共同关注的热点。从传统意义上讲,数据产生之后,首先要确保数据本身的安全,目前行业内有非常成熟的技术和解决方案。在海量数据面前,如果你对数据不了解,就算把这些数据摆在面前,你也很难去提取有用的数据,但这并不能作为行业忽视其重要性的借口。因为对安防厂商而言,很多有价值的数据是需要提供保护的,也就是对数据应用模式采取高规格的保护措施,因为这些数据一旦被不法分子挖掘并关联起来,可能整个地区的安全漏洞就会被利用。

现在,公安的数据一般在局域网内运行,并有相关的保护措施来提供安全保障。如会把数据分成不同的网络和不同的层次,让数据在不同的网络安全系统之间,从低安全性网络向高安全性网络实行单向流动,最后在公安的核心网络里汇集所有的数据(这个安全等级是最高的,通过安全边界、物理隔离来保护)。同时在外围的视频网,主要以视频数据为主,辅以视频相关的业务,这些数据只有进入公安网后才与其他的数据发生关联,才能发掘出一些有价值的数据。比如办案民警在视频网络上,可以获取犯罪嫌疑人的照片,但这个人是谁,他的信息是什么,只有进入公安网以后才能获取,才能将相关信息匹配关联起来,然后通过其他数据库的关联,进一步挖掘出他在哪个网吧出现过,在哪个酒店居住过……以上信息都可以挖掘出来,但这种挖掘只能在高安全性网络中进行,这种信息流动都是单向的。

未来的商业模式

从传统的安防业务来讲,还是以公安客户投资建设系统为主,厂商提供产品和集成的解决方案,最终由集成商来做落地实施,最后交付给客户使用并进行相应的维护。同时,未来行业对大数据中数据的获取、存储、分析、处理会变得更加的专业,用户本身在处理和应用时可能会遇到各种困难,那么针对这类问题可能会有一些小型的服务公司出现,给终端用户提供各种各样专业的数据服务。比如专业的视频提取会有专业的公司切入,用专业的算法工具帮助你把视频里面的数据提取出来,或者有那些专业的通讯厂商对数据进行挖掘和处理,包括提供一些工具和服务的模式(未来会更倾向于服务的模式)。但限于公安行业的特点,这些公共服务在公安行业目前还比较难做,不过未来也可以由一些厂家对整个应用系统进行构建,以运营服务收费的方式与公安客户或者政府机构进行合作。

对于大型、特别大型的项目,比如涉及到一个城市、一个省乃至全国范围的项目,一般来说可能会找专业的IT厂商来做,特别是互联网公司(现在也有牵涉其中),他们更多是以技术提供商的角色参与,安防厂商侧重点放在业务上。这样大家分工比较明确,因为即使是技术比较领先的行业厂商,它也很难或者没有必要投大量的研发在大数据基础的研发上,而是应该将重点放在大数据的基础应用或业务解决方案上,然后底层的基础架构由IT厂商来分担完成。彼此互利共赢,持续发展。

以上是小编为大家分享的关于 深度解析大数据在公安领域的应用的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅲ 大数据分析技术应用领域有哪些啊,生活中有用吗

应该有用的吧

Ⅳ 警察应用大数据工具预防犯罪发生属于哪个领域的应用

应该是属于安保的大数据物联网应用。

Ⅳ 大数据在公安领域的应用有哪些

大数据在公安领域的应用方式,可以分为以下3个方面:

1、统计查询:这是对大数据最基本的应用方式,主要面向历史与现状,回答已经发生了什么事情,如流动人口分区域统计、实有车辆归属地统计、各类案件的数量分布和趋势。

2、数据挖掘:是目前大数据的核心应用方式,其重点不在于发现因果,而是发现数据之间的关联关系。这种关系可能可以直观解释,也可能不能马上发现其中的深层次原因,但对工作具有一定指导意义,比如季节气候与某些类型案件的关联关系、车辆活动范围、活动习惯与黑车的关联关系。

3、预测预判:是大数据应用未来的发展方向,在数据统计、分析、挖掘的基础上,建立起合适的数据模型,从数据的关联关系入手,推导出因果关系,能够对一定时期内的趋势走向做出预测,对危险信号做出预警,指导预防工作的走向。

大数据结构介绍:

大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。

大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

其次,想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:

第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。

第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。

第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。

Ⅵ 大数据时代背景下如何构建“智慧警务”

数据是科学的度量、知识的来源。随着互联网特别是移动互联网的发展,一个以信息爆炸为特征的大数据时代正在到来。这对公安机关来说既是挑战,也是机遇。对此,必须以创新的理念和思维,把深入实施科技强警战略,大力推进科技创新摆上更加重要的位置,努力提升公安工作的信息化、科学化和现代化水平。 ■强警论坛黎伟挺大数据时代呼唤数据大开发 如果说过去是一个技术为王的时代,那么大数据时代就是一个内容为王的时代。技术作为获取内容、加工内容、利用内容的工具,更先进的技术无疑可以为我们提供更优的解决方案。就警务信息化应用而言,近年来,浙江公安机关通过系统大整合,从技术层面初步解开了信息孤岛和信息碎片化的死结,为实现更大范围、更高层次的共享应用提供了现实基础。现在的问题已经更多地集中在如何实现对海量数据的深度应用、综合应用和高端应用,促使这些数据从量变到质变。笔者认为,这就需要对数据的大开发,通过使用数学算法对海量数据进行分析和建模,挖掘出各类数据背后所蕴涵的内在的、必然的因果关系,进而研判出某一事件发生的概率,科学预测其发展趋势,以此来服务打防管控等现实斗争。结合公安机关实际来说,就是要重点做好以下四个方面的工作: 二要搞好技术架构大优化。重点是加强技术构架的顶层设计,进一步优化当前技术架构,应该着重做好基于云技术的基础设施梳理;基于可视化、扁平化、集成化以及一站式、点到点技术线路梳理;基于内外网交互的多种传输存储和计算实现方式的梳理;基于安全考量的战略性布局的梳理。 三要搞好海量数据预处理。所谓数据预处理,就是要对各类数据进行筛选、过滤、分类、关联等初加工,建立起如同“超市净菜”这样的数据仓库,并根据特定用户的需求提供定制、配送服务,以改变杂乱无章的原始数据存储状况,提高数据的应用效益。要努力实现从技术服务商向内容供应商转变,通过对海量数据进行预处理,建立公安机关的数据仓库。 四要以刚性手腕建立信息化标准规范。在大数据时代,信息共享已成为大家的共识,关键是如何才能更好地利用。要坚持从源头上解决好标准规范与信息共享问题,除了树立“共享是原则,不共享是例外”的理念外,还要树立“入库是原则,不入库是例外”的理念,做到项目管理要规范、代码体系要规范、接口要规范、数据使用和系统运维也要规范。 新黄金十年呼唤构筑创新大平台 10年前,浙江公安机关在没有成功经验可资借鉴的情况下,通过自主创新建设了浙江公安打防控信息主干应用系统,走出了一条具有鲜明时代特征、浙江特色、公安特点的信销清息化发展道路。如果把此前的以打防控系统为标志的浙江公安信息化称为信息警务黄金十年的话,那么,现在正在徐徐开启的以数据的大整合、大融合、大应用为标志的“智慧浙江公安”无疑是又一个黄金十年。 对于一个国家来说,能否实现现代化的关键是科学技术的现代化,核心是科技创新的竞争力。创新不是口号,必须落实在行动中。具体到“智慧浙江公安”建设,应抓住五个突破口册斗猛进行着力: 一是项目牵引。纲举就能目张,抓住重点项目建设就可带动一般项目建设。当前要重点抓好警务云的建设与应用,PGIS平台的深度开发应用,视频数据整合挖掘与应用,模块化、集成化、即插即用、可快速部署的现场通信指挥保障平台,以及智能化的终端和个性化、人性化的后台服务。 二是搭建面向全警的创新应用平台。就是要为全警打造类似Google、Facebook、维基和网络、腾讯、淘宝、土豆、优酷这样的公安信息创新应用平台,建立起公安机关的“苹果商店”、“安卓市场”。既要从现有应用中筛选出一批创新应用的小软件、小工具,也要为打击破案、执法办案等专业领域工作研发或扶持一批业务工具,同时还要面向公安基层基础工作以及社会管理、服务群众等领域,开发一批便捷、低成本州桥、普及型的应用软件,以方便全警随时随地下载应用。同时,要完善发明创造评审鉴定、版权保护、奖励表彰等制度,激发和保护好广大民警的创造激情。 三是打造信息化高地和特区。典型示范引领是推动工作的一个重要方法。打造“智慧浙江公安”,应先抓一些试点县建设,每个市选择基础条件较好的一个县作为“智慧浙江公安”的示范县、引领县先行先试,上级公安机关要在项目建设、资金补助、人才支撑、工作帮扶等方面采取一些配套政策,予以重点倾斜。 四是最大化利用外脑进行借力创新。分工合作是现代社会的必然,信息化发展也需要内外进行协作。要善于借力创新,通过全面梳理信息化业务,理清外包服务内容,规范和编制好外包业务目录,探索完善外包服务模式。只要是社会和企业能够承担的,就要大胆放开准入。同时,要加强与高科技单位的战略合作,培养一批技术领军和项目技师等开发应用型专业人才,逐步走自主开发和运维之路。 高风险时代呼唤念好安全“紧箍咒” 网络无疆界,互联网在给生产生活提供极大便利的同时,也给信息安全带来极大隐患。一定意义上说,互联网时代就是高风险时代。处在风险时代,一定要有风险防范意识和危机管理能力,牢记“100-1=0”,没有安全保障这个“1”,其他再多也是没有意义的。现在浙江公安机关拥有5000多个应用系统、3000个网站、设备和上千个T数据,已是一个名副其实的“巨系统”。这么大的系统出问题是必然的,关键是要避免出大问题。 守住数据不丢、网络不断、系统不瘫这条底线,必须时刻关注九大安全:一是内容安全,杜绝“一机两用”。二是运行安全,重点关注运行平台是否可靠,运行制度是否完善,运行值守是否到位。三是边界安全,确保内外网交互不出纰漏。四是终端安全,严防警务通、平板电脑等终端遗失,并确保这些终端联入系统的安全性。五是传输安全,确保网络拥有足够的带宽和稳定性,并严防发生数据丢失事故。六是系统开发安全,防止源代码流入社会,并做好知识产权保护工作。七是通信保障安全,提高系统的稳定性,并确保一旦出现危机,能够快速反应、迅速排除。八是队伍自身安全,坚持拒腐防变警钟长鸣,反腐倡廉常抓不懈,与运营商等公司企业打交道时一定要洁身自好。九是大安防产业的健康发展,特别是要加强视频监控资源管理,防止侵害群众的隐私权。 创新时代呼唤队伍素质能力大提升 人才是科技创新中最具能动性的因素。各级公安科技信息化部门作为公安机关信息化建设的主管部门,队伍素质能力的高低直接决定整个公安信息化建设的成败。 一是机构要健全、统一、规范。要按照职能明晰、称谓统一的要求,大力加强科技信息化队伍的正规化建设。现在还有不少县级公安机关没有设立科通部门,笔者认为,这是适应工作需求的,即便不要求机构都单列,可以与其他部门合署,但必须要有专门的人从事科技信息化工作。称谓也要统一,职能也要进一步明晰,逐步理顺与信息办的关系以及科通部门内部行政与事业的关系。 二是培训学习要加强。信息化发展步伐日新月异。对科技信息化民警来说,学习培训比其他警种更加重要,更要抓紧。要根据信息化发展和公安实战需求,及时调整培训大纲,既要学习信息化新知识,也要学习掌握新的政策法律知识、新的公安业务知识,促进先进技术与公安业务互融共进、互促共长。要大力培养专家型人才,鼓励民警参加各类岗位执业资格认证,同时还可选调一批基层骨干民警到专班和项目办进行跟班培训,培育一批行家里手。 三是活力要增强。增进人才交流,要吐故纳新,及时引进优秀人才,及时更换不适应岗位需求的人员。既要立足自身培育自有人才,也要坚持眼睛向外,积极借用公司和企业的人才为我所用。要进一步完善交流协作机制,与大企业开展战略协作,与小企业开展微观协作,通过多层次、宽领域的交流与合作,不断为公安信息化发展注入活力源泉。 四是团队文化要培育积淀。文化是队伍的灵魂,没有文化的队伍必然是一盘散沙。IT产业有着特殊的文化,如果说它是朝阳文化,那它就代表着潮流、代表着未来。要善于吸纳IT产业中的蓬勃朝气、创新勇气,以及IT人所独有的梦工厂文化元素和中华民族淡泊明志、宁静致远的传统文化元素。要恪尽职守,盯住一些事进行攻坚克难,在干事中享受成功的喜悦,实现自我的人生价值。(作者单位:浙江省公安厅)

Ⅶ 警务大脑应用平台建设方案-虚拟数据中心建设部分

警务大脑应用平台是在充分考虑安全的前提下,利用大数据、云计算、人工智能等应用技术,以“人工智能赋能公安行业”的新型警务模式为目标,围绕整合和应用两大着力点,通过打造多警合一、高度共享的警务应用平台。

警务大脑应用平台建设包括虚拟数据中心建设部分、警务大脑支撑平台建设部分和一系列警务大脑应用系统建设。本文主要对虚拟数据中心建设部分进行描述。

1、辖区数据全域涵盖。 警务大脑项目数据资源需要做到“数据颗粒最小化”、“重点数据定制化”、“条线数据全接入”、“ 社会 面数据全获取”,实现辖区数据全域覆盖。

2、视图数据深度解析。 公安视频监控将从原先单纯的视频“看、管、存、控”向视频侦察实战业务应用跨越,形成一套全方位、多业务、可视化安防实战应用体系。为各警种提供基于视频监控系统的业务应用,实现公安各警种对治安防控、指挥调度、案件侦查、案件管理与警务督察等业务的综合应用服务。

3、异构多源联网共享。 利用公安警务大脑项目,通过联网共享服务,整合所需的全部第三方平台和信息资源,以实战应用为目的进行大数据挖掘、智能分析,并把挖掘、分析的结构化数据,与所整合的视频资源等非结构化数据,通过联网共享服务,为其他公安网提供综合服务。

4、全域资源服务实战。 公安警务大脑和其用户主要是应用所有接入的资源,利用公安警务大脑的智能化功能产生结构化数据,让其他平台用户能够共享相同的原始信息、平台智能分析的成果和彼此所分析得出的案件线索、嫌疑人轨迹等有价值的图文数据,进行公安办案实战应用,实现利用视频图像的指挥调度功能和视频图像侦破案件功能。

5、规范视图运维体系。 对于已接入、新建的设备设施,本项目可实现设备的自动化诊断,并安排人员定期巡查。

6、警务大脑权限管理。 建立面向全区所有公安干警开放的公安警务大脑,能在权限上对公察樱安警务大脑的使用用户进行按责任、权利大小而细分的角色,使得同一用户能够在全网任意地方统一CA认证,统一单点登录,而其所能查看、使用的图综平台内容范围不会变化,都永远是其所获得的授权访问和使用的范围。

7、网络数据安全保障。 公安警务大脑需要在多个层面上与其他网络和系统进行对接,不同的系统可能处在不同的安全级别和访问区域的网络中。网络之间的安全边界建设需要实现完备的防护建设。

虚拟数据主要服务于数据汇聚、数据规整和数据对接。警务大脑虚拟数据中心建设包括以下具体内容:

1、基础矢量数据建设。 基础矢量数据类型至少应包括:桥梁详细数据、消防栓详细数据、地址数据、重点场所数据、小区信息数据、道路信息数据、路网信息数据、店铺信息数据等。

2、高清无人机影像图建设。 高清无人机影像数据拼接、正射纠偏、影像配准处理,基础影像地图服务发布。

3、重点场所区域三维模型建设。 重点场所区域根据无人机拍摄的影像照片,生成三维模型,并对自动生成异常的部位进行手动校正,对不清晰的部位进行清晰化处理,从而生成清晰准确的重点区域三维模型。

4、数据标准规范建设。 制定城市虚拟数据中心标准规范,生成数据录入、存储、对接的标准机制。按照要求,将发布的数据元标准,应用到虚拟中心库整合中,解决部门间信息壁垒及信息不一致、管纯手理数据颗粒度过大的问题,实现标准工作管理信息化、数据资源管理动态化、数据颗粒度最细化以及数据资源服务标准化。开展全局对内、对外标准化信息共享服务,信息(查询)搜索集成,数据质量监控,数据统计分析,以及通过数据挖掘与分析开展警务预测、警务决策支持服务。

5、做没嫌标准工作管理信息化。 主要包括:建立数据标准规范体系;建立数据标准设计工具;建立数据标准检测工具。

6、数据资源动态化管理。 主要包括实现数据关联和实现数据定制。

7、数据资源服务标准化。 对已汇集的数据资源,要求根据建立的数据元和数据项、代码的关联关系,以数据元为清洗标准,开展清洗转换,形成长度统一、类型一致、命名相对规范的标准资源库,按要素分类存储,并提供标准资源服务,有效提升信息共享数据服务能力。

8、警务数据接入。 包括辖区数据、警员、接处警、案件、监控、卡口、检查站、车辆车牌、人员、地址数据、重点场所和单位、区域和小区数据、巡防数据、道路交通和路网数据的接入与应用。

9、警务数据加工处理。 主要包括:

(1)数据并行计算,编写业务代码,将功能代码打包后通过平台功能页面或开发接口将任务文件发送到计算平台,实现最终的多任务的并行离线计算。

(2)数据实现流处理,对数据服务平台提供的开发接口完成业务中一系列对实时性要求比较高或最近某一段时间内的数据进行计算需求。

(3)交互式查询,通过平台了解所能访问的数据目录权限,并且可以通过数据检索语句直接调用数据仓库的数据,进行应用平台的开发。

(4)数据挖掘,通过平台的功能页面配置所拥有权限下的数据仓库中的数据,并进行一系列的公安行业规则配置实现结构化数据与非结构化数据的深度数据挖掘功能。

10、虚拟数据中心与省市级平台对接。 与上级平台进行数据对接,实现各类信息的汇总应用,便于一键查询所需要的信息,可用于人员轨迹分析、车辆轨迹分析、重点人员监管等。对于各平台新增数据,虚拟中心库可实时监控更新,获取最新资源。

11、服务引擎建设与发布。 主要包括:

(1)地理信息服务引擎。将地理信息资源发布为服务使该资源可供其他用户使用。根据资源类型的不同,资源会被发布成不同类型的服务,各种客户端通过服务实现对GIS资源的访问和管理。

(2)数据服务引擎。数据服务引擎,指的是对数据进行收集、存储、计算、挖掘和管理,并通过深度学习技术和数据建模技术,使数据具有“智能”。在技术架构上,将数据进行标准的API封装,形成标准化的数据API服务。把数据统一进行封装。对外提供标准化的服务目录。在服务目录中体现数据服务的各种业务元数据,以供数据使用者进行掌握动态的数据资源的现状,并且根据数据资源元数据中的定位信息获取实际的数据。

(3)全文搜索引擎。全文检索引擎是按照全文检索理论建立起来的用于提供全文检索服务的软件系统。一般来说,全文检索需要具备建立索引和提供查询的基本功能,此外现代的全文检索系统还需要具有方便的用户接口、面向WWW的开发接口、二次应用开发接口等。功能上,全文检索系统核心具有建立索引、处理查询返回结果集、增加索引、优化索引结构等等功能,外围则由各种不同应用具有的功能组成。

(4)视频分析引擎。利用已建视频监控系统,建设视脑平台视频图像分析引擎,运用人工智能分析技术,进行智能化、自动化解析视频图像内容,对视频运动目标进行多模态、全方位的描述,包括如空间、时间、表象、运动行为等特征,在视频大数据基础上,提供多模态视频线索和信息管理、目标快速搜索,实时特定目标、特定行为动态布控,反常行为及目标实时提示等,完成视频图像中车辆、人员、物品等目标类型的检测与特征提取,实现对视频画面的背景图像数据和目标数据进行分析提取,并记录运动物体的特征信息,转发解析数据至视图数据层,进行数据存储。视脑平台需将分析能力进行标准化封装,提供通用、标准的服务接口为各类业务平台、系统进行视频图像分析计算能力的服务,生成分析结果,在各自系统中予以展现和应用。

(5)消息引擎。消息引擎系统为各业务在用户等建立统一的信息交互的平台,提供消息通知、用户点对点通信、多屏交互式消息业务提供了能力支撑,支持文字、音频和视频等消息的即时传输,以及点对点的数据交换。实现即时通信与异地用户的协同工作,并通过消息引擎和过滤性引擎二者的结合实现任务过程跟踪和资源共享,有效控制业务实施过程,着力提升工作效率、决策能力和反应速度。借助于即时消息传输的运用,同时结合内存加速、负载均衡、本地处理,以提供高效的数据分析和挖掘能力。系统需要提供开放的业务集成能力、各类终端接口标准集成能力、 加密传输数据安全能力、高并发的数据处理能力、良好的容灾处理能力、多种类的集群部署能力、适应各种环境部署。

=======================================警务大脑之虚拟数据中心建设部分-end!

Ⅷ 结合实际谈谈如何在大数据时代科技刑警

的应用
在大数据时代,科技刑警的应用可以说是一个新兴的话敏庆题,它可以帮助警方更加有效地抓捕犯罪分子,提高犯罪侦桥旅握破的效率。
首先,要把大数据技术应用到科技刑警中,需要建立一个完善的网络监控系统,以便获取犯罪分子的行为数据,镇春并对其进行分析。通过对大量的犯罪数据的分析,可以更快地发现犯罪模式,从而更有效地抓捕犯罪分子。
其次,要把大数据技术应用到科技刑警中,还需要建立一个完善的智能分析系统,可以利用机器学习和深度学习等技术,对犯罪数据进行更深入的分析,从而更准确地发现犯罪模式,并有效地抓捕犯罪分子。
最后,要把大数据技术应用到科技刑警中,还需要建立一个完善的网络安全系统,以防止犯罪分子利用网络技术进行犯罪活动。
总之,在大数据时代,科技刑警的应用可以说是一个新兴的话题,它可以帮助警方更加有效地抓捕犯罪分子,提高犯罪侦破的效率。

Ⅸ 大数据在安防领域主要有哪些应用难点在哪

一、安防大数据主要应用领域
(一)大数据是视频智能分析基础
在大数据应用时代,视频因其信息含量最高、数据量最大,分析运算最复杂而成为大数据时代采集分析传输存储应用最具挑战的国际技术难题!智能视频分析研究永无止境,分析算法必须以监控视频为资源,研究实时或历史监控视频中的目标特征提取、增强与行为分析等关键技术,才能推动监控视频应用模式从事后被动处置向事前主动预防转变。
(二)帮助实现智慧城市智能化
我国智慧城市建设面临的重大挑战之一,是城市系统之间由于标准问题无法有效集成,形成信息孤岛。因此,在大数据融合技术领域,一方面要加强大数据标准建设,另一方面要加强海量异构数据建模与融合、海量异构数据列存储与索引等关键技术研发,为给予底层数据集成的信息共享提供标准和技术保障。大规模数据在智慧城市系统流动过程中,出于传输效率、数据质量与安全等因素的考虑,需要对大规模数据进行预处理。大数据处理技术往往需要与基于云计算的并行分布式技术相结合,这也是目前国际产业界普遍采用的技术方案。大数据分析与挖掘技术为智慧城市治理提供了强大的决策支持能力。
(三)提高警务办事效率
互联网技术的飞速发展已经为构建一个大型全国性的专业报警运营服务平台提供了有力的技术支撑。通过这个报警平台,报警运营服务商手中会累积海量的用户数据,例如用户的身份信息、警情数据、消费记录、维修记录等,这些都是非常宝贵的资源。报警运营服务商可以在此基础上,应用大数据技术进行分析和挖掘,充分发挥大数据的商业价值。
公安如公安系统中的图侦技术,应用模式多样,思维活跃,围绕着“发现线索”的目的可衍生出多种的技战法,只有从这些具体的技战法中才能提炼出需求,真正告诉系统的设计者“我们要什么”。
那么,图侦里的大数据应用需要哪些?像商业大数据那样找规律的应用似乎还远了点,目前最实在的就是从海量视频数据里把有相同线索特征的图像给找出来,让干警发现出新的案件线索。至于“怎么找?”这就是由公安来提的应用模式了。因此,视频大数据的发展并不是简单的由技术厂商做主导,而是需要公安体制内既有刑侦实战经验,又有科技化功底的复合型人才,共同来参与视频大数据应用的发展。
(四)让智能家居“聪明”起来
智能家居会产生大数据,同时也是大数据的重要应用领域,不然它极有可能将停滞不前。家庭产生的大数据能让智能家居更“聪明”,但需要根据实际情况进行有效处理,而不是任何数据的“一锅端”,通过大数据与云计算技术的结合应用,智能家居系统能够第一时间对用户家庭中智能设备的数据、信息进行有效分析、记忆,并将得到的相应规律反过来应用于智能设备,提升智能家居的智能效果。
二、安防大数据应用难点
(一)数据整合问题
不同来源的大数据,分别存储于相互独立的系统中,将这些数据集中于统一的平台,是安防大数据实施的基础性工作,但行业、部门壁垒是最大障碍。即使只是公安内部的视频数据,各省、地市也互不相通,想采集集中也不是一件容易的事。即使集中后,如何找到这些不同类型数据之间的关系,从而挖掘出有价值的数据,也是难点。
(二)数据挖掘、分析算法的成熟度问题
对于安防数据中最重要的视频数据,对其进行智能视频分析和挖掘是很困难的事情。目前,除了车牌识别、人数统计等算法较为成熟外,对视频进行事件分析、人脸识别、摘要等技术都还没达到大规模的商用水平,这也极大地制约了安防大数据的实施。
(三)时效性问题
安防大数据的目的之一就是要解决现有安防系统内以事后查看、分析为主的数据(特别是视频数据)应用形式,还要增加以事前预警、实时处理,这对大数据处理技术的实时性要求很高。这种时效性就决定了视频安防大数据的高运算量、高传输带宽的要求。
(四)信息安全与用户隐私问题
安防行业,特别是公安行业对数据的安全性要求非常高,这也是造成数据的区域隔离的重要原因。同时,在利用安防大数据上,如何保护用户的隐私,也是一个非常重要的课题,目前主要采用数据脱敏的办法。当务之急就是将安防数据安全级别需要有明确的分级定义,不能一味强调安全而各自封闭,否则必将导致安防大数据分析成为无源之水。
(五)视频图像数据挖掘的难点
1.识别什么特征?一副图像或者一段视频可以有无数角度的标签属性去描述,什么才是我们需要的属性?这与我们需要得到的目的密切相关,这就需要公安图侦的人才来归纳终结。
2.识别算法开发难,由于是平面图像,因此特征的识别主要原理就是看图像区域中的轮廓、颜色、纹理与特征库进行比较。但是在同一个物体在不同监控角度的摄像头中显示出的轮廓都不相同,因此无法做到识别。
3.大规模数据处理难,即使做到了识别算法,但是如果要通过数据处理服务器的形式对大规模的视频进行结构化处理,这个建造成本巨大,其能源的耗费在中国这个夏季需要限电的情况里也不切实际。
(六)警务服务平台大数据难点:
1.如何将不同报警运营服务商之间的数据整合在一起?
2.我国多数报警运营网络尚未完成规模化建设,用户规模大、跨省市运营的网络很少,每家报警运营服务商的警情并发量不大,而且报警运营服务商之间普遍存在信息孤岛,很难通过大数据分析实现数据的增值。
3.大数据的挖掘是一个长期的过程,需要企业不断的尝试,挖掘出有意义的信息或规律,并将结果拿到市场上检验。
4.大数据自身也面临着挑战,数据的运用仍面临多种技术难关的束缚,大数据方面的人才比较缺乏,大数据的产品尚不成熟等问题都制约着大数据在报警运营服务领域的发展。
总结
针对这些问题和难点,个人就一个方面提出自己的见解,大数据的信息采集和监测。就目前来说,大数据跟互联网是一个互相关联的整体。那么,在数据挖掘方面,对论坛,贴吧,微博,微信的信息采集就变得十分必要了。数据挖掘以后,还要对数据进行筛选和处理。此时,信息的监测就发挥作用了。就目前来说,能把信息采集和信息监测结合起来,运用到实际中的企业不多,可以留意一下这家,两个字的,快乐的“乐”,思考的“思”,在这方面具备一定的积淀和实力。大数据是一个新的行业。因此要找具备一定技术的,才能应用于安防领域,并产生应有的效果。

Ⅹ 民警利用大数据思维侦破案件,当今社会大数据有多重要

大数据现在已经无处不在了,而且大数据跟我们的生活也是息息相关的。

一、大数据能对个人的财产状况了解的一清二楚,也是反腐过程的重要利器。我们可以通过大数据甄选出有腐败嫌疑的官员,进行重点监控。大数据分析下,各个部门可以通过大数据识别出官员消费是否符合他的薪资水平。

比如说有些高管海外有十几套房产,并且有上千万的存款都在海外。这些都是能通过大数据查出来的。

又或者是经商方面,有些商户涉嫌偷税漏税,或者在海外开公司转移资产,这些也都能通过大数据发现异常,然后由相关部门去进一步核实的。

所以在现在的社会中,大数据是十分重要的,从我们日常生活中的各个方面中,大数据都是有很大用处的。我们可以利用大数据,将这些数据加一步筛选,整合。让这些大数据成为对我们有利的东西。这些对我们也是非常宝贵的资源,对各方面都会形成重要的影响。

阅读全文

与国外大数据警务应用相关的资料

热点内容
编程什么水平才能在猿急送上接单 浏览:356
电信卡免费流量的app有哪些 浏览:176
桂林市地形cad文件 浏览:536
为什么网络突然全部消失 浏览:373
iphone怎样安装软件 浏览:189
租婚车去哪个网站 浏览:519
linux批量修改文件权限 浏览:911
初学者学习编程语言从什么开始学 浏览:662
招商银行信用卡买苹果 浏览:200
streamsh头文件在那边找 浏览:395
苹果7p怎么看激活日期 浏览:600
汽车编程是什么工作 浏览:152
电脑显示找不到文件无法删除 浏览:164
叉叉模拟器下载的文件在哪 浏览:764
网络摄像头中up是什么意思 浏览:152
除了晋江还有什么网站有好文 浏览:771
苹果ipaimini系统更新密码 浏览:123
linux下如何debug 浏览:65
excel2003教程视频 浏览:792
联通幸福卡升级版资费 浏览:712

友情链接