导航:首页 > 网络数据 > 阿里巴巴大数据体系

阿里巴巴大数据体系

发布时间:2023-04-27 06:51:31

① 阿里巴巴的大数据包括

  1. 大数据基础服务包括 Maxcompute 分析型数据库

  2. 大数据分析于展现包括内容 Date V Quick BI 画像分析等

  3. 大数据应用 包括 推荐引擎 企业图谱

建议可以从阿里云的大数据认证了解,参加阿里云大数据认证培训快速熟悉阿里云产品

② 大数据之路

人类从“IT时代”进入“DT时代”。本书介绍了阿里巴巴的大数据系统架构,为了满足不断变化的业务需求,同时实现系统的 高扩展性 灵活性 以及 数据展现的高性能
数据体系主要包括: 数据采集 数据计算 数据服务 数据应用 四大层次。

事实表包括引用的 维度 和描述具体业务的 度量

事实表中一条记录描述的业务的细节程度称为 粒度 。粒度可以使用两种方式来表示:(1)维度属性组合(2)所表示的具体业务含义。

事实包括可加性、半可加性和不可加性三种类型:
半可加性:只可以针对特定维度做聚合,例如库存(不能按照日期,可按照仓库聚合)。
可加性:可以按照任意维度聚合。
不可加性:完全不具备可加性。(例如:比率,事实表可以拆分存储分子分母)

维度属性也可以存到事实表中,称为 退化维度

事实表有三种类型:事务事实表、周期快照事实表、累计快照事实表。
事务事实表描述的是业务过程上的原子事务,也称为 原子事实表
周期快照事实表是按照周期性规律的时间间隔记录事实。
累计快照事实表:累计快照事实表用来表示过程开始和结束过程之间的关键步骤事件,覆盖整个生命周期,通常用多个日期字段记录关键时间点,记录会随着时间变化而修改。

事实表设计原则:
原则1: 尽可能包含所有与业务过程相关的事实。
即时存在冗余,也尽可能存储。

原则2:只选择与业务过程相关的事实。

原则3:分解不可加事实为可加的组件。
例如:不存成单率,转而存储成单数和提单数。

原则4:选择维度和事实前,必须先声明粒度。
建议粒度设置的越细越好,这样可以最大限度的提高灵活性。可以通过业务描述或者维度属性组合的方式来定义粒度。

原则5:在同一个事实表中,不应该有不同粒度的事实。
例如:一个事实表中不应该包含某些精确到订单粒度的度量,同时又包含只精确到城市的度量。

原则6:事实的单位一致。

原则7:尽量处理掉事实表中的null值。
SQL中大于,小于的条件不适用与null值,所以尽量用数值替代null,例如0.

原则8:使用退化维度增加事实表的易用性。
在Kimball的维度设计模型中,分拆出单独的维度表,为了节省存储。但是为了减少使用时的关联次数,可以多使用退化维度提供事实表易用性。

事实表设计方法:
1.选择业务过程及确定事实表类型。2. 声明粒度。3.确定维度。4.确定事实。5.冗余维度(设计退化维度)。

事务事实表,即针对业务过程构建的一类事实表,用来跟踪定义业务过程的个体行为,提供丰富的分析能力,作为数据仓库原子的明细数据。

单事务事实表,即针对每一个业务过程设计一个事实表,这样可以方便地对每一个业务过程进行分析研究。

表示同一个事实表包含不同的业务过程。多事务事实表有两种实现方法:(1)使用两个不同的事实字段来保存各自业务过程。(2)使用同一个字段保存,但是增加一个业务过程标签。
下面举例说明,淘宝交易事务事实表同时包含下单、支付和成功完结三个过程,三个过程粒度一致,可以放在一个事实表。下面确定维度和事实,该表中的下单度量、支付度量和成功完结度量信息分别存在不同字段,如果不是当前业务处理,则用0来处理。
当不同业务过程的度量比较相似、差异不大时使用第二种事实表(使用一个字段保存),当不同业务过程的度量差异大时,使用第一种(多字段保存)。

对于单事务事实表和多事务事实表的选择上,可以从以下一些方面来区分:
业务过程、粒度和维度(不同业务过程粒度相同,并且维度相似时,可以选用单事务事实表)、事实、下游业务使用、计算存储成本。电商环境下,有父子订单的概念,店铺多商品各生成一个订单,在一个店铺合成一个父订单。

1.事实完整性:事实表包含与其描述的过程有关的所有事实。
2.事实一致性:明确存储每一个事实以确保度量一致性。例如,有下单商品数和商品价格2个事实,同时保存下单金额(价格*商品数)。这样下游使用时,直接取下单金额,而不是再次计算,以保证指标的一致性。
3.事实可加性:为确保下游使用时,指标的可聚合性,尽量保存原始数,而不是计算后的比率指标。

对于事务度量,事务性事实表可以很好地表征。但是对于一些 状态度量 ,例如买卖家累计交易金额、商品库存、买卖家星级、温度(事务事实表无法聚合得到)等,事务事实表的效率较低或者无法处理。为了解决状态度量问题,引入周期性快照事实表(也称为 快照事实表 )。

1.用快照采样状态:快照事实表以预定的间隔采样状态度量。
2.快照粒度:快照事实表通常总是被多维声明,即快照需要采样的周期以及什么将被采样。
3.密度和稠密性:稠密性是快照事实表的重要特征。事务事实表一般都是稀疏的,只要发生业务才会有相应记录。
4.半可加性:快照事实表的状态度量都是半可加的,例如商品库存,只针对商品维度可加,对日期维度不可加。

设计快照事实表,首先确定快照粒度,然后确定采样的状态度量。下面介绍几个快照事实表实例。
单维度每天快照事实表、混合维度每天快照事实表,这两种快照表都可以从事务事实表汇总得到。另外的一种产出模式是直接使用操作型系统作为数据源来加工,例如淘宝卖家的星级评分是在操作型系统中计算得出的,仓库直接拿来这部分数据加入事实表。全量快照事实表,是特殊类型的周期快照表,例如设计无事实的事实表来记录评论的状态度量。

对于研究事件之间的时间间隔需求时,累计快照事实表能较好符合需求。
特点:
1.数据不断更新:例如,在下单、支付和确认收货三个业务过程中,事务事实表会生成3条记录,而累计快照表会不断更新一条记录(不生成新记录)。
2.多业务过程日期:
累计快照表适用于具有较明确起止时间的短生命周期的实体,对于每个实体都经历从诞生到消亡等步骤。
3.存储历史全量数据。

1.事件类的,例如浏览日志。
2.条件范围资格类的,例如客户和销售人员的分配情况。

主要是提前聚合,为了增加数据访问的效率(不用再聚合了),减少数据不一致的情况。这类聚集汇总数据,被称为“公共汇总层”。
聚集的基本步骤:1.确定聚集维度。2.确定一致性上钻。3.确定聚集事实。

元数据主要记录数据仓库中模型的定义、各层级间映射关系、监控数据仓库的数据状态及ETL任务的运行状态。元数据分为 技术元数据 业务元数据
阿里巴巴技术元数据包括:
数据表、列等信息;ETL作业的信息;数据同步、任务调度、计算任务等信息。数据质量和运维相关元数据。
阿里巴巴业务元数据包括:
维度属性、业务过程、指标等。数据应用元数据,例如数据报表、数据产品等。

元数据价值:
元数据在数据管理方面为集团数据在计算、存储、成本、质量、安全、模型等治理领域上提供数据支持。

阿里MaxCompute提供了archive压缩方法,采用了具有更高压缩比压缩算法,将数据以RAID file的形式存储。这样可以节省空间,但是恢复起来也更复杂,所以适用于冷备份的数据。

MaxCompute基于列存储,通过修改表的数据重分布,避免列热点,将会节省一定存储空间。

存储治理项以元数据为基础,列出例如“62天内未访问的分区”、“数据无更新的任务列表”等等管理项推动ETL优化。形成现状分析、问题诊断、管理优化、效果反馈的存储治理项优化的闭环。

生命周期管理的目的是用最少的存储成本来满足最大业务需求,实现数据价值最大化。
1.周期性删除策略:
2.彻底删除策略:主要针对无用表,ETL中间过程表。
3.永久保存策略:
4.极限存储策略:
5.冷数据管理策略:针对重要且访问频率低的数据。
6.增量表merge全量表策略:

将一个数据表的成本分为存储成本和计算成本,除此之外,上游表对该表的扫描成本也应该计入。相应的计费分别核算为:计算付费、存储付费和扫描付费。数据资产的成本管理分为数据成本计量和数据使用计费。

③ 阿里的数据中台可以本地化部署么

可以的,阿里的数据中台可以本地化部署,并且有些还支持本地化独立部署。
阿里巴巴集团(NYSE:BABA)宣布组织结构全面升级,建设整合阿里产品技术和数据能力的强大中台,进而形成“大中台,小前台”的组织和岩散业务体制,使前线业务更加灵动、敏捷。
阿里巴巴在中国最先提出数据中台概念。阿里巴巴认为:数据中台是集方法论、组织和工具于一体的,“快”、“准”、“全”、“统芹薯”、“通”的智能大数据嫌枣者体系,帮助企业实现好数据、联商业和通组织”。当前,阿里巴巴已经将内部多年沉淀的方法论、技术及工具通过阿里云数据中台正式对外赋能,亦称阿里云数据中台。

④ 阿里cco做什么内容

阿里CCO致力为广大阿里巴巴用户提供更为专业的服务和用户体验,继续深化大数据和技术驱动服务体验提升。

阿里巴巴客户体验事业部,简称CCO(Chief Customer Office),现任CCO管理者为阿里巴巴合伙人大腔清资深副总裁——吴敏芝。

阿垍头里筿巴巴集团客户体验事业部简称CCO,吴敏芝2017年1月13日被任命为阿里巴巴CCO。CCO致力为广大阿里巴巴用户提供更为专业的服务和用户体验,继续深化大数据和技术驱动服务体验提升,“做出让用户尖叫的服务”;更大力度全方面赋能商家,提高全平台服务水平。

做好业务的“耳朵和眼睛”,打通客户到业务的任督二脉。

2017年,阿里巴巴服务团队推出智能客服——阿里小蜜等系列智能(AI)服务产品,如今,阿里小蜜已经每日可以协助服务百万级的客户在线咨询。

新华社北京11月13日电(记者宋玉萌)12日,阿里巴巴集团首席客户官吴敏芝表示,刚刚过去的天猫“双11”,智能客服机器人阿里“小蜜”系统承接了淘宝天猫平台97%的在线服务需求,提供了相当于8.5万名人工客服“小二”的工作量,全天提供在线咨询对话量3亿次。“这个数字体现的正是技术的力量、创新的力量。”

助推“2684亿”的幕后加速器

据阿里提供数据显示,天猫“双11”总成交额达到2684亿元,再次创下新纪录。

如此庞大的交易数字背后,有一个神奇的团队在发挥着作用。天猫“双11”当天,阿里“小蜜”客服机器人协助数十万商家用人工智能解决在线客服需求。全天提供在线咨询对话量3亿次,解决率达到70%,带来的询单成交高达113亿元。

提起客服,圆乱一般人最直接的想象就是电话接线员。但在阿里体系内,客服工作属于集团客户体验事业群CCO体系。CCO是“首席客户官”(Chief Customer Office)的缩写。阿里经济体中的很多业务及平台,包括淘宝、天猫、盒马、飞猪等背后都是通过阿里CCO体系来进行客服等业务的运转。

阿里客户体验事业群不仅拥有专业“小二”为消费者、商家和经济体提供服务,还有进行体验运营的团队,此外还有数据中台、产品、技术等团队进行底层支撑,形成了行业内独特的数字化服务体验团队。

CCO:不仅是升级版客服

当前,流量获客成本越来越高,从增量市场到存量市场,怎么把客户留住是各互联网平台共同思考的问题。阿里CCO体系从服务的角度给出了增加客户粘性的整体解决方案。

“人工智能时代,阿里CCO体系滚前不仅仅是升级版‘客服’,更要依托阿里的技术能力,用人工智能赋能商家。”吴敏芝介绍说,阿里CCO要对消费者和商家之间的互动、对消费者在平台上的体验,做兜底保障。

但仅有兜底是不够的,更重要的还要业务前置,即在业务决策的环节,就以消费者和客户的视角来参与业务决策,从根本上排除会让消费者体验不好的决策。

同时,商家的能力参差不齐,CCO把阿里体系沉淀的经验、产品和人工智能等技术能力模块化赋能给商家,让商家有更高效率、更低成本,更好服务消费者。

输出数字化服务整体解决方案

模块化的方式输出技术能力和经验,说起来容易,如何做到标准化、结构化?

吴敏芝说,阿里巴巴最优秀的人工智能团队近半数在CCO体系,人工智能“小蜜”等体系工具背后是体验和服务领域产品技术能力的长期沉淀。

阿里CCO还推出了给商家的“指挥大脑”——服务操作系统,即服务OS。在智能和数据双驱动下,为品牌快速搭建服务人才体系、客服工作台、应用智能客服机器人“小蜜”等产品工具,提供数字化服务整体解决方案。

针对品牌商家不同的发展阶段和需求,此次“双11”,阿里巴巴还持续向商家提供数字化服务,推出“智能预警”“智能外呼”“爆品保护”和“前N有礼”等系列智能产品和工具,从库存、交易、资损等维度为商家提供保障。

“包括阿里巴巴集团合伙人和各业务线总裁在内,所有负责人都不止一次来到CCO,参与到客户服务的工作里来,到服务一线零距离感受客户反馈。”吴敏芝表示,CCO是触达消费者和商家的最前线,相当于整个阿里经济体客户体验的神经网络

⑤ 阿里巴巴的大数据水平在业内如何

阿里巴巴在08年就把大数据作为一项公司基本战略,要知道那个时候甚至还没几个人开始谈论“大数据”,可以说在大数据方面相比于国内其他互联网公司,阿里是走在前面的。按马云的话讲,我们正从information technology转向data technology。数据是灵魂。也许并不能保证大数据能给阿里巴巴赚很多钱,但是阿里认为数据对人类有用,所以他们做了。举一个阿里CTO认为大数据应用和价皮碰值冲握芹的例子:散毕淘宝小贷团队,很小的队伍,完全依赖数据对客户的信用程度作分析,将数据转化为信用,将信用转化为财富,这是传统商业银行冗杂的审核程序,低效和高成本所不能比的。更重要的是,这个项目给近百万的小商户提供了生命线,哪怕只贷一元钱。没有哪个银行会这么做。我认为阿里巴巴已经是国内互联网大数据的先驱,他们在做有意义的事情。

⑥ 阿里巴巴运用大数据包括哪些

  1. 大数据计算服务(MaxCompute,原ODPS)

  2. Data IDE(原BASE)

  3. 数据集成(原CDP云道)

  4. 大数据基础服务包括 Maxcompute 分析型数据库等

  5. 大数据分析于展现包括 Date V Quick BI 画像分析等

  6. 大数据应用 包括 推荐引擎 企业图谱

⑦ 阿里巴巴如何利用大数据提高财务信息的例子

财务信息只有你们那财务去管。

⑧ 大数据的应用领域在不断拓宽

大数据的应用领域在不断拓宽

1、数据已经成为可交易的重要资产

数据的价值在于能够产生业务价值,而产生业务价值的多少取决于数据带来的视野的宽度和深度,以及对明智决策的支持度。从这个角度将,在资源不限的理想情况下,越多的数据来源,越能够带来宽度和广度,从而得到越好的决策支持度。数据,毫无疑问已经成为了一种企业资产, 并且会成为越来越重要的资产,未来甚至可能进入资产负债表。

2015 年 4 月 15 日, 我国贵阳大数据交易所正式运营, 其交易的数据是基于底层数据,通过数据的清洗、分析、建模 、可视化后的结果, 大数据交易所本着以电子交易为主要形式,通过建立大叔局的网上交易系统,搭建交易平台。预计到 2020 年,大叔局交易所将形成日均 100 亿的数据交易金额, 发展到 1 万家与大数据有关的会员单位。

2. 云计算是大数据产业发展的助推器

云计算产业进入高速发展期。 云计算包括三个层次的服务:基础架构即服务( IaaS),平台即服务(PaaS)和软件即服务(SaaS)。来自 Oxford Economics 和 SAP 关于云计算采用的研究《The Cloud Grow Up》中提出, 69%的企业预计在未来三年内将会中度或者重度投资在云计算上,这意味着它们的核心业务功能将迁移到云上。 59%的企业认为他们使用了基于云计算的应用程序和平台系统,更好地管理和分析了数据,这反映了企业范围内进行数据分析和大数据计算日益增加的重要性。 Gartner 预测 2015 年全球云计算服务市场总收入将突破 1800 亿美元。 2015 年 2 月 , 国务院下发《关于促进云计算创新发展培育信息产业新业态的意见》提到:开展基于云计算的大数据应用示范,支持政府机构和企业创新大数据服务模式,政府部门要加大采购云计算服务的力度等一系列措施。云计算已经从概念走向实际应用, 已经进入高速发展期。

云计算降低了使用 IT 资源的门槛,为数据集中化创造了基础,极大的促进了大数据产业的发展。 云计算按需付费和资源共享的商业模式,大幅提高了 IT 基础设施的使用效率;IaaS 运营商不断降价,又极大满足中小企业对于技术基础设施的需求。未来企业将不用再购买服务器,直接购买终端,输送至数据中心,从而形成服务器集群产业链,满足了大数据存储和挖掘的需求。云计算中心基础设施的不断完善使得大型数据中心和 PaaS 类运行平台的趋于成熟,又为 SaaS 类应用业务市场的大规模启动创造了条件。 SaaS 应用的大规模使用降低了用户使用软件的成本,促进了企业信息化程度额提高,又进一步促进了数据集中化。

云端处理与移动互联网行业结合,将产生不计其数的交叉业务和个性化应用。而社交网络的广泛应用,又加速了信息的传播速度和范围,促进了数据的内生增长。物联网要求的海量存储和计算能力让廉价、高性能的云计算应用方案成为所有用户的自然选择。可以说,云计算的蓬勃发展,极大促进了移动互联网、社交网络和物联网的发展,使得更多数据被采集到云端,为大数据应用提供了数据基础;同时,云计算的高性能、低成本运算能力又为大数据分析提供了极佳的计算平台,极大的促进了大数据在各行业中的应用。 因此, 数据的爆炸式增长其背后的核心支撑是云计算产业的蓬勃发展。

3. 大数据的应用领域在不断拓宽

大数据实践包含多个维度, 按照行业划分,包括金融大数据、 医疗大数据、 交通大数据、运营商大数据、 互联网大数据、物流大数据等等, 每个行业根据其 IT 系统及互联网化的完善程度不同,其大数据发展的阶段各不相同。按照数据对象划分,包括互联网大数据、政府大数据、 企业大数据、 个人大数据, 目前,互联网大数据是已经开始得到有效利用的细分领域,而政府、企业和个人的大数据应用才刚刚开始, 是“互联网 +”背景下大数据应用的重要发展方向。

互联网大数据:互联网上的数据多样、积累迅速, 包括用户行为数据、用户消费数据、用户 社交数据、 用户地理位臵数据等, 互联网企业是大数据领域的先驱, 各家互联网企业依托自身的数据优势,早已开始利用大数据技术尝试用户 行为分析、精准营销、产品优化、 信用记录分析等用途。

阿里巴巴是互联网企业中大数据应用的典范。 阿里巴巴旗下的淘宝最早于 2005 年开发“淘数据”,并在半年后成立专门的大数据团队,相继开发了自用的“无量神针”、“类目360”, 以及针对卖家的“数据魔方”、“黄金策”、“淘宝指数”、“聚石塔”等数据产品,为卖家提供增值服务, 探索盈利模式。 此后,阿里巴巴的大数据体系日益成熟, 确立了平台 、金融和数据的三大业务核心,三者相辅相成,目前的阿里巴巴金融帝国就是建立在其电商平台 +大数据之上的隐性巨人。 例如, 阿里依托电商数据积累推出阿里小贷和蚂蚁信用,本质在于通过大数据技术构建征信体系 , 为整个阿里体系金融业务的进一步拓展打下了充分的基础。

政府大数据:政府是数据资源最丰富的部门之一,大量的优质数据资源集中在政府手中,各个政府部门掌握着构成社会基础的原始数据,例如金融数据、交通数据、医疗数据、旅游数据、电力数据、住房数据、海关数据、违法犯罪数据、教育数据、环保数据等等。目前,政府数据存在几方面的问题:第一,数据积累偏静态,没有做到动态更新,导致有些数据过于陈旧;第二,数据孤岛现象严重,没有做到数据开放和共享。倘若能将这些数据进行有效的管理和分析,其商业价值和社会价值都是不可估量的。

政府加大智慧城市建设,数据价值挖掘正当时。目前,政府已经意识到数据的重要性,2012 年开始,政府就不断加大在智慧城市建设,包括智慧交通、智慧环保、智慧教育、智慧社区、 智能电网等各个与城市相关的细分领域。 2014 年 3 月,国务院印发的《国家新型城镇化规划 (2014-2020 年)》,明确要求推进智慧城市建设,统筹城市发展的物质资源、信息资源和智力资源利用,推动物联网、云计算、大数据等新一代信息技术创新应用。 2015 年 4 月 , 住建部公布第三批智慧城市试点城市,加上前两批,目前我国的智慧城市试点已经达到 297 个。 智慧城市建设将完善城市各个细分领域的信息化水平, 构建统一的数据平台,打破信息孤岛现象; 同时, 一些地方政府已经开始探索采用 PPP(Public-Private-Partnership) 的公私合营模式,逐渐开放部分数据, 让社会机构参与运营,挖掘数据价值。

以智慧交通为例, 通过信息化建设连接道路信息管理系统、交通信号系统、公共汽车系统、出租车系统、电子收费系统、 停车场系统等, 实现数据共享, 对于政府部门来说,通过实时挖掘为出行者和交通监管部门提供实时交通信息,有效缓解交通拥堵, 快速响应突发状况,为城市交通的良性运转提供科学的决策依据, 提高民生体验;对于参与企业来说, 可以在停车场、市民出行等领域提供增值服务,探索新商业模式。

企业大数据:在“互联网+” 时代,企业的互联网化将从传统的传播互联网化和销售互联网化, 走向供应链互联网化和经营逻辑互联网化, 运营模式已经开始发生巨大变化, 企业与供应商、 服务商、 渠道商、 客户 , 乃至终端用户 都可以通过信息技术建立密切的联系 。 如果说过去互联网的价值主要体现在与渠道和营销的整合上,那么这一次变革将是互联网与传统行业在价值链各个关键环节的深度融合。

一方面,对于供应链环节来说, 大数据可以直接应用于产品设计、 原材料采购、 产品制造、库存、物流、配送等各个供应链环节, 清晰地把握原材料采购量、 订单完成率、库存量及产品配送等情况, 优化供应链流程, 降低不必要的损耗。 另一方面,对于生产环节来说, 企业生产设备可以通过传感器和信息系统等实现机器与机器之间的相互连接,进而获取数据, 利用大数据技术进行存储、分析和可视化,最终得到“智能信息” 供决策者使用,调解生产过程以提高效率。 未来, 当信息技术发展到一定阶段,企业生产过程甚至可以根据消费者需求进行个性化定制, 实现柔性生产。

体育大数据:例如体育数据分析师通过从 OPTA( Opta Sports 是一家总部位于英国伦敦的体育数据提供商)提供的 2010 年世界杯以来 22904 场正式比赛的数据中,研究了梅西和其他 16574 名足球运动员与足球相关的所有数据准确发现了梅西两个性: 1、 与巴萨其他队友的数字相比,梅西有关防守行为的数字相当地少,其他方面也能体现“他不去争抢势均力敌的高球”等缺点; 2、 与在巴萨时梅西的表现指为 0.262 相比, 在阿根廷国家队里只有 0.199, 体现了 梅西在两支球队中所起作用的差异。

个人大数据:个人信息往往保存在第三方手里, 例如个人用户在互联网上留存、 在政府部门登记在案等各类信息,此类信息实际上也是互联网、政府和企业用于分析用户 行为的基础。此外,随着可穿戴设备等新事物的兴起,个人信息的采集方式越来越多样化,数据积累 也在不断完善, 例如,可以通过可穿戴设备或植入芯片等感知技术来采集身体数据、 健康数据、地理位臵信息、运动数据、 社会关系数据、饮食数据等。 未来, 可以想象的应用场景是,个人用户可以将个人数据授权给第三方机构以实现特定用途, 例如,高血压患者可以将个人血压数据、 身体机能数据、饮食数据等授权给健康管理机构使用,由他们监控和使用这些数据,进而为用户制定有效的健康维护方案。

以上是小编为大家分享的关于大数据的应用领域在不断拓宽的相关内容,更多信息可以关注环球青藤分享更多干货

⑨ 从IT到DT 阿里大数据背后的商业秘密

从IT到DT:阿里大数据背后的商业秘密

空气污染究竟在多大程度上影响了人们的网购行为?有多少比重的线上消费属于新增消费?为什么中国的“电商百佳县”中浙江有41个而广东只有4个?
这些电商的秘密就隐藏在阿里巴巴商业生态的“大数据”中。
“未来制造业的最大能源不是石油,而是数据。”阿里巴巴董事局主席马云如此形容“数据”的重要意义。
在他看来,阿里巴巴本质上是一家数据公司,做淘宝的目的是为了获得零售的数据和制造业的数据;做蚂蚁金服的目的是建立信用体系;做物流不是为了送包裹,而是这些数据合在一起,“电脑会比你更了解你”。与此同时,产业的发展也正在从IT时代走向以大数据技术为代表的DT时代。
而在阿里巴巴内部,由电子商务、互联网金融、电商物流、云计算与大数据等构成的阿里巴巴互联网商业生态圈,也正是阿里研究院所扎根的“土壤”。
具体而言,阿里巴巴平台的所有海量数据来自于数百万充满活力的小微企业、个人创业者以及数亿消费者,阿里研究院通过对他们的商务活动和消费行为等进行研究分析,从某种程度上可以反映出一个地方乃至宏观经济的结构和发展趋势。
而随着阿里巴巴生态体系的不断拓展和延伸,阿里巴巴的数据资源一定程度上将能够有效补充传统经济指标在衡量经济冷暖方面存在的滞后性,帮助政府更全面、及时、准确地掌握微观经济的运行情况。
从IT到DT
不同于一些企业以技术研究为导向的研究院,阿里研究院副院长宋斐告诉《第一财经日报》记者,阿里研究院定位于面向研究者和智库机构,主要的研究方向包括未来研究(如信息经济)、微观层面上的模式创新研究(如C2B模式、云端制组织模式)、中观层面上的产业互联网化研究(如电商物流、互联网金融、农村电商等)、宏观层面上新经济与传统经济的互动研究(如互联网与就业、消费、进出口等)、互联网治理研究(如网规、电商立法)等。
具体到数据领域,就是在阿里巴巴互联网商业生态基础上,从企业数据、就业数据、消费数据、商品数据和区域数据等入手,通过大数据挖掘和建模,开发若干数据产品与服务。
例如,将互联网数据与宏观经济统计标准对接的互联网经济数据统计标准,包括了中国城市分级标准;网络消费结构分类标准;网上商品与服务分类标准等。
而按经济主题划分的经济信息统计数据库则包括商品信息统计数据库;网购用户消费信息统计数据库;小企业与就业统计数据库;区域经济统计数据库。
还有反映电商经济发展的“晴雨表”——阿里巴巴互联网经济系列指数。其中包括反映网民消费意愿的阿里巴巴消费者信心指数aCCI、反映网购商品价格走势的阿里巴巴全网网购价格指数aSPI和固定篮子的网购核心价格指数aSPI-core、反映网店经营状态的阿里巴巴小企业活跃度指数aBAI、反映区域电子商务发展水平的阿里巴巴电子商务发展指数aEDI等等。其中,现有aSPI按月呈报给国家统计局。
而面向地方政府决策与分析部门的数据产品“阿里经济云图”,则将分阶段地推出地方经济总览、全景分析、监测预警以及知识服务等功能。宋斐告诉记者,其数据可覆盖全国各省、市、区县各级行政单位,地方政府用户经过授权后,可以通过阿里经济云图看到当地在阿里巴巴平台上产生的电子商务交易规模、结构特征及发展趋势。
“借助数据可视化和多维分析功能,用户可以对当地优势产业进行挖掘、对消费趋势与结构变动进行监测、与周边地区进行对比等等。”宋斐表示,该产品未来还可以提供API服务模式,以整合更多的宏观经济数据和社会公开数据,为当地经济全貌进行画像,给大数据时代的政府决策体系带来新的视角和工具。
数据会“说话”
对于如何利用“大数据”,马云在公司内部演讲中曾提到:“未来几年内,要把一切业务数据化,一切数据业务化。”
其中,后半句话可以理解为,让阿里巴巴各项业务所产生、积累的大数据来丰富阿里的生态,同时让生态蕴含的数据产生新的价值,再反哺生态,这是一个相辅相成的循环逻辑。
宋斐对记者举例称,蚂蚁金服旗下的芝麻信用已获得人民银行个人征信牌照批准筹备,未来将通过分析大量的网络交易及行为数据,如用户信用历史、行为偏好、履约能力、身份特质、人脉等信息,对用户进行信用评估,这些信用评估可以帮助互联网金融企业对用户的还款意愿及还款能力做出结论,继而为用户提供快速授信及现金分期服务。本质上来说,“芝麻信用”是一套征信系统,该系统收集来自政府、金融系统的数据,还会充分分析用户在淘宝、支付宝等平台的行为记录。
再如,对于如火如荼的农村电商领域,阿里研究院从2010年就已开始对“沙集模式”个案进行研究,后续一系列基于数据和案例调研所驱动的农村电商研究成果,对于地方政府科学决策,推动当地农村电子商务发展、创造就业和发展地方经济起到了助力作用。到2014年底,全国已经涌现了212个淘宝村,而阿里巴巴也在这一年启动千县万村计划,将在三至五年内投资100亿元,在农村建立起电子商务服务体系。
除了通过数据分析去助力业务外,宋斐告诉记者,有时候大数据报告可能会与传统的印象结论差异很大。
以区域电子商务为例,在阿里研究院发布的2014年中国电商百强县排行榜中,浙江有41个县入围,福建有16个,而广东只有4个,这个结果与传统的印象相差比较大。而事实上,这是因为浙江和广东两省电商发展在地理分布、产业结构等方面的明显不同而带来的。
再如,外界常常认为网络零售替代了线下零售,但事实上,麦肯锡《中国网络零售革命:线上购物助推经济增长》的研究报告,通过借鉴阿里研究中心(阿里研究院前身)和淘宝网UED用户研究团队的大量报告与数据,最后发现:“约60%的线上消费确实取代了线下零售;但剩余的40%则是如果没有网络零售就不会产生的新增消费。”
“这一研究成果,有助于社会各界准确认识网络零售与线下零售的关系,共同探索和建设良好的商业发展环境。”

⑩ 阿里巴巴拥有的是什么数据

阿里巴巴拥有的是交易数据和信用数据。大数轮链据的来源有交易数据、人为数据禅渗、贺桐脊机器和传感器数据,其中阿里巴巴拥有的是交易数据和信用数据,这两种数据更容易变现,挖掘出商业价值。除此之外阿里巴巴还通过投资等方式掌握了部分社交数据、移动数据。如微博和高德。

阅读全文

与阿里巴巴大数据体系相关的资料

热点内容
编程什么水平才能在猿急送上接单 浏览:356
电信卡免费流量的app有哪些 浏览:176
桂林市地形cad文件 浏览:536
为什么网络突然全部消失 浏览:373
iphone怎样安装软件 浏览:189
租婚车去哪个网站 浏览:519
linux批量修改文件权限 浏览:911
初学者学习编程语言从什么开始学 浏览:662
招商银行信用卡买苹果 浏览:200
streamsh头文件在那边找 浏览:395
苹果7p怎么看激活日期 浏览:600
汽车编程是什么工作 浏览:152
电脑显示找不到文件无法删除 浏览:164
叉叉模拟器下载的文件在哪 浏览:764
网络摄像头中up是什么意思 浏览:152
除了晋江还有什么网站有好文 浏览:771
苹果ipaimini系统更新密码 浏览:123
linux下如何debug 浏览:65
excel2003教程视频 浏览:792
联通幸福卡升级版资费 浏览:712

友情链接