❶ 大数据时代十大热门IT岗位
大数据时代十大热门IT岗位
大数据时代十大热门IT岗位 ,新的想法诞生新的技术,从而造出许多新词,云计算、大数据、BYOD、社交媒体、3D打印机、物联网……在互联网时代,各种新词层出不穷,令人应接不暇。这些新的技术、新兴应用和对应的IT发展趋势,使得IT人必须了解甚至掌握最新的IT技能。另一方面,云计算和大数据乃至其他助推各个行业发展的IT基础设施的新一轮部署与运维,都将带来更多的IT职位和相关技能技术的要求。
毫无疑问,这些新趋势的到来,会诞生一批新的工作岗位,比如数据挖掘专家、移动应用开发和测试、算法工程师,商业智能分析师等,同时,也会强化原有岗位的新生命力,比如网络工程师、系统架构师、咨询顾问、数据库管理与开发等等。下面分别为大家介绍着十大IT技能所体现的工作岗位:
一、算法工程师
何万青博士曾经介绍把一件事做快做好的三种方法,其中就提到过“提高流水线效率、更好的算法和更短的代码关键路径。”可以看出算法在系统效率中的重要地位。算法是让机器按照人类设想的方式去解决问题,算法很大程度上取决于问题类型和工程师对机器编程的理解,其效率的高低与算法息息相关。
在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。在大数据时代,算法的功能和作用得到进一步凸显。比如针对公司搜索业务,开发搜索相关性算法、排序算法。对公司海量用户行为数据和用户意图,设计数据挖掘算法。
算法工程师,根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。另外数据挖掘、互联网搜索算法这些体现大数据发展方向的算法,在近几年越来越流行,而且算法工程师也逐渐朝向人工智能的方向发展。
二、商业智能分析师
算法工程师延伸出来的商业智能,尤其是在大数据领域变得更加火热。IT职业与咨询服务公司Bluewolf曾经发布报告指出,IT职位需求增长最快的是移动、数据、云服务和面向用户的技术人员,其中具体的职位则包括有商业智能分析师一项。
商业智能分析师往往需要精通数据库知识和统计分析的能力,能够使用商业智能工具,识别或监控现有的和潜在的客户。收集商业情报数据,提供行业报告,分析技术的发展趋势,确定市场未来的产品开发策略或改进现有产品的销售。
商业智能和逻辑分析技能在大数据时代显得特别重要,拥有商业知识以及强大的数据和数学分析背景的IT人才,在将来的IT职场上更能获得大型企业的青睐。不过这些技能并不是一般人都能掌握的,一些公司目前正在招聘统计学家并教授他们有关技术和商业的知识。
三、数据挖掘工程师
数据挖掘工程师,也可以叫做“数据挖掘专家”。数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。
数据挖掘专家或者说数据挖掘工程师掌握的技能,能够为其快速创造财富。当年亚马逊的首位数据挖掘工程师大卫·赛林格(David Selinger)创办的数据挖掘公司,将类似于亚马逊的产品推荐引擎系统销售给在线零售和广告销售商,而这种产品推荐引擎系统,也成为亚马逊有史以来最赚钱的工具。数据挖掘的价值由此可见一斑。
四、咨询顾问(专家)
任何业务部门和任何行业企业,都有IT系统在背后默默无闻地支撑着。在云计算大数据时代,业务面临的挑战和机遇也会给IT系统带来更多要求。在这种情况下,IT系统的规划部署和运维,都要有更为精通的专业人士才能胜任,并满足面向未来大数据分析、云计算服务应用的需要。
纽约蒙特法沃医疗中心(montefioremedical center)的副主席杰克-沃夫(JackWolf)曾经表示,他寻求不仅会建立和使用系统而且还会给予其他员工技术支持的新员工,他说:"新的系统意味着你必须有更多的咨询台来处理更多的咨询量。"当然,这里体现的主要是某个系统的技术支持的功能,但管中规豹我们不难发现,无论是部署初期的物料采购还是运维过程中的金玉良言,都凸显出这种技术咨询顾问的重要性。
五、网络工程师
网络工程师可以说是一个“绿色长青”的职业,网络技术一直以来就处于急需之中,美国人力资源公司罗勃海佛国际(Robert Half International)第三季度IT招聘指数和技能报告指出,网络管理占总需求技能排名中的第二位。对于云计算时代来说,网络在云资源池中(计算、存储、网络)更是扮演着更为重要的作用。
另一方面, IPv6 标准、物联网、移动互联等蓬勃发展,使得对于网络工程师尤其是新型网络工程师(移动、IPv6、云计算方向)的人才和技能要求也越来越多。网络工程师也因此而可以细分成多个发展方向,相应的技能要求其侧重也有所不同。比如网络安全、网络存储、架构设计、移动网络等等。
六、移动应用开发工程师
移动应用开发,会随着移动互联网时代的到来变得更受追捧。截至2012年底我国已经有10亿手机用户,移动智能终端用户超过4亿,在移动支付、移动购物、移动旅游、移动社交等方面涌现了大量的移动互联网游戏、应用和创业公司。
移动平台智能系统较多,但真正有影响力的也不外乎iOS、Android、WP、Blackberry等。大量原来PC和互联网上的信息化应用、互联网应用均已出现在手机平台上,一些前所未见的新奇应用也开始出现,并日渐增多。
移动应用开发,由于存有多个平台系统,因此不同的平台开发者其所面临的机遇和挑战也不尽相同。一个很明显的例子就是,当初由Google公司和开放手机联盟领导及开发的基于Linux的安卓系统,在开源之后就给广大开发者(商)带来巨大商机,而坚定选择iOS平台的的开发工程师,也通过苹果生态系统的不断扩建和智能设备的高市场占有,使得较早的一批开发者都赚得盆满钵满。不过在国内由于用户习惯、产业环境和版权保护的问题,移动应用开发者并没有因此而获得相应的收益。
七、软件工程设计师
近年IT业界逐渐涌现出一股软件定义网络(SDN)、软件定义数据中心、软件定义存储(SDS)和软件定义服务器(MoonShot)等浪潮,大有软件定义未来一切IT基础设施的趋势。
PaaS、SaaS、数据挖掘和分析、数据管理和监控、虚拟化、应用开发等等,都是软件工程师大展身手的好舞台。相应的,这些技术领域也对软件工程师的要求会更高,尤其是虚拟化和面向BYOD、云计算、大数据等应用的开发和管理,都需要有更高深的技术支撑。
和算法工程师有点类似的地方在于,软件工程师也需要注重设计模式的使用,一位优秀的工程师通常能识别并利用模式,而不是受制于模式。工程师不应让系统去适应某种模式,而是需要发现在系统中使用模式的时机。
八、数据库开发和管理
数据库开发和管理在大数据时代显得尤为重要,相关的数据库管理、运维和开发技术,将成为广大BI、大型企业和咨询分析机构特别看重的技能体现。代表着更多类型(尤其是非结构化类型)的海量数据的涌现,要求我们实时采集、分析、传输这些数据集,在对基础设施提出严峻挑战的同时,也特别强调了数据库开发和管理人员的挑战。
比如分布式的、面向海量数据管理的数据库系统之一NoSQL,就是面向大数据领域的非关系型数据库的流行平台,高可用、大吞吐、低延迟、数据安全性高等应用特点成为了很多企业的看重的特点,并希望有足够多的优秀IT开发人员深度开发NoSQL系统,解决对存储的扩容、宕机时长、平滑扩容、故障自动切换等问题的困恼。
另外,更为知名的Hadoop分布式数据库HBase的数据管理,需要借助HRegion、HMaster、HClient组成的体系结构从整体上管理数据。这些也都需要有对Hadoop深刻理解和业务的精通才能胜任。而除此以外的大数据的存储管理、内存计算、包括基于这些应用上的平台开发等等,也得会越来越受市场欢迎。
九、系统架构师
去年三星首席系统架构师吉姆·莫加德(Jim Mergard)跳槽至苹果,属于近期比较大的系统架构师人事变动,这种变动也说明了当今对于系统架构师的高度重视和认可。
众所周知,云计算和大数据的出现,使得传统的数据中心基础设施难以胜任;另一方面,日益激烈的市场竞争和移动互联等商机的出现,势必会给企业业务带来深刻变革。这种变革和IT架构转型,都会牵扯到IT系统架构这个核心问题。相比之前介绍的那些IT技能和所对应的岗位,系统架构师的规划部署能力显得尤为重要,它牵扯的是整个面而不是某个领域某个点的痛点。
十、系统安全师
同样的,网络、计算、存储还是系统架构,也都需要关注安全问题,而安全在现在的云计算环境下,个人隐私和企业敏感数据的保护也不断被强化。
在当前很多企业都收缩IT安全预算开支后,还不断面临着增强的合规要求等问题。企业们都在考虑是否应当将某些IT运营交给云端服务提供商处理。实际上,每个人都深感压力,预算不够地情况下还要尽力防护数据地安全,特别是中小型企业,这也就意味着企业需要将部分IT运转外包给第三方以减少资金和人力 方面地投资。
即使不采用外包的形式,无论个人还是企业都会更加注重安全,因为“安全”本身是没有行业限制和划分的,尤其是企业在构建云计算环境、提交或者收集海量数据进行处理分析、存储和传输等等一系列环节,都会面临新的挑战。这种挑战势必会需要有更多更专业的技术人才帮助解决这些问题。相比传统来说,系统安全师将更多的会结合具体的业务展开,而根植于系统平台和底层基础设施的系统安全,则更多的会出现在运营
❷ 大数据常用的端口(汇总)
Spark:
7077:spark的master与worker进行通讯的端口 standalone集烂握群提交Application的端口
8080:master的WEB UI端口 资源调度
8081 : worker的WEB UI 端丛宏口 资源调度
4040 : Driver的WEB UI 端口 任务调度
18080:Spark History Server的WEB UI 端口
Zookeeper:
2181 : 客户端连接zookeeper的端口
2888 : zookeeper集群内通讯使用,Leader监听此端口
3888 : zookeeper端口 用于选举leader
Hbase:
60010:Hbase的master的WEB UI端口
60030:Hbase的regionServer的WEB UI 管理端口
Hive:
9083:metastore服务默认监听端口
10000:Hive 的JDBC端口
Kafka:
9092: Kafka集群节点之间通信的RPC端口
Redis:
6379:Redis服务端口
CDH:
7180:Cloudera Manager WebUI端渗历册口
7182: Cloudera Manager Server 与 Agent 通讯端口
HUE:
8888:Hue WebUI 端口
❸ 大数据技术之HBase原理分析
1)Client向HregionServer发送写请求;
2)HregionServer将数据写到HLog(write ahead log)。为了数据的持久化和恢复;
3)HregionServer将数据写到内存(MemStore);
4)反馈Client写成功。
1)当MemStore数据达到阈值(默认是128M,老版本是64M),将数据刷到硬盘,将内存中的数据删除,同时删除HLog中的 历史 数据;
2)并将数据存坦启储到HDFS中;
3)在HLog中做标记点。
1)当数据块达到4块,Hmaster将数据块加载到本地,进行合并;
2)当合并的数据超过256M,进行拆分,将拆分后的Region分配给不同的HregionServer管理;
3)当HregionServer宕机后,将HregionServer上的hlog拆分,然后分配给不同的HregionServer加载,修改.META;
4)注意:HLog会同步到让返如HDFS。
1)Client先访问zookeeper,从meta表读取region的位置,然后读取meta表中的数据。meta中又存储了用户表的region信息;
2)根据namespace、表名和rowkey在meta表中找到对应的region信息;
3)找到这个region对应的regionserver;
4)查找对应的region;
5)先从MemStore找数据,如果没有,再到StoreFile上读(为了读取的效率)。
1)管理用户对Table的增、删、改、查操作;
2)记录region在哪台Hregion server上;
3)在Region Split后,负责新Region的世洞分配;
4)新机器加入时,管理HRegion Server的负载均衡,调整Region分布;
5)在HRegion Server宕机后,负责失效HRegion Server 上的Regions迁移。
1)HRegion Server主要负责响应用户I/O请求,向HDFS文件系统中读写数据,是HBASE中最核心的模块。
2)HRegion Server管理了很多table的分区,也就是region。
1)HBASE Client使用HBASE的RPC机制与HMaster和RegionServer进行通信
2)管理类操作:Client与HMaster进行RPC;
3)数据读写类操作:Client与HRegionServer进行RPC。
文章转载链接:http://www.atguigu.com/jsfx/1062.html
❹ 大数据未来的发展前景怎么样
目前,我国大数据企业分布在产业链各个环节,包括大数据基础的硬件、软件支撑与大数据服务。行业龙头企业均专注其重点布局领域,在各个方向拥有明显的特有优势。在区域分布方面,中国大数据企业较为集中,主要分布在京津冀与东部沿海地区。
行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等
本文核心数据:大数据、竞争层次、产业结构、应用领域分布、区域集中度、业务竞争力、五力模型分析等
1、中国大数据行业产业链各环节竞争情况
目前,我国的大数据产业尚处于初级建设阶段,从其细分领域来看,大数据产业可划分为大数据基础支撑设施、应用软件以及大数据服务三大子行业。中国大数据代表性企业分布在各个子行业,基础支撑层主要代表厂商有同有科技与欧比特等;专门研发大数据相关软件的代表性企业有常山北明、思特奇与四维图新等;科创信息与神州泰岳等企业则专注于大数据服务。另外,行业的龙头企业如美亚柏科与易华录等,业务布局覆盖整条大数据产业链。
更多行业相关数据请参考前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。
❺ 大数据培训课程介绍,大数据学习课程要学习哪些
《大数据实训课程资料》网络网盘资源免费下载
链接:https://pan..com/s/1RiGvjn2DlL5pPISCG_O0Sw
大数据实训课程资料|云计算与虚拟化课程资源|课程实验指导书综合版|机器学习与算法分析课程资源|Spark课程资源|Python课程资源|Hadoop技术课程资源|云计算课程资料.zip|微课.zip|算法建模与程序示例.zip|spark课程资源.zip|hadoop课程资源.zip|实验指导书|教学视频|教学PPT
❻ 大数据时代:落后地区路在何方
以信息化智能化为特点数字经济时代已经到来,新技术新革命新形势给我们落后地区发展带来了前所未有的新机遇。
(一)发展模式转变,一跃可以跨千年。传统经济发展模式,必须具备必要的先决条件,比如交通、区位、技术等;必须经历必要的发展阶段,比如农业 社会 、工业 社会 、信息 社会 ;必须提供必要的要素支撑,比如资源、人才、资金等。信息 社会 的到来,数字经济的发展,打破了空间界限、缩短了时空距离,让世界变得更加小,地球真正成了村,“边远”将成为永远消失的词语;只要有核心的优势、独特的魅力,处处都可能成为“中心”。后发地区往往有丰富的绿色资源、生态资源、 旅游 资源、红色资源和人文资源,这是不可再造的、不可多得的,是独特的优势,利用好信息技术,发展好数字经济,发挥好独特优势灶芹袜,可以促进经济高点起步跨越发展,迅速赶超发达地区。
(二)发展理念转变,劣势可以变优势。第四次工业革命就是绿色工业革命,其实质和特征就是大幅度地提高资源生产率,经济增长与不可再生资源要素全面脱钩,与二氧化碳等温室气体排放脱钩。这就要求黑色或褐色能源绿化,促进非化石能源、可再生能源、绿色能源的大幅上升,走创新协调绿色开放共享发展这路。后发地区由于地处远远、 基础落后、山高坡陡、林多地少,发展不足、发展不够、发展不充分是当前最大劣势,但这同时也为我们留下了良好的生态环境、丰富的绿色资源和充足的发展空间。生态良好、气候宜人有利首誉于吸引更多的高端人才来巴中创业发展,有利于发展大数据产业。
(三)发展取向转变,政策可以变动能。作为后发地区、贫困地区国家出台了支持革发展的系列政策,加大了农村脱贫攻坚投入力度,在基础建设、民生改善、 社会 事业和隐激乡村发展等方面给予了极大支持。 我们可以利用好这些政策,充分发挥好自身优势,坚持以人民为中心的发展理念,在搞好基础建设和绿色产业发展的基础上,积极向上争取政策支持,着力推动智慧农业、智慧 旅游 、智慧城市等建设,大力促进数字经济发展,助推地方经济跨越发展。
❼ 中国大数据普及不到的地区
中国大数据普及不到的橘陪裤地区主要是偏远地区,如西藏、新疆、内蒙古等地区,由于地理位置偏远,乱唤网络设施圆简落后,大数据普及率较低。
❽ 大数据对大脑控制及各个区域掌控的影响
提高工作和生活效率。通过大数据技术来模拟和优化认知过程,加强大脑的学习和记忆能力,帮助个人更好地掌握大脑区域控制之前的关联和影响,提高工作和生活效率。闭誉大数据指的是海量、多样的数据集合,涉及到数据的收集、处磨渗理瞎态脊、分析和应用等各个环节。
❾ 大数据未来的发展前景怎么样
数据的资源化
何为资源化,是指大数据成为企业和社会重视的重要战略资源,并已成为我们争相抢夺的新焦点。因此,企业必需要提前制定大数据营销战略计划,抢占市场先机。
与云计算的深度结合
大数据离不开云处理,云处理为大数据提供了弹性可拓宽的根底设备,是产生大数据的渠道之一。自2013年开端,大数据技能已开端和云计算技能紧密结合,估计未来两者联系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革新,让大数据营销发挥出更大的影响力。
科学理论的打破
随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技能革新。随之兴起的数据发掘、机器学习和人工智能等相关技能,可能会改变数据世界里的许多算法和根底理论,实现科学技能上的打破。
数据科学和数据联盟的成立
未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个根底渠道,也将建立起跨领域的数据同享渠道,之后,数据同享将扩展到企业层面,而且成为未来产业的中心一环。
数据走漏泛滥
未来几年数据走漏事件的增长率或许会到达100%,除非数据在其源头就可以得到安全保障。可以说,在未来,每个财富500强企业都会面临数据进犯,不管他们是否现已做好安全防范。而一切企业,不管规划大小,都需要从头审视今日的安全界说。