❶ 大数据对企业决策的变革性影响
大数据对企业决策的变革性影响
大数据对企业决策的变革性影响
( 一) 决策主体从“精英式”过渡到“大众化”
传统的营销决策包括“核心竞争力”和“定位”理论,前者关注客户的长期价值, “定位”理论以产品或客户的需求为基础,决策的核心都是精英式的企业管理层,而非员工和社会公众。这些决策的依据均是相对静止的、确定的结构化数据。而随着社会化媒体和大数据应用的深入,广大社会公众和终端用户都是数据的创造者和使用者,信息传播的范围和效力更加深远,知识的共享和信息的交互更加广泛,通过意见的表达、信息的传递,迅速形成信息共同体和利益共同体,形成意见领袖,他们成为企业决策的中坚力量,企业决策主体也从“精英式”转向“大众化”.同时,决策的依据正从结构化数据转向非结构化、半结构化和结构化混合的大数据,而大数据技术和处理手段可以使看似杂乱无章、关联性不强的数据变成服务决策的有效信息。
( 二) 决策方式从“业务驱动”转向“数据驱动”
随着云计算、移动互联网和物联网等新一代信息技术的创新和应用普及,传感设备、移动终端正在越来越多地接入到网络,各种统计数据、交易数据、交互数据和传感数据源源不断从各行各业迅速生成,种类广泛、数量庞大、产生和更新速度加剧的大数据,蕴含着前所未有的社会价值和商业价值,数据越来越成为企业战略资产,是企业创新的核心驱动力。拥有数据的规模、活性以及收集、分析、利用数据的能力,将决定企业的核心竞争力。对数据的掌控和驾驭能力越强,支配市场的竞争优势越明显,意味着巨大的投资回报。而以前企业的经营分析只局限在简单业务、历史数据的分析基础上,缺乏对客户需求的变化、业务流程的更新等方面的深入分析,将导致战略与决策定位不准,存在很大风险。在大数据时代,企业通过收集和分析大量内部和外部的数据,获取有价值的信息。通过挖掘这些信息,可以预测市场需求,最终企业将信息转为洞察,从而进行更加智能化的决策分析和判断。
( 三) 决策过程从“被动式”演变成“预判式”
在互联经济时代,当前科技正走向跨领域融合,产业界限正在模糊,市场环境瞬息万变,各行业间充斥着大量的结构化与非结构化数据,如何保持竞争力,企业需要不断调整和完善自己的商业战略,为帮助企业更好地预测未来、提高决策能力,需要充分对当前数据进行分析和挖掘,利用大数据技术,构建采集、筛选、存储、分析和决策的系统,对企业的业务发展、客户需求、商业机会进行预判,制定出面向未来的决策,成为移动互联时代企业塑造核心竞争能力的关键。在社会化媒体中发掘消费者的真正需求,在大数据中挖掘员工和社会公众的创造性,日益成为企业决策的基本前提,也是推动企业决策过程从“被动式”向“预判式”演变新的决策模式。对于那些能够战略性地利用大数据的企业,他们的创新能力、业务灵活性和利润都将得到极大的提高。比如,银行一直是中国老百姓心中非常专业的地方,没有人想到这个行业在互联网时代,遭到前所未有的挑战,马云创办的支付宝,每天流动资金超过任何一家实体银行,撼动业界,近期推出的“余额宝”,客户享受到的利息超过银行17 倍,对银行产生巨大威胁。这就是跨界的竞争,在大数据时代有时企业还没有分清竞争对手是谁,一夜之间就被对手打败,以全新的模式,以迅雷不及掩耳之速度,实现颠覆和超越。
❷ 大数据资产化与决策智能化
大数据资产化与决策智能化
前些日子,美国洛杉矶警察局开始利用大数据预测犯罪的发生,这是大数据帮助人们做出前瞻性的决策的实例。然而大数据的作用远不止是这一点。在商业领域,大数据对于企业管理者的决策也有重大的参考价值。本文介绍了企业决策者如何收集数据和利用大数据做决策的方法。
近年来,全球数据的增长速度之快前所未有,数据类型也变得越来越多。一方面,海量的多样化数据对信息的有效存储、快速检索提出了挑战,另一方面,其中蕴藏的巨大商业价值也引发了对数据处理、分析的巨大需求。
对于大数据的概念,至今没有一个被业界广泛采纳的明确定义。根据大数据概念的内涵,并结合业界对大数据特性的普遍认同,我们提出以下概念:大数据是指需要通过快速获取、处理、分析以从中提取价值的海量、多样化的交易数据、交互数据与传感数据。
其中,海量和多样化是对大数据的数据量与数据类型的界定;快速是对大数据获取、处理、分析速度的要求;价值是对大数据获取、处理、分析的意义和目的;交易数据、交互数据与传感数据是大数据的来源,交易数据来自于企业ERP系统、各种POS终端,以及网上支付系统等业务系统;交互数据来自于移动通信记录以及社交媒体等;传感数据来自于GPS设备、RFID设备、视频监控设备等。
对大数据的利用将成为企业提高核心竞争力、抢占市场先机的关键。大数据将推动各个行业的信息技术应用产生两大重要的趋势:
一是数据资产化,信息部门将从成本中心转向利润中心。在大数据时代,数据渗透各个行业,渐渐成为企业战略资产。拥有数据的规模、活性,以及收集、运用数据的能力,将决定企业的核心竞争力。
二是决策智能化,企业战略将从业务驱动转向数据驱动。智能化决策是企业未来发展的方向。过去很多企业对自身经营发展的分析只停留在数据和信息的简单汇总层面,缺乏对客户、业务、营销、竞争等方面的深入分析。
在大数据时代,企业通过挖掘大量内部和外部数据中所蕴含的信息,可以预测市场需求,进行智能化决策分析,从而制定更加行之有效的战略。
那么对于行业用户,应当怎样制定大数据应对策略以充分利用大数据所蕴含的巨大商业价值呢?以下两方面建议可供参考:
一方面,应当通过云平台实现数据大集中,形成企业数据资产。对于大型集团企业,各级子公司和分公司的ERP系统每天都在生成大量的交易数据和业务数据。分散在各个业务系统中的数据无法形成集中的资源池、不能互联互通,将严重影响对大数据的统一管理与价值挖掘。实现数据集中是大数据利用的第一步。
另一方面,应当深度分析挖掘大数据的价值,推动企业智能决策。行业用户应当重视对大数据的价值的深入分析与挖掘,推动企业决策机制从业务驱动向数据驱动转变,提高企业竞争力。根据预测,大数据挖掘和应用可以创造出超万亿美元的价值,数据将成为企业的利润之源,掌握了数据也就掌握了竞争力。企业必须更加注重数据的收集、整理、提取与分析。
未来3-5年,那些真正理解大数据并能利用大数据进行价值挖掘的企业,与对大数据价值挖掘重视程度不够的企业之间的差距进一步拉大。真正能够利用好大数据,并将其价值转化成生产力的企业将具备强劲的竞争优势,从而成为行业领导者。
❸ 李果的个人介绍
李果 ,男,北京理工大学管理与经济学院讲师,博士,美国伍斯特理工学院访问学岩粗者,The International Society of Applied Intelligence会员。从事供应链与物流管理、生产与运作管理的研究,在国内外重凯行要期刊和会议上发表论文20余篇,其中SCI/EI刊物论文检索10余篇,参与编写科研教材一本,多次获得省级、校级奖励。攻读硕博士学位期间,曾参与多家管理咨询公司十余项企业委托咨询业务,具有较为丰富的管理咨询经历和社会实践经验盯枣哗。
❹ 大数据技术在网络营销中的策略研究论文
大数据技术在网络营销中的策略研究论文
从小学、初中、高中到大学乃至工作,说到论文,大家肯定都不陌生吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。那要怎么写好论文呢?以下是我帮大家整理的大数据技术在网络营销中的策略研究论文,欢迎阅读与收藏。
摘要:
当今,随着信息技术的飞速发展,互联网用户的数量日益增加,进一步促进了电子商务的快速发展,并使企业能够更准确地获取消费者数据,大数据技术应运而生。该技术已被一些企业用于网络营销,并取得了显着的营销效果。本文基于大数据的网络营销进行分析,分析传统营销存在的问题和挑战,并对大数据技术在网络营销中的作用进行研究,最后针对性地提出一些基于大数据的网络营销策略,以促进相关企业在大数据时代加强网络营销,并取得良好的营销效果。
关键词:
大数据;网络营销;应用策略;营销效果;
一、前言
现代社会已经完全进入了信息时代,在移动互联网和移动智能设备飞速发展与普及之下,消费者的消费数据都不断被收集、汇总并处理,这促进了大数据技术的发展。大数据技术可以精准的分析消费者的习惯,借助大数据技术,商家可以针对顾客进行个性化营销,极大地提高了精准营销的效果,传统的营销方式难以做到这一点。因此,现代企业越来越重视发展网络营销,并期望通过大数据网络营销以增加企业利润。
二、基于大数据的网络营销概述
网络营销是互联网出现之后的概念,初期只是信息爆炸式的轰炸性营销。后来随着移动智能设备的普及、移动互联网的发展以及网络数据信息的海量增长,大数据技术应运而生。大数据技术是基于海量的数据分析,得出的科学性的结果,出现伊始就被首先应用于网络营销之中。基于大数据的网络营销非常精准,是基于海量数据分析基础上的定向营销方式,因此也叫着数据驱动营销。其主要是针对性对顾客进行高效的定向营销,最为常见的就是网络购物App中,每个人得到的物品推荐都有所区别;我们浏览网络时,会不断出现感兴趣的内容,这些都是大数据营销的结果。
应用大数据营销,企业可以精准定位客户,并根据客户的喜好与类型对产品与服务进行优化[1],然后向目标客户精准推送。具体来说,基于大数据技术的精准网络营销过程涉及三个步骤:首先是数据收集阶段。企业需要通过微博、微信、QQ、企业论坛和网站等网络工具积极收集消费者数据;其次,数据分析阶段,这个阶段企业要将收集到的数据汇总,并进行处理形成大数据模型,并通过数据挖掘技术等高效的网络技术对数据进行处理分析,以得出有用的结论,比如客户的消费习惯、消费能力以及消费喜好等;最后,是营销实施阶段,根据数据分析的结果,企业要针对性地制定个性化的营销策略,并将其积极应用于网络营销以吸引客户进行消费。基于大数据的网络营销其基本的目的就是吸引客户主动参与到营销活动之中,从而提升营销效果和经济收益。
三、传统网络营销存在的一些问题
(一)传统网络营销计划主要由策划人主观决定,科学性不足
信息技术的迅速发展,使得很多企业难以跟上时代的步伐,部分企业思想守旧,没有跟上时代潮流并开展网络营销活动,而是仍然继续使用传统的网络营销模型和方式。即主要由策划人根据自己过去的经验来制定企业的营销策略,存在一定的盲目性和主观性,缺乏良好的信息支持[2]。结果,网络营销计划不现实,难以获得有效的应用,导致网络营销的效果不好。
(二)传统网络营销的互动性不足,无法进行准确的产品营销
传统的网络营销互动性较差,主要是以即时通信软件、邮箱、社交网站以及弹窗等推送营销信息,客户只能被动的接受信息,无法与企业进行良性互动和沟通,无法有效的表达自己的诉求,这导致了企业与客户之间的割裂,极大的影响了网络营销的效果。此外,即使一些企业获得了相关数据,也没有进行科学有效的分析,但却没有得到数据分析的结果,也没有根据客户的需求进行有效的调整,从而降低了营销活动的有效性。
(三)无法有效分析客户需求,导致客户服务质量差
当企业进行网络营销时,缺乏对相关技术的关注以及对客户需求的分析的缺乏会导致企业营销策略无法获得预期的结果。因此,企业只能指望出于营销目的向客户发布大量营销内容。这种营销效果非常糟糕。客户不仅将无法获得有价值的信息,而且此类信息的“轰炸”也会使他们感到烦躁和不耐烦,这将适得其反,并降低客户体验[3]。
四、将基于大数据的网络营销如何促进传统的网络营销
(一)使网络营销决策更科学,更明智
在传统的网络营销中,经理通常根据过去的经验来制定企业的营销策略,盲目性和主观性很多,缺乏可靠的数据。基于大数据的网络营销使用可以有效地收集有关市场交易和客户消费的数据,并利用数据挖掘技术等网络技术对收集到的数据进行全面科学的分析与处理,从中提取有用的相关信息,比如客户的消费习惯、喜好、消费水平以及行为特征等,从而制定针对客户的个性化营销策略,此外,企业还可以通过数据分析获得市场发展变化的趋势以及客户消费行为的趋势,从而对未来的市场形势作出较为客观的判断,进而帮助企业针对未来一段时间内的行为制定科学合理的'网络营销策略,提升企业的效益[4]。
(二)大大提高了网络营销的准确性
如今,大数据驱动的精准网络营销已成为网络营销的新方向。为了有效地实现这一目标,企业需要在启动网络营销之前依靠大数据技术来准确分析大量的客户数据,以便有效地捕获客户的消费需求,并结合起来制定准确的网络营销策略[5]。此外,在实施网络营销策略后,积极收集客户反馈结果并重新分析客户评论,使企业对客户的实际需求有更深刻的了解,然后制定有效的营销策略。如果某些企业无法有效收集客户反馈信息,则可以收集客户消费信息和历史消费信息,然后对这些数据进行准确的分析,从而改善企业的原始网络营销策略并进行促销以获取准确的信息,进而制定有效的网络营销策略。
(三)显着提高对客户网络营销服务水平
通过利用大数据进行准确的网络营销,企业可以大大改善客户服务水平。这主要体现在两个方面:一方面可以使用大数据准确地分析客户的实际需求,以便企业可以进行有针对性的的营销策略,可以大大提高客户服务质量。另一方面,使企业可以有效地吸收各种信息,例如客户兴趣、爱好和行为特征,以便向每个客户发布感兴趣的推送内容,以便客户可以接收他们真正需要的信息,提高客户满意度。
五、基于大数据的网络营销优势
(一)提高网络营销广告的准确性
在传统的网络营销中,企业倾向于使用大量无法为企业带来相应经济利益的网络广告进行密集推送,效率低下。因此,必须充分利用大数据技术来提高网络营销广告的准确性。首先,根据客户的情况制定策略并推送合适的广告,消费场景在很大程度上影响了消费者的购买情绪,并可以直接确定消费者的购买行为。如果客户在家中购买私人物品,则他们第二天在公司工作时,却同送前一天相关私人物品的各种相关的广告。前一天的搜索行为引起的问题可能会使消费者处于非常尴尬的境地,并影响他们的购买情绪。这表明企业需要有效地识别客户消费场景并根据这些场景发布更准确的广告[6]。一方面,通过IP地址来确定客户端在网络上的位置。客户在公共场所时,广告内容应简洁明了。另一方面,可以通过指定时间段来确定推送通知的内容。在正确的时间宣传正确的内容。其次,提高客户选择广告的自主权。在传统的网络营销中,企业通常采用弹出式广告,插页式广告和浮动广告的形式来强力吸引客户的注意力,从而引起强烈的客户不满。一些客户甚至会毫不犹豫地购买广告拦截软件,以防止企业广告。在这方面,大数据技术可用于改善网络广告的形式和内容并提高其准确性。
(二)提高网络营销市场的定位精度
在诸如电子邮件营销和微信营销之类的网络营销方法中,一个普遍现象是企业拥有大量的粉丝,并向这些粉丝发送了大量的营销信息,但是却没有得到较好的反馈,营销效果较差。造成这种现象的主要原因是企业产品的市场定位不正确。可以通过以下几个方面来提高网络营销市场中的定位精度:
1、分析客户数据并确定产品在市场上的定位:
首先,收集大量基本数据并创建客户数据库。在此过程中,应格外小心,以确保收集到的有关客户的信息是全面的。因此,可以使用各种方法和渠道来收集客户数据。例如,可以通过论坛、企业官方网站、即时通信软件以及购物网站等全面的收集客户的各种信息。收集完成后利用高效的数据分析处理技术对信息进行处理,并得出结果,包括客户的年龄、收入、习惯以及消费行为等结果,然后根据结果对企业的产品进行定位,并与客户的需求相匹配,进而明确市场[7]。
2、通过市场调查对产品市场定位进行验证:
在利用大数据及时对企业产品进行市场定位之后,有必要对进一步进行市场调查,以进一步清晰产品的市场定位,如果市场调查取得较为满意的效果,则表明网络营销策略较为成功,可以加大推广力度以促进产品的销售,如果效果不满意,则要积极分析问题,寻找原因并提出针对性的解决改进措施,以获得较为满意的结果[8]。
3、建立客户反馈机制:
客户反馈机制可以有效的帮助企业改进产品营销策略,主要体现有两个主要功能:一是营销产品在市场初步定为成功后可以通过客户反馈积极征询客户的意见,并进一步改进产品,确保产品更适应市场;二是如果营销产品市场定位不成功,取得的效果不佳,可以通过客户反馈概括定位失败的原因,这将有助于将来的产品准确定位。
(三)增强网络营销服务的个性化
为了增强网络营销服务的个性化,企业不仅必须能够使用大数据识别客户的身份,而且还必须能够智能地设计个性化服务。首先,通过大数据了解客户的身份。一方面,随着网络的日益普及,企业可以在网络上收集客户各个方面的信息。但是,众所周知,由于互联网管理的不规范与复杂性,大多数信息不是高度可靠的,甚至某些信息之间存在着极为明显的矛盾。因此,如果企业想要通过大数据来了解其客户的身份,则必须首先确保所收集的信息是可信且准确的。另一方面,企业必须能够从大量的客户信息中选择最能体现其个性的关键信息,并降低分析企业数据的成本[9]。二是合理设计个性化服务。个性化服务的合理设计要求企业在两个方面进行运营:一方面,由于现实环境的限制,企业无法一一满足所有客户的个性化需求。这就要求企业尽一切努力来满足一部分客户的个性化需求,并根据一般原则开发个性化服务。另一方面,如果完全根据客户的个人需求向他们提供服务,则企业的服务成本将不可避免地急剧上升。因此,企业应该对个性化客户服务进行详细分析,并尝试以适合其个人需求的方式为客户提供服务,而不会给企业造成太大的财务负担。
六、基于大数据网络营销策略
使用大数据的准确网络营销模型基本上包括以下步骤。首先,收集有关客户的大量信息;其次,通过数据分类和分析选择目标客户;第三,根据分析的信息制定准确的网络营销计划;第四,执行营销计划;第五,评估营销结果并计算营销成本;第六,在评估过程的基础上,进一步改善,然后更准确地筛选目标客户。在持续改进的过程中,上述过程可以改善网络营销。因此,在大数据时代,电子商务企业必须突破原始的广泛营销理念,并采用新的营销策略。
(一)客户档案策略
客户档案意味着在收集了有关每个人的基本信息之后,可以大致了解每个人的主要销售特征。客户档案是准确进行电子商务促销的重要基础,也是实现精确营销目标的极其重要的环节。电子商务企业利用客户档案策略可以获得巨大收益。首先,借助其专有的销售平台,电子商务企业可以轻松,及时且可靠地收集客户使用情况数据。其次,在传统模型中收集数据时,由于需要控制成本,因此经常使用抽样来评估数据的一般特征[10]。大数据时代的数据收集模型可以减少错误并提高数据准确性。当分析消费者行为时最好以目标消费者为目标。消费者行为分析是对客户的消费目的和消费能力的分析,可帮助电子商务企业更好地选择合适的目标客户。在操作中,电子商务企业需要在创建数据库后继续优化分析结果,以最大程度地分析消费者的偏好。
(二)满足需求策略
为了满足多数人的需求,传统的营销方法逐渐变得更加同质。结果,难以满足少数客户的特殊需求,并且导致利润损失。基于大数据客户档案技术的电子商务企业可以分析每个客户的需求,并采取差异化人群的不同需求最大化的策略,从而获取较大的利润。为了满足每个客户的需求,最重要的是实现差异化,而不仅仅是满足多数人的需求,因此必须准确地分析客户的需求,还必须根据客户的需求提供更多个性化的产品[11]。比如当前,定制行业非常流行,卖方可以根据买方提供的信息定制独特的产品,该产品的利润率远高于批量生产线。
(三)客户服务策略
随着网络技术的逐步发展,电子商务企业和客户可以随时进行通信,这基本上消除了信息不对称的问题,使客户可以更好地了解他们想要购买的产品以及遇到问题时的情况。当出现问题时,可以第一时间解决,提高交易速度。因此,当电子商务企业制定用于客户服务的营销策略时,一切都以客户为中心。为了更好地实施此策略,必须首先改善数据库并加深对客户需求的了解[12]。二是提高售前、售后服务质量,开展集体客户服务培训,缩短客户咨询等待时间,改善客户服务。最后,我们必须高度重视消费者对产品和服务的评估,及时纠正不良评论,并鼓励消费者进行更多评估,良好的服务态度和高质量的产品可以大大提高目标客户对产品的忠诚度,并且可以吸引消费者进行第二次购买。
(四)多平台组合策略
在信息时代,人们可以在任何地方看到任何信息,这也将分散他们的注意力,并且重新定向他们的注意力已经成为一个大问题。如果希望得到更多关注,则可以组合跨多个平台的营销策略,并在网络平台和传统平台上混合营销。网络平台可以更好地定位自己并吸引更多关注,而传统平台则可以更好地激发人们的购买欲望。平台融合策略可以帮助电子商务企业扩大获取客户的渠道,不同渠道的用户购买趋势不同,可以改善数据库[13]。
七、结语
总体而言,大数据时代不仅给网络营销带来了挑战,而且还带来了新的机遇。大数据分析不仅可以提高准确营销的效果,更好地服务消费者,改变传统的被动营销形式,并提升网络营销效果。
参考文献
[1]刘俭云.大数据精准营销的网络营销策略分析[J].环球市场,2019(16):98.
[2]栗明,曾康有.大数据时代下营业网点的精准营销[J].金融科技时代,2019(05):14-19.
[3]刘莹.大数据背景下网络媒体广告精准营销的创新研究[J].中国商论,2018(19):58-59.
[4]李研,高书波,冯忠伟.基于运营商大数据技术的精准营销应用研究[J].信息技术,2017(05):178-180.
[5]袁征.基于大数据应用的营销策略创新研究[J].中国经贸导刊(理论版),2017(14):59-62.
[6]邱媛媛.基于大数据的020平台精准营销策略研究[J].齐齐哈尔大学学报(哲学社会科学版),2016(12):60-62.
[7]张龙辉.基于大数据的客户细分模型及精确营销策略研究[J].河北工程大学学报(社会科学版),2017,34(04):27-28.
[8]李巧丹.基于大数据的特色农产品精准营销创新研究——以广东省中市山为例[J].江苏农业科学,2017,45(06):318-321.
[9]孙洪池,林正杰.基于大数据的B2C网络精准营销应用研究——以中国零售商品型企业为例[J].全国流通经济,2016(12):3-6.
[10]赵玉欣,王艳萍,关蕾.大数据背景下电商企业精准营销模式研究[J].现代商业,2018(15):46-47.
[11]张冠凤.基于大数据时代下的网络营销模式分析[J].现代商业,2014(32):59-60.
[12]王克富.论大数据视角下零售业精准营销的应用实现[J].商业经济研究,2015(06):50-51.
[13]陈慧,王明宇.大数据:让网络营销更“精准”[J].电子商务,2014(07):32-33.
;❺ 大数据对于管理理论与实践的影响
大数据对企业管理的影响:
.大数据对企业管理思想的影响
大数据时代的来临改变了企业的内外部环境,引起了企业的变革与发展。企业越来越智能化,管理实现了信息化。企业中的数据收集、传输利用需要现代管理思想的支撑。
大数据环境下的企业管理应当以人为本,在实践的基础上运用现代信息化技术,采用柔性管理,将数据当做附加资产来看待。企业运营离不开数据的支撑,企业管理当中如果不能够深刻认识到大数据的重要性,仅仅以公司短期盈利作为目标,是缺乏战略性的思考。有效的利用数据分析结果,提前进行预测,抓住市场先机、顾客需求,就能主动赢得市场,才能在企业管理与销售业绩上创造出更大的财富。
2.大数据对企业管理决策的影响
大数据背景下数据的分析利用是企业决策的关键。首先,大数据的决策需要大市场的数据。基于云计算的大数据环境影响到企业信息收集方式、决策方案选择、决策方案制定和评估等决策实施过程,对企业的管理决策产生影响。大数据决策的特点体现在数据驱动型决策,大数据环境下的管理决策对于企业不仅是一门技术,更是一种全新的决策方式、业务模式,企业必须适应大数据环境对管理决策的新挑战。
其次,大数据对决策者和决策组织提出了更高的要求。大数据时代改变了过去依靠经验、管理理论和思想的决策方式。管理决策层根据大数据分析结果发现和解决问题、预测机遇与挑战、规避风险。这就要求决策层具有较高的决策水平。由于大数据背景下需要企业全员的参与,动态变动环境下,决策权力更加分散才有利于企业做出正确的决策。这就要求企业的组织更加趋于扁平化。
3.大数据对企业人力资源管理的影响
人力资源是企业中最宝贵的资源,是企业创造核心竞争力的基础。基于大数据技术,企业将大大提高人力资源管理的效率和质量。有效的加快人力资源工作从过去的经验管理模式向战略管理模式的转变。
公司从员工招聘到绩效考核与培训,积累了大量的各类非线性数据,这些数据都是无形的资产,利用大数据技术,将这些数据进行整合分析利用,能够为企业带来巨大贡献。首先,在员工招聘上,只需将单位用人要求与员工各项能力数据相匹配,结合人力资源招聘的经验,便可轻松选出符合要求的员工。其次,在绩效考核上,进行标准化管理,将员工日常的各类数据进行分析,设定等级标准,即可得出客观公正的考核结果。这大大排除了绩效管理的主观性与不全面性。最后,根据大数据的分析结果,针对不同员工区别培训,更有效率的提高了培训水平。
4.大数据对企业财务管理的影响
大数据使财务管理的模式和工作理念颠覆性的改变。首先,财务管理更加稳健。公司将各类财务数据在大数据技术下进行发掘,提纯出更多有用的财务信息,及早的发现财务风险,为管理决策者提供重要的决策依据,做出正确的决断。其次,财务数据的处理更加及时高效。财务数据在企业日常运营当中举足轻重,企业的各项交易都依赖于财务数据的分析,企业基于大数据,通过对财务数据的分析和处理,能够改进财务管理工作的运行模式,并且是有效率的,企业资金资本运作成本降低和压缩了,利润相应提高了。企业资源最丰富的积累,最基础的财务数据,通过大数据技术进行对财务数据,整理和分析,实现了企业价值增值。
总结:
大数据时代对企业的管理提出了更高的要求。信息化时代下企业每天都在产生大量的数据,大数据时代下,这些数据影响着企业管理的方方面面,它改变着企业的管理思想与管理模式,使企业的决策更加准确高效,使人力资源管理工作更便捷,使企业财务管理稳健、绩效考核客观公正,企业管理中应加强收集分析利用这些数据,确保数据的准确与安全防护。将传统经验、理论管理与大数据管理决策想结合,适应时代发展,将企业做大做强。
❻ 上海财经大学金融大数据统计学习理论与方法及互联网金融中的应用项目
上海财经大学的“金融大数据统计学习理论与方法及在互联网金融中的应用”项目是重大研究计划“大数据驱动的管理与决策研究”的重点支持项目。该项目拥有一支经验丰富、工作高效并具有国际影响力的学术研究团队。
上海财经大学有法学、中国语言文学、外国语言文学、新闻传播学、农林经济与管理、公共管理、理论经济学、应用经济学、工商管理、管理科学与工程、统计学、马克思主义理论等一级学科硕士学位授权点。
近年来,“大数据”已成为互联网、新闻媒体、学术机构、政府企业管理人员等多方关注的热点。随着现代科学技术姿者尤其是计算机、网络信息、生物工程等技术的发展,大量的数据出现在许多不同的自然科学和人文科学领域,包括生物学、医学、信息技术、经济、金融,环境科学等,并以前所未有的速度产生和积累。大数据涵盖的数据量大、包罗万象、变化速度快、存在的形式多种多首姿样,可以是包括文字、图片、视频等多种信息的集合。在新一轮科技和产业竞争中,大数据已经是与自然资源、人力资源一样重要的战略资源,著名管理公司麦肯锡声称,“数据已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。”在这样的背景下,美国政府2012年宣布投资2亿美元启动“大数据研究和发展计划”,这是继1993年美国宣布“信息高速公路”计划后的又一次重大科技发展部署。
大数据潮流使得我们获得了海量的数据,但掌握这些海量的数据本身并无意义。真正的意义体现在对于含有信息的数据进行专业化的处理。加强大数据科学研究和促进大数据应用开发将为未来我国在大数据领域掌握竞争主动权奠定基础,是关系我国国家和社会稳定、提高科技创新水平、推动国民经济可持续发展、提升社会管理服务能力的重大需求。可以预见未来国家之间的经济与政治竞争将是大数据引领的竞争。
随着互联网金融的蓬勃发展,大数据技术逐渐成为其与传统金融行业抗衡的保证。然而互联网金融与传统金融虽然形式上有区别,但其背后的金融“契约”本质并没有大的改变,风险测迹芹薯度和管理依旧是重中之重。本课题以“互联网金融风险”为核心研究对象,以各类不同发展的业务模式为研究场景,深入讨论对于互联网金融风险的计量和管理,促进虚拟经济发展和实体经济结构转型,并总结和规划未来发展导向,更好地为政府指导和监管决策,为虚拟经济健康发展、实体经济升级调整提出参考意见和建议。
项目负责人、上海财经大学统计与管理学院院长周勇教授表示,面对大数据应用的快速发展、国家经济和金融安全所提出的迫切需求,我们面临着大数据分析方法瓶颈与挑战,需要发展大数据基础分析的理论方法和技术,同时应用这些理论方法研究大数据下的数据降维技术和算法,深入研究互联网金融风险管理、高频海量数据市场行为和管理决策等前沿问题。
“金融大数据统计学习理论与方法及在互联网金融中的应用项目将对金融大数据统计推断理论及其应用等重大问题展开研究,研究内容的核心是金融大数据计量建模和快速算法的提出。我们希望通过相关研究,一方面,能在大数据金融计量理论和方法上进行创新,走向本领域学科研究的国际前沿。另一方面,也能为我国金融体系的安全运行提供深刻的实证依据和切实可行的政策建议。”
考研政策不清晰?同等学力在职申硕有困惑?院校专业不好选?点击底部官网,有专业老师为你答疑解惑,211/985名校研究生硕士/博士开放网申报名中:https://www.87dh.com/yjs2/
❼ 大数据给企业带来哪些决策
大数据对企业的作用:
1、实时准确地监控、追踪竞争对手动态,是企业获取竞争情报的利器。
2、及时获取竞争对手的公开信息以便研究同行业的发展与市场需求。
3、为企业决策部门和管理层提供便捷、多途径的企业战略决策工具。
4、大幅度地提高企业获取、利用情报的效率,节省情报信息收集、存储、挖掘的相关费用,是提高企业核心竞争力的关键。
5、提高企业整体分析研究能力、市场快速反应能力,建立起以知识管理为核心的“竞争情报数据仓库”,提高核心竞争力。大数据对现代企业管理决策的影响有哪些
在目前的企业管理过程中,也逐渐对大数据时代下的企业管理与决策模式引起了足够
的重视。结合目前的实际情况来看,企业在内外部的管理模式上涉及到的内容不断增多,
从而呈现出了非常明显的复杂性,这对于企业决策以及决定性关系的数据分析工作带来了
一定的影响。文章主要针对大数据对现代企业管理决策产生的影响进行了深入的分析,并
结合实际情况提出了一些有效的应对措施,希望能为相关人员提供合理的参考依据。
已为您找到9篇相关文档
关键词:大数据;现代企业;管理;决策;影响
如今,各国经济之间实现了有效的结合,这就造成企业在发展过程中所面临的市场竟
争压力不断的增加,对于相关的企业而言,而竞争不仅体现在了企业之间,同时还体现在
了企业的管理方面。针对这种现象,对于相关的决策人员而言,一定要对目前市场环境进
行全面的了解,从而才能保证最终所做的决策具备一定的合理性。因此,一定要对大数据
的真正含义进行全面的了解,这样才有助于企业的管理人员做出正确的管理决策,从而促
]进企业可以在未来实现更加稳定的发展。
❽ 大数据驱动公共管理学科现代化论文
大数据驱动公共管理学科现代化论文
在各领域中,大家肯定对论文都不陌生吧,借助论文可以有效提高我们的写作水平。相信许多人会觉得论文很难写吧,以下是我整理的大数据驱动公共管理学科现代化论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
摘要 :
我们目前所处的是一个由数据主宰的大数据时代,数据的共享正改变着我们的工作和生活。而在该时代中,公共管理有着极为深刻的影响,政府部门应该清楚地认识到公共管理学科的重要性,并以科学的态度来面对该学科所面临的机遇和挑战,并且分析大数据对公共管理学科所产生的影响,反思传统管理模式中存在的不足之处,对公共管理行为模式进行改进,从而有效地促进大数据时代下公共管理学科的发展与进步。
关键词:
大数据驱动;公共管理;改革方式
引言:
在公共管理的实施过程中,工程的使用不只意味着管理的过程,因为这需要对各个公共资源进行再分配。行使这个权利的时候是需要调配各种公共资源,在国家法律法规体系下,安排各种公共资源,保障各项资源的有效运转。需要注意的是,必须以群众的利益作为基本前提,防止公共资源的滥用甚至其他严重的后果发生。在整个大数据不断发展的情况下,公共资源的使用,有了更多透明化的监督过程,可以对这些公共资源进行科学合理的配置。
在未来,公共学科的发展变得越来越高效,公共学科也是建立在现代高新技术的基础上,针对目前公共管理存在的弊端,和高新技术进行深入分析,将这些找到的矛盾用人文学科的思想得以解决。在公共管理学科的发展历程之中,各种数据的处理是极为重要的。只有有效利用大数据处理的方法,才能够更好地促进公共管理,将公共政策和现代数据结合,促进我国的公共管理不断进步。在现代化的发展历程之后,我们还应该不断关注公共学科的发展特点,探讨公共学科可能出现的风险问题,不断提高科学决策的准确度,根据大数据的分析结果,促进公共学科的改进。
一、大数据的实际内涵以及其发展概述
在运用大数据技术时,部门研究者认为大数据是一种统计模式,是运用各种现代信息技术进行自动记录和延续扩充的过程,而非人工设计的数据。不过,这类观点是以大数据统计为出发点,然而实际上大数据并不仅仅只是进行数据资源的整理和收集,更重要的是对数据进行分析[1]。
二、大数据对公共管理学科的驱动机制
大数据的发展给公共管理的影响是深远的,从大数据的发展可以不断提高公共管理的效率,大数据的深入发展,能够帮助我们先入进行公共管理。在未来,要促进公共学科的发展,就需要依靠大数据,在大数据的帮助之下,深入挖掘公共管理的实质,帮助我们找到科学的管理项目,从而为公共决策做出准确的判断。以往在公共学科的时候还没有发挥大数据的价值,缺乏一定大数据的思想。发展是一个缓慢过程,在这个公共学科的成长过程中,我们必须研究大数据的专业特征。利用公共学科的机制,回到数据的创新作用。总地来说,可以从以下几个方面找到大数据的影响。
(一)巨大数据体量对公共管理学科的影响到时候就意味着更多的海量数据。这些数据的发展不仅拥有着较大的体量,还意味着公共管理的难度也在增加。公共管理需要依靠大数据技术,但是却要利用好,到时候做好分析的脚本研究。改善传统的思维,让我们用现代的思想为公共管理做出更多的分析。大数据在现代的应用是深远的,我们要利用各种各样的大数据技术,更多的大数据手段找到公共学科的真正内涵。从而为到时候去建设提供物质基础,这些基本的数据出发,让政府面临更多的公共决策类型,公共管理样本的采集为大数据做出了更多的支持。基础的公共管理样本可以成为数据的来源,也为公共管理学科发展做出深入的影响。为进一步找到目前存在的问题,就需要对公共决策的数据进行整合,从而发挥学科的时代性特征,达到公共管理的具体目标[2]。
(二)多样化的数据对公共管理学科产生的影响大数据时代不只是大数据的数量增加,更多的是数据的种类。公共学科要掌握更高的管理方法,就需要研究现在的数据种类,利用公共学科的深入特点找到管理的不同类型,从而实现较高的管理目标。大数据时代是一个多种类型的时代,在过去的时代中不需要这样多的信息,也不会利用现在的存储资源。然而目前的公共管理,需要我们更多的存储空间是处于到时候去时代之中所面临的管理种类是多种多样的,类型也是十分广泛。在这些众多的种类中,我们面临多种形式的公共资源,必须要深入研究,采取适合于公共管理学科的应对方法,促进我公共管理学科的深入发展,找到承载的.问题,找到学科的管理方向,从而丰富各种类型的表达方式和存储方法[3]。
(三)低密度的数据价值对公共管理学科的影响大数据时代不仅意味着数据的多样化,但需要很多的载体承担这些数据。我们需要提高存储的空间,对目前的存储空间进行深入探索,不断进行改革,从根本上提高存在的空间数据。加强存储空间的创新。首先,现在都很多数据看似已经传出,然而却没有经过深入的加工,且没有一定的压缩功能,这些数据在存储的时候造成了较多的空间占用,空间资源在一定程度上造成了一些无用的数据存储。面对这种情况我们要找到数据存储的内在问题,从根本上提高存储的有效性,并且加强数据之间的传递和流通。目前的现状来看,很多大数据还没有取得较好的效果,信息的关注还停留在过去阶段,这些数据本身价值不好发挥。数据在挖掘的过程中必须依托公共管理学科的知识。融入现代大数据的技术,对数据的价值进行深入发掘和研究,也是公共管理学科的研究型态,帮助我们深入数据的内部,积极探索数据存储的类型,释放更多的空间[4]。
三、大数据驱动下公共管理学科的未来发展
我们目前所处的大数据时代依然处于不断发展的状态,通过上文的分析不难发现,大数据不断的以其庞大的数据体系和繁多的数据类型来影响着公共管理学科的发展,因此,公共管理学科也应该随着大数据时代的发展而做出改变和创新[5]。
(一)公共治理模式与大数据的结合公共学科的管理,需要深入考量学科的特点,对公共治理存在的问题进行深入分析,依托现代大数据的功能,扩大数据的包容性,加强信息的获取渠道探索。利用更多的公众信息平台引导热点话题,从而能够找到公共管理存在的弊端。在施行公共管理时,应该充分地考虑大数据对公共管理和公共治理之间的影响进行分析。大数据时代极大的扩张了人们的信息获取渠道,在此基础上,社会个体可以通过各类信息平台来讨论热点话题,由于各类言论会在互联网中迅速蔓延,在舆论的压力下,公众的言论和态度将会直接影响到政府作出的公共决策。比如,政府可以对一些观点和言论进行审核,利用大数据来进行思维分析[6]。
(二)重新认识公共管理决策在这项研究中,实证分析是提出比较四个案例的公众参与风险相关的决策。本研究选取的案例均涉及政府决策者愿意与公共利益团体合作的废物管理冲突,但每一案例的公众参与程度和性质有所不同。与公众参与有关的冲突在所有四个案件中都出现。针对传统问题解决方法的不足,我们开发了一个更广泛的分析框架来解释这些冲突。冲突分析考虑对手关系的历史、权力分配、对解决冲突的态度、隐藏的议程、各种谈判策略以及对谈判协议的承诺(或缺乏承诺)。虽然这种方法是为了分析的目的而制定的,但我们认为,这种方法对于解决此类冲突也具有特定的相关性。冲突管理的概念,作为提高公众参与质量的一种方法。冲突管理的主要特点是:
(1)赋予公众权力;
(2)“良好”(公平)的解决办法;
(3)各方积极支持最终决定。在公共管理的过程中,由于大数据时代的各个特点,公共管理必须进行适当的改革创新,从而更好地应对未来的挑战和机遇。
(三)准确满足公众诉求公共管理决策和决策的一个明显方面基本上没有引起决策内容的注意。我们通过对预算削减和信息技术决策提出以下问题来检验决策内容的影响:内容如何影响决策所需的时间?内容如何影响参与者?内容如何影响所采用的决策标准?内容如何影响决策过程和繁文缛节中使用的信息质量?结果表明,信息技术和预算削减决策在重要方面有所不同。对于信息技术决策而言,成本效益不是一个重要的标准,平均决策时间要长得多,决策通常被视为永久和稳定的。对于削减决策,成本效益是一个重要的标准,决策的速度要快得多,而且被视为不稳定和多变的。令人惊讶的是,决策内容似乎并不影响参与者的数量。在大数据时代到来以前,群众与政府之间缺乏有效的沟通手段,导致群众与政府之间存在隔阂。在如今的大数据时代下,政府和群众之间的沟通交流更加的顺畅,政府能够实时了解到群众所反馈的一些信息,并且在短时间内进行整理和收集,从而使各项公共资源的配比能够科学有效的实施,最大限度地保证群众的利益[7]。
四、结语
公共管理行为涉及的范围非常广泛,公权力的使用者应该谨慎运用每一项公共管理的权利,满足人民群众的利益诉求,即使给出反馈和针对性的公共管理决策。因此,在未来的发展中,公共管理学科的研究领域将不仅仅是为政府的公共决策提供支撑和依据,而是帮助政府更加理性的收集数据,在庞大的数据体量基础上对各项数据资源进行整合,从而提高公共管理和服务质量,使公共管理对人们利益实现最大化。
参考文献:
[1]王博.大数据驱动的公共管理学科现代化[J].湖南工业职业技术学院学报,2018,18(5):30—33.
[2]黄欣卓,李大宇.大数据驱动的公共管理学科现代化———《公共管理学报》高端学术研讨会视点[J].公共管理学报,2018,15(1).
[3]黄欣卓,李大宇.大数据驱动的公共管理学科现代化———《公共管理学报》高端学术研讨会视点[J].公共管理学报,2018,15(1):147—152.
[4]王琳.大数据时代下我国政府公共关系能力建设研究[D].重庆:重庆大学,2017.
[5]王陈程.大数据驱动的公共管理创新[J].山西青年,2019,(2):234.
[6]秦浩.大数据驱动的公共政策转型[J].中国共产党政干部论坛,2020,(2):62—65.
[7]张黎黎.大数据技术与公共管理范式的转型[J].中文信息,2019,(5):255.
;❾ 基于大数据的视觉搜索应用与组织模式研究
基于大数据的视觉搜索应用与组织模式研究
当前视觉搜索已成为信息科学领域的前沿课题,主要用于分析和研究现实世界实体属性、行为、事件与视觉大数据资源之间的发展规律,针对视觉大数据资源的获取、组织、描述与利用问题,研究视觉资源及其时空关联信息之间的价值发现与资源整合的内在机理
当前视觉搜索已成为信息科学领域的前沿课题,主要用于分析和研究现实世界实体属性、行为、事件与视觉大数据资源之间的发展规律,针对视觉大数据资源的获取、组织、描述与利用问题,研究视觉资源及其时空关联信息之间的价值发现与资源整合的内在机理,解决其多维关联与协同融合问题,进而实现视觉大数据资源的有效整合、知识发现与实时交互。
基于此,本研究从宏观与中观角度,从信息科学视角下视觉搜索研究的起源着手,对其发展历程、概念与特点进行描述,围绕其理论与应用研究的几个关键问题展开讨论,并简要探讨其最新研究进展及应用。
1、大数据环境下视觉搜索的发展历程及特点
1.1 问题的提出
视觉搜索不是一个新名词,它最早出现于心理学与生理学领域,用于描述人们通过视觉通道在特定区域内检测某特定目标是否出现或出现后确定其位置的行为。如在地图上找某大学所处位置、在食堂内点菜、在书架上找书或在图书馆内找人等。在现实世界中,人们经常需要利用视觉搜索在复杂物理环境中获取有价值的信息,来决定接下来的语言和行为。因此,视觉搜索理论受到心理学家和人因(HumanFactors)学家的广泛关注,大量研究集中在对人类视觉认知、生理反馈机理的理解与表达上,并总结出了许多应用型和理论型知识。正是由于视觉搜索的可用性和有效性,使得许多工作、行业、领域都离不开这一生理行为。
相关基础理论和关键技术的不断发展与完善,促使传统视觉搜索应用不断向信息化、技术化和网络化方向发展,如何将传统视觉搜索行为转换成“所见即所知”式视觉搜索模式,这一难题逐渐摆在了人们面前。与此同时,网络环境、信息技术、计算性能、存储空间、数据规模与软硬件设施等方面的飞速提升,也为客观物理世界与虚拟网络空间之间建立起密不可分的关联关系,使视觉搜索技术的实现成为可能。人们可以方便快捷地采集客观物理世界中的视觉对象,从互联网中获取与之相关的关联信息。
1.2 视觉搜索发展历程及发展趋势
近几年来,随着大数据环境的逐步完善和大数据技术的迅速发展,关于视觉资源整合与视觉搜索研究的呼声越来越大。Nature和Science分别于2008年、2011年出版了大数据专题研究,提出图像、视频与用户交互信息是未来大数据的重要组成部分。2009年,Stanford University的Griod、Chandrasekhar等学者将视觉搜索理论引入到信息检索领域,提出Visual Search、Mobile Visual Search等概念,举办了第一届移动视觉搜索研讨会,并对其体系结构、应用与服务模式等问题进行了探讨。2010年,Google技术研究部前主管Norvig在Nature上发表的专题论文2020Visions中指出,“文本、图像和视频等视觉资源及用户交互信息、传感信息的有机融合,会给搜索引擎带来巨大挑战,如何对视觉搜索结果进行资源深度整合将会成为Google未来10年面临的最大挑战。”同年,北京大学高文、黄铁军与段凌宇等将其引入国内,举办了第二届移动视觉搜索研讨会,并围绕其关键技术、体系结构、视觉资源组织与描述方法、视觉资源标准化与视觉知识库建设等问题展开了研讨。2012年,这一理论与技术迅速被中国计算机学会所接受,认为将视觉搜索与增强现实技术相结合的信息检索模式,将是继搜索引擎之后的新一代互联网服务范式。随后,张兴旺、朱庆华等尝试将其引入数字图书馆领域,并围绕相关理论与应用模式展开了研究。
根据视觉搜索研究的发展轨迹来看,国内关于视觉搜索研究总体仍处于探索与尝试阶段,研究轨迹已基本跨过早期理论性尝试过程,正步入中期技术性和应用性探索阶段。尤其是在我国科学技术部于2011年启动国家重点基础研究发展计划(“973”计划)“面向公共安全的跨媒体计算理论与方法”,对跨媒体视觉资源的统一表示和建模方法、关联推理和深度挖掘、综合搜索和内容合成等关键科学问题进行研究之后,国内相关研究步入快速发展阶段。自2015年以来,视觉搜索理论与应用研究的重要性和必要性更加凸显,国务院2015年9月印发的《促进大数据发展行动纲要》提出,要充分利用大数据,提升领域数据资源的获取和利用能力,推动各类数据融合和资源整合。国务院2015年7月印发的《关于积极推进“互联网+”行动的指导意见》提出“构建包括语音、图像、视频、地图等数据的海量训练资源库,加强人工智能基础资源和公共服务等创新平台建设”。国家自然科学重大研究计划“大数据驱动的管理与决策研究”认为“大数据价值的产生机理和转换规律具有高度的应用领域依赖性”。科技部2016年发布的《关于发布国家重点研发计划精准医学研究等重点专项2016年度项目申报指南的通知》的“云计算和大数据重点专项”中更是明确将“面向大范围场景透彻感知的视觉大数据智能分析关键技术”列为重点研究内容之一,要求对视觉语义建模、视觉对象的时空定位与搜索、跨场景数据关联技术等展开研究。
1.3 视觉搜索研究对象及视觉大数据资源特点
视觉搜索的研究已逐渐发展成为信息检索领域的主要研究趋势,到目前为止,关于视觉搜索的定义尚未形成统一的认识,但从信息检索角度来看,大家对它的普遍理解是指将客观物理世界中的视觉资源作为检索对象,通过互联网去获取关联信息的一种信息检索方式。它是以视觉大数据资源及其关联信息为研究对象,以视觉大数据资源的获取、分析、组织、理解和表达方法为主要研究内容,以信息技术与方法为主要研究手段,以发现视觉大数据资源蕴含的知识价值和拓展其利用能力为主要研究目标的一种综合性的应用型前沿领域。它主要针对的是当前大数据环境下海量、多元异构、动态无序和高速进化的视觉资源的分析和利用问题,重点研究的是如何充分利用当前飞速发展的信息技术来解决视觉大数据资源的理解和表达,如何有效地实现视觉搜索,如何利用视觉搜索技术来从海量视觉大数据资源中发现新的知识。
毫无疑问,未来是一个智慧(或称之为“互联网+”)的时代。智慧地球、智慧城市、智慧图书馆等理论与应用的迅速发展,给视觉搜索理论与应用研究提供了“沃土”。“互联网+”时代所衍生的数据规模的剧增,文本、图像、音视频、用户交互信息与各种传感信息会成为“数据海洋”的主流,而这些数据来源中超过80%来自于人类视觉通道,现阶段把握“互联网+”时代信息检索和知识服务未来发展脉络的最重要手段可能是视觉搜索。
视觉大数据资源因其包含文本、图像、音视频与用户观看记录等复杂无序、动态变化的时空信息,使其成为数字图书馆中内容最丰富的信息载体,并将会成为“互联网+”时代最为重要的信息表达和信息传播媒介。而以视觉大数据资源为研究对象的视觉搜索,由于前者所处知识空间的知识实体与知识价值在时间、空间和属性三个方面的自有特性,使得视觉搜索也呈现出复杂无序、动态变化和时空语义关联等特性,同时也需要对视觉大数据资源的形式化表达、系统化组织、结构化描述与时空关联关系分析方法等进行研究。由此可得知视觉大数据资源主要具有以下特征:
视觉大数据资源包含文本、图像、视频、用户观看信息及用户交互信息等时空信息,并且它所包含的视觉对象、事物内容、事件过程在时间、空间、语义等方面具有时序或时空关联关系。
视觉大数据资源具有时空语义关联、动态变化、数据规模大和结构复杂等特点,这些基于视觉对象、事物内容、事件过程的动态变化可以用时空语义关联进行表达和描述,其获取、组织和描述过程可以用机器语言来进行表达,通过视觉对象、事物内容、事件过程之间的语义关联映射,建立视觉大数据资源的时空语义关联关系。
视觉大数据资源具有数据规模大、结构复杂、类型多元、多维尺度关联和纵深纬度高等特性,可根据视觉大数据资源的时空语义关系建立对应的尺度关联机制。针对不同尺度、纵深纬度的视觉大数据资源的时空关联关系,可实现视觉对象、事物内容、事件过程之间的多维尺度转换和重置,进而实现视觉大数据资源的语义关联关系分析。
视觉大数据资源能提供基于视觉资源内容来理解视觉对象行为,根据视觉对象的时空语义关联关系建立起发展趋势模型,并根据有效组织、理解和描述来预测某特定事物在某特定阶段将可能发生的行为态势。
可针对视觉大数据资源的获取、组织、理解和描述问题,来实现用户与视觉大数据资源之间的实时交互、反馈和视觉对象知识库的构建。根据视觉对象的相似行为特征、时空关联关系和实时交互结果,来帮助人们制作、生产、运营和消费新的视觉资源,满足数字图书馆用户的多元化知识服务需求。
2、大数据环境下视觉搜索的应用与组织模式
视觉大数据资源经过组织、分析、处理和整合,并建立基于特定领域的数字图书馆视觉搜索平台之后,才能为用户提供大数据知识服务。不同学科、领域的视觉搜索模式对视觉大数据资源的获取、组织、处理与整合模式会有所不同。正因如此,当前大部分应用是从知识服务与信息检索角度,建立起领域导向的视觉大数据资源整合平台,通过视觉搜索来对视觉大数据资源进行有效管理与利用,并按照特定学科、专业和领域的知识服务需求来提供服务,从而满足各类大数据知识服务需求。
2.1 基于深度学习的视觉搜索工业应用模式
传统视觉搜索研究主要是先采用人工标注方法对视觉资源的底层特征进行标注后,再采用机器学习方法来解决视觉资源之间的语义鸿沟、异构鸿沟与语义关联之间的问题。基于人工标注的视觉大数据资源整合与利用方法,需要标注者拥有丰富的专业领域知识和工业应用经验,需耗费大量的时间和人力成本,且精确性低。与对视觉资源特征进行人工标注方法不同的是,深度学习一般都是通过对视觉资源特征进行多层神经网络训练后,进行视觉特征学习,进而获取到特征提取更合理、区分性更强的视觉特征理解和描述。大量研究证明通过深度分析方法所提取到的视觉特征在图像分类与识别、视觉场景识别、智能监控、语音识别、知识图谱构建等应用领域都获得过成功。视觉资源的显著性特征提取和分割方法,能够采用模拟人类视觉系统和生理认知体系来提取视觉资源中显著性特征区域。目前,性能相对最好的视觉资源特征提取方法在公开的视觉大数据资源数据集中的显著性特征检测准确率在95%左右,视觉资源前景特征分割准确率将近92%,这一比例在近几年全球性各类大规模视觉资源分析与识别比赛中,仍然在不断增加。比如,Google研究组在大规模视觉识别挑战赛(ILSVRC)中,采用改进的深度卷积网络Google Net将图像识别准确率提升到93%;Google小组在微软图像标题生成挑战赛(MS COCO ICC)中,采用基于深度分析的图像特征提取方法获得冠军;悉尼科技大学与卡耐基梅隆大学、微软亚洲研究院和浙江大学在THUMOS比赛中,均将深度分析方法与视觉对象运动特征结合起来对视觉资源进行动作识别,分别获得前三名。
传统学术研究的理论成果往往需要很长一段时间发展,才能逐渐走向成熟,并进入到实际的工业应用中去。但无论是深度学习,还是视觉搜索,它们都拥有着极强的工程理论模型。一方面,它们在被学术界关注和研究的同时,也被工业领域所密切关注和尝试;另一方面,由于工业领域(如Google、网络、微软等)早就拥有着大规模的视觉大数据资源,且一直活跃在诸多信息科学领域的研究前沿,在很多领域,它们相较于学术界更有优势。如Google的知识图谱Knowledge Graph,Google Now与Google街景地图,微软的语音助手Cortana,爱奇艺的爱奇艺大脑,Facebook的Graph Search等均属于工业界视觉搜索较为经典的应用案例。事实上,国外工业界各大公司,如Google,Facebook,Microsoft等对视觉搜索不仅仅只是开展大量的研究,甚至还在内部成立了专门研究机构,国内的网络、华为、腾讯和阿里巴巴也不例外。
2.2 基于知识计算的视觉搜索知识服务模式
数字图书馆领域对视觉搜索理论与应用展开研究的一个重要目的,就是为高校和科研机构的研究人员提供嵌入式协作化的知识服务,而数字图书馆视觉搜索平台是将海量视觉大数据资源与平台提供的视觉大数据资源的组织、分析和处理功能嵌入到知识服务过程中。
视觉大数据资源整合与利用是当前国内外人工智能、信息检索领域的研究热点,拥有非常广泛的应用与研究前景。事实上,图像搜索作为视觉搜索的一个研究分支方向,近几年来,国内已有很多个人(如中国科学院高科、北京大学高文与黄铁军、南京大学朱庆华)、机构(如浙江大学、清华大学、北京大学、中国科学院计算所等)、企业(如爱奇艺、网络、腾讯、360、搜狗等)正在做与之相关的研究,并且很多已经推出了基于内容的图像搜索平台,为用户提供图像搜索服务。而美国的麻省理工学院、加州大学伯克利分校、伊利诺伊大学和英国的牛津大学等相关研究工作开始得更早,也研发出了相应的基于图像内容的图像搜索系统。
在以上所有相关研究中,它们都具有一个典型的研究特征:研究目的是为了解决视觉搜索的应用问题,而对应的视觉搜索模式大部分是基于知识计算。由于视觉搜索需要组织、分析和处理的对象主要包括文本、图像、视频等各类蕴含大量价值的视觉资源,因此,如何从视觉大数据资源中获取有价值的知识,就成为国外学术界和工业界一直以来的研究热点。以发掘视觉大数据资源中蕴含的丰富的、复杂关联的知识为目的的知识库称之为视觉对象知识库。目前,全球基于文本、图像、音视频等视觉资源的各类知识库有不少于60种,而基于这些视觉对象知识库的具体应用案例和系统平台也有几百种。其中,比较有代表性的应用案例有维基网络的DBpedia(2014版中包含8.7万部电影、12.3万张唱片、45万个物件等)、Google的知识图谱Knowledge Graph(包括地标、城市、人名、建筑、电影、艺术作品等5亿个搜索结果实体与350亿条关联知识条目)、Facebook的Graph Search(包含10亿名用户、2400亿张图像、10000亿次页面访问量等)等。
借助视觉搜索的相关理论与技术,开展对海量、异构、多元的视觉大数据资源的研究,不仅可丰富信息检索的外延和内涵,而且可以有效地解决当前数字图书馆所面临的“大数据、小知识、小服务”的瓶颈,具有一定的应用价值和现实意义。
2.3 基于语义分析的视觉内容关联组织模式
从已有研究来看,视觉搜索的研究对象大部分集中在文本与图像上,其中图像搜索是学者们着力解决的重点方向。视觉搜索研究可分为3个阶段:一是20世纪70年代末期开始的基于文本/元数据的图像搜索。这一方式主要通过人工标注元数据对图像进行描述,来实现对图像的信息检索功能,缺点是元数据标注费时费力,描述标准与反馈内容不完整,且容易有太多主观色彩。二是20世纪90年代开始提出基于视觉内容的图像搜索方法。这一方式其本质是采用人工构造图像底层视觉特征的方式来进行图像相似性比较,进而实现图像搜索,缺点是对图像底层特征和高层语义之间存在的语义鸿沟问题没有得到较好解决。三是21世纪初期提出的基于深度学习的图像搜索方法。社交网络与用户生成内容成为网络数据的主要来源,利用用户标签对图像语义进行组织、表达和理解成为研究主流,深度学习方法由此融入到相关领域。
与图像搜索相比,视频表达和分析则是视觉搜索领域相对较新的研究领域。视频由大量图像帧组成,且图像帧之间有较为紧密的时空与语义关联关系,这对视觉搜索技术要求更高。但由于深度学习在文本与图像搜索领域所取得的成功,学者们开始借助于深度学习框架,对视频进行组织、理解和描述,尤其是在视频特征提取这一关键环节采取了以下几种方法:一是视频静态关键帧特征描述。由于视频是由大量图像帧按时序与语义关联组成,故可采用深度学习方法对静态视频帧(即图像关键帧)进行特征学习。在具体应用中,一旦确定合理的静态关键帧提取和编码方式,也能形成较好的视频描述效果。二是动态视频时序特征描述。有学者曾提出密集轨迹方法对视频进行分析,取得了不错效果。三是前面两种方法的有机结合。牛津大学的Simonyan等提出采用时间和空间深度神经网络来对视频进行分析,时间轴输入的原始视频,用于对视频中的视觉对象进行识别,空间轴输入的时序关联场,用于对视频中视觉对象的动作及其轨迹进行识别。
目前国内外也有大量针对视觉内容分析与表达方面的竞赛,比如2013年美国佛罗里达大学组织开展的THUMOS比赛,就对海量视觉数据集中异构无序的视觉资源进行分析和理解,该项赛事随后每年都会开展相关研究。国内外许多高校、科研机构都积极参与到该项赛事中,如清华大学、浙江大学、香港中文大学、卡耐基梅隆大学、悉尼科技大学等。美国国家标准与技术研究所2011年组织开展的TRECVID比赛,针对大规模视觉数据集中复杂视觉资源中事件监测问题展开研究。近几年来,该项赛事也一直在围绕着这个主题开展相关研究,国内许多高校,如复旦大学、浙江大学、北京理工大学与同济大学等,在这项赛事中也获得了一定成绩。
目前虽然在视觉大数据资源的组织、分析、理解和利用方法上有很多研究成果,但这些成果最终目的是应用于视觉搜索。近年来一系列研究对于视觉搜索及其在各行业、领域的应用与推广工作起到了积极作用,这对于数字图书馆领域而言,是一个积极信号。
3 大数据环境下视觉搜索研究的5个核心问题
尽管视觉搜索已经获得了工业界和学术界(包括数字图书馆领域在内)的高度关注,但目前在国内并未得到广泛应用及推广,主要原因是由于相关技术与应用产品尚未完全成熟,存在着视觉搜索性能不够理想或不够稳定、用户体验质量不佳、应用局限性较强等问题,围绕这些问题,就需要从视觉搜索研究基础理论与技术角度来解决。从数字图书馆视觉搜索模式构建流程[1]来看,视觉搜索研究主要包括5个核心问题,分别描述如下。
视觉大数据资源的获取与组织方法。互联网环境下视觉大数据资源的存在形式是动态无序和异构离散的,视觉资源的生产和发布是动态变化的。视觉资源所蕴含的信息内容都包含多个异构、复杂的信息主题,彼此之间存在语义时空关联关系。而传统基于人工标注的视觉资源标注方法往往不够精确,因此,如何快速获取到所需视觉资源,是视觉搜索应用的关键问题。而对与待搜索视觉对象无关的视觉资源的清洗过滤,以及视觉大数据资源的有效组织是视觉搜索应用的核心问题。
视觉大数据资源的理解与表达方法。为了在海量视觉大数据资源中找到与待搜索对象一致的视觉资源,就需要从符合待搜索视觉资源的特征分析与理解出发,对其视觉内容进行多元化、结构化、多层次的深度理解和表达。
视觉大数据资源整合与交互方法。视觉搜索作为一种信息检索模式,其服务对象是用户。对视觉大数据资源的获取与组织、理解与表达的目的是为了给用户提供智慧化、人性化的知识服务。因此,如何围绕视觉大数据资源整合全生命周期进行多维度分析,从而满足用户对视觉大数据资源的多元化知识服务需求,也是视觉搜索研究能否成为现实的核心问题。
视觉对象知识库建设及标准化问题。视觉搜索依赖于视觉对象知识库的建设。基于高质量的视觉对象知识库,用户可快速将待搜索视觉对象与虚拟信息空间中的视觉大数据资源进行有效关联,从而享受到数字图书馆提供的视觉搜索知识服务。同时,标准化问题也是视觉搜索应用能否顺利应用和推广的关键所在。
视觉搜索体系的安全与可靠性理论。无论在任何时候,网络安全及系统可靠性问题是永远无法回避的难题,视觉搜索亦不例外。在视觉搜索体系中,数据安全性与知识产权、用户隐私权、系统可用性与可靠性等问题亦是视觉搜索能否得到有效推广与应用的核心问题。
4 总结与展望
在“互联网+”时代,信息服务正越来越广泛地深入到用户智慧化、个性化和嵌入式的知识服务需求中去,数字图书馆领域开始呼唤新型的杀手级信息检索模式。视觉搜索是当前信息检索领域发展的一个重要前沿和创新突破口,在充分汲取国内外信息科学领域先进研究成果的基础上,开展数字图书馆视觉搜索基础理论与应用研究,不仅有望从理论上丰富数字图书馆知识服务研究思想与未来发展框架,也有利于揭示数字图书馆中视觉大数据资源价值的产生机理与转换规律。
毫无疑问,人类正在向“‘互联网+’时代”迈进,作为一种技术与理念创新,视觉搜索必然符合一般信息技术生存、发展与成熟基本规律,需要经历技术诞生的萌芽期、飞速进步的发展期、迅速膨胀的高峰期、去泡沫化的低谷期、稳步发展的光明期和实际应用的高峰期6个阶段。目前来看,国内外已有视觉搜索研究正处于发展期,存在着理论与技术交叉之后学科间的不平衡这一问题。当前视觉搜索的理论、方法与技术研究主要集中在商业型视觉搜索应用上,对于产生视觉大数据资源的学术领域则关注较少。实际上,以科学研究、学科服务等学术领域为代表的视觉大数据资源,具有异于商业型应用的丰富内涵与独特特征,只有全面掌握商业应用与学术领域的相关研究,才有助于建立更加科学、系统、合理的视觉搜索理论体系和应用框架。