❶ 大数据十大商业应用场景
大数据十大商业应用场景
大数据时代,在未来的几十年里,大数据都将会是一个重要都话题。大数据影响着每一个人,并在可以预见的未来继续影响着。大数据冲击着许多主要行业,包括零售业、金融行业、医疗行业等等,大数据也在彻底地改变着我们的生活。现在我们就来看看大数据给中国带来的十商业应用场景,未来大数据产业将会是一个万亿市场。
1、智慧城市
如今,世界超过一半的人口生活在城市里,到2050年这一数字会增长到75%。政府需要利用一些技术手段来管理好城市,使城市里的资源得到良好配置。既不出现由于资源配置不平衡而导致的效率低下以及骚乱,又要避免不必要的资源浪费而导致的财政支出过大。大数据作为其中的一项技术可以有效帮助政府实现资源科学配置,精细化运营城市,打造智慧城市。
城市的道路交通,完全可以利用GPS数据和摄像头数据来进行规划,包括道路红绿灯时间间隔和关联控制,包括直行和左右转弯车道的规划、单行道的设置。利用大数据技术实施的城市交通智能规划,至少能够提高30%左右的道路运输能力,并能够降低交通事故率。在美国,政府依据某一路段的交通事故信息来增设信号灯,降低了50%以上的交通事故率。机场的航班起降依靠大数据将会提高航班管理的效率,航空公司利用大数据可以提高上座率,降低运行成本。铁路利用大数据可以有效安排客运和货运列车,提高效率、降低成本。
城市公共交通规划、教育资源配置、医疗资源配置、商业中心建设、房地产规划、产业规划、城市建设等都可以借助于大数据技术进行良好规划和动态调整。
大数据技术可以了解经济发展情况,各产业发展情况,消费支出和产品销售情况,依据分析结果,科学地制定宏观政策,平衡各产业发展,避免产能过剩,有效利用自然资源和社会资源,提高社会生产效率。大数据技术也能帮助政府进行支出管理,透明合理的财政支出将有利于提高公信力和监督财政支出。大数据及大数据技术带给政府的不仅仅是效率提升、科学决策、精细管理,更重要的是数据治国、科学管理的意识改变,未来大数据将会从各个方面来帮助政府实施高效和精细化管理,具有极大的想象空间。
2、金融行业
大数据在金融行业应用范围较广,典型的案例有花旗银行利用IBM沃森电脑为财富管理客户推荐产品,美国银行利用客户点击数据集为客户提供特色服务。中国金融行业大数据应用开展得较早,但都是以解决大数据效率问题为主,很多金融行业建立了大数据平台,对金融行业的交易数据进行采集和处理。
金融行业过去的大数据应用以分析自身财务数据为主,以提供动态财务报表为主,以风险管理为主。在大数据价值变现方面,开展的不够深入,这同金融行业每年上万亿的净利润相比是不匹配的。现在已经有一些银行和证券开始和移动互联网公司合作,一起进行大数据价值变现,其中招商银行、平安集团、兴业银行、国信证券、海通证券和Talking Data在移动大数据精准营销、获客、用户体验等方面进行了不少的尝试,大数据价值变现效果还不错,大数据正在帮助金融行业进行价值变现。大数据在金融行业的应用可以总结为以下五个方面:
(1)精准营销:依据客户消费习惯、地理位置、消费时间进行推荐
(2)风险管控:依据客户消费和现金流提供信用评级或融资支持,利用客户社交行为记录实施信用卡反欺诈
(3)决策支持:利用抉策树技术进抵押贷款管理,利用数据分析报告实施产业信贷风险控制
(4)效率提升:利用金融行业全局数据了解业务运营薄弱点,利用大数据技术加快内部数据处理速度
(5)产品设计:利用大数据计算技术为财富客户推荐产品,利用客户行为数据设计满足客户需求的金融产品
3、医疗行业
医疗行业拥有大量病例、病理报告、医疗方案、药物报告等。如果这些数据进行整理和分析,将会极大地帮助医生和病人。在未来,借助于大数据平台我们可以收集疾病的基本特征、病例和治疗方案,建立针对疾病的数据库,帮助医生进行疾病诊断。
如果未来基因技术发展成熟,可以根据病人的基因序列特点进行分类,建立医疗行业的病人分类数据库。在医生诊断病人时可以参考病人的疾病特征、化验报告和检测报告,参考疾病数据库来快速帮助病人确诊。在制定治疗方案时,医生可以依据病人的基因特点,调取相似基因、年龄、人种、身体情况相同的有效治疗方案,制定出适合病人的治疗方案,帮助更多人及时进行治疗。同时这些数据也有利于医药行业开发出更加有效的药物和医疗器械。
医疗行业的数据应用一直在进行,但是数据没有打通,都是孤岛数据,没有办法起大规模应用。未来需要将这些数据统一收集起来,纳入统一的大数据平台,为人类健康造福。政府是推动这一趋势的重要动力,未来市场将会超过几千亿元。
4、农牧业
农产品不容易保存,合理种植和养殖农产品对农民非常重要。借助于大数据提供的消费能力和趋势报告,政府将为农牧业生产进行合理引导,依据需求进行生产,避免产能过剩,造成不必要的资源和社会财富浪费。大数据技术可以帮助政府实现农业的精细化管理,实现科学决策。在数据驱动下,结合无人机技术,农民可以采集农产品生长信息,病虫害信息。
农业生产面临的危险因素很多,但这些危险因素很大程度上可以通过除草剂、杀菌剂、杀虫剂等技术产品进行消除。天气成了影响农业非常大的决定因素。过去的天气预报仅仅能提供当地的降雨量,但农民更关心有多少水分可以留在他们的土地上,这些是受降雨量和土质来决定的。Climate公司利用政府开放的气象站的数据和土地数据建立了模型,他们可以告诉农民可以在哪些土地上耕种,哪些土地今天需要喷雾并完成耕种,哪些正处于生长期的土地需要施肥,哪些土地需要5天后才可以耕种,大数据技术可以帮助农业创造巨大的商业价值。
5、零售行业
零售行业比较有名气的大数据案例就是沃尔玛的啤酒和尿布的故事,以及Target通过向年轻女孩寄送尿布广告而告知其父亲,女孩怀孕的故事。
零售行业可以通过客户购买记录,了解客户关联产品购买喜好,将相关的产品放到一起增加来增加产品销售额,例如将洗衣服相关的化工产品例如洗衣粉、消毒液、衣领净等放到一起进行销售。根据客户相关产品购买记录而重新摆放的货物将会给零售企业增加30%以上的产品销售额。
零售行业还可以记录客户购买习惯,将一些日常需要的必备生活用品,在客户即将用完之前,通过精准广告的方式提醒客户进行购买。或者定期通过网上商城进行送货,既帮助客户解决了问题,又提高了客户体验。
电商行业的巨头天猫和京东,已经通过客户的购买习惯,将客户日常需要的商品例如尿不湿,卫生纸,衣服等商品依据客户购买习惯事先进行准备。当客户刚刚下单,商品就会在24小时内或者30分钟内送到客户门口,提高了客户体验,让客户连后悔等时间都没有。
利用大数据的技术,零售行业将至少会提高30%左右的销售额,并提高客户购买体验。
6、大数据技术产业
进入移动互联网之后,非结构化数据和结构化数据呈指数方式增长。现在人类社会每两年产生的数据将超过人类历史过去所有数据之和。进入到2015年,人类社会所有的数据之和有望突破5泽B(5ZB),这些数据如何存储和处理将会成为很大的问题。
这些大数据为大数据技术产业提供了巨大的商业机会。据估计全世界在大数据采集、存储、处理、清晰、分析所产生的商业机会将会超过2000亿美金,包括政府和企业在大数据计算和存储,数据挖掘和处理等方面等投资。中国2014年大数据产业产值已经超过了千亿人民币,本届贵阳大数据博览会就吸引了400多家厂商来参展,充分说明大数据产业的未来的商业价值巨大。
未来中国的大数据产业将会呈几何级数增长,在5年之内,中国的大数据产业将会形成万亿规模的市场。不仅仅是大数据技术产品的市场,也将是大数据商业价值变现的市场。大数据将会在企业的精准营销、决策分析、风险管理、产品设计、运营优化等领域发挥重大的作用。
大数据技术产业将会解决大数据存储和处理的问题,大数据服务公司将利用自身的数据将解决大数据价值变现问题,其所带来的市场规模将会超过千亿人民币。中国目前拥有大数据,并提供大数据价值变现服务的公司除了我们众所周知的BAT和移动运营商之外,360、小米、京东、Talking Data、九次方等都会成为大数据价值变现市场的有力参与者,市场足够大,期望他们将市场做大,帮助所有企业实现大数据价值变现。
7、物流行业
中国的物流产业规模大概有5万亿左右,其中公里物流市场大概有3万亿左右。物流行业的整体净利润从过去的30%以上降低到了20%左右,并且下降的趋势明显。物流行业很多的运力浪费在返程空载、重复运输、小规模运输等方面。中国市场最大等物流公司所占的市场份额不到1%。因此资源需要整合,运送效率需要提高。
物流行业借助于大数据,可以建立全国物流网络,了解各个节点的运货需求和运力,合理配置资源,降低货车的返程空载率,降低超载率,减少重复路线运输,降低小规模运输比例。通过大数据技术,及时了解各个路线货物运送需求,同时建立基于地理位置和产业链的物流港口,实现货物和运力的实时配比,提高物流行业的运输效率。借助于大数据技术对物流行业进行的优化资源配置,至少可以增加物流行业10%左右的收入,其市场价值将在5000亿左右。
8、房地产业
中国房地产业发展的高峰已经过去,其面临的挑战逐渐增加,房地产业正从过去的粗放发展方式转向精细运营方式,房地产企业在拍卖土地、住房地产开发规划、商业地产规划方面也将会谨慎进行。
借助于大数据,特别是移动大数据技术。房地产业可以了解开发土地所在范围常驻人口数量、流动人口数量、消费能力、消费特点、年龄阶段、人口特征等重要信息。这些信息将会帮助房地商在商业地产开发、商户招商、房屋类型、小区规模进行科学规划。利用大数据技术,房地产行业将会降低房地产开发前的规划风险,合理制定房价,合理制定开发规模,合理进行商业规划。大数据技术可以降低土地价格过高,实际购房需求过低的风险。已经有房地产公司将大数据技术应用于用户画像、土地规划、商业地产开发等领域,并取得了良好的效果。
9、制造业
制造业过去面临生产过剩的压力,很多产品包括家电、纺织产品、钢材、水泥、电解铝等都没有按照市场实际需要生产,造成了资源的极大浪费。利用电商数据、移动互联网数据、零售数据,我们可以了解未来产品市场都需求,合理规划产品生产,避免生产过剩。
例如依据用户在电商搜索产品的数据以及物流数据,可以推测出家电产品和纺织产品未来的实际需求量,厂家将依据这些数据来进行生产,避免生产过剩。移动互联网的位置信息可以帮助了解当地人口进出的趋势,避免生产过多的钢材和水泥。
大数据技术还可以根据社交数据和购买数据来了解客户需求,帮助厂商进行产品开发,设计和生产出满足客户需要的产品。
10、互联网广告业
2014年中国互联网广告市场迎来发展高峰,市场规模预计达到1500亿元左右,较2013年增长56.5%。数字广告越来越受到广告主的重视,其未来市场规模越来越大。2014年美国的互联网广告市场规模接近500亿美元,参考中国的人口消费能力,其市场规模会很快达到2000亿人民币左右。
过去到广告投放都是以好的广告渠道+广播式投放为主,广告主将广告交给广告公司,由广告公司安排投放,其中SEM广告市场最大,其他的广告投放方式也是以页面展示为主,大多是广播式广告投放。广播式投放的弊端是投入资金大,没有针对目标客户,面对所有客户进行展示,广告的转化率较低,并存在数字广告营销陷阱等问题。
大数据技术可以将客户在互联网上的行为记录下来,对客户的行为进行分析,打上标签并进行用户画像。特别是进入移动互联网时代之后,客户主要的访问方式转向了智能手机和平台电脑,移动互联网的数据包含了个人的位置信息,其360度用户画像更加接近真实人群。360度用户画像可以帮助广告主进行精准营销,广告公司可以依据用户画像的信息,将广告直接投放到用户的移动设备,通过用户经常使用的APP进行广告投放,其广告的转化可以大幅度提高。利用移动互联网大数据技术进行的精准营销将会提高十倍以上的客户转化率,广告行业的程序化购买正在逐步替代广播式广告投放。大数据技术将帮助广告主和广告公司直接将广告投放给目标用户,其将会降低广告投入,提高广告的转化率。
目前,影响大数据产业发展主要有两个大问题,一个是大数据应用场景,一个是大数据隐私保护问题。
大数据商业价值的应用场景,大数据公司和企业正在寻找,目前在移动互联网的精准营销和获客、360度用户画像、房地产开发和规划、互联网金融的风险管理、金融行业的供应链金融,个人征信等方面已经取得了进步,拥有了很多经典案例。
但在有关大数据隐私保护以及大数据应用过程中个人信息保护方面还停滞不前,大家都在摸石头过河,不知道哪些事情可以做,哪些事情不可以做。国家在大数据隐私保护方面正在进行立法,估计不久的将来,大数据服务公司和企业将会了解大数据隐私保护方面的具体要求。在没有明确有关大数据隐私保护法规前,我们可以参考国外的隐私法,严格遵守国际上通用的个人隐私保护法,在实施大数据价值变现的过程中,充分保护所有相关方的个人利益。
最后纵观人类历史,在任何领域,如果我们可以拿到数据进行分析,我们就会取得进步。如果我们拿不到数据,无法进行分析,我们注定要落后。我们过去因数据不足导致的错误远远好过那些根本不用数据的错误,因此我们需要掌握大数据这个武器,利用好它,帮助人类社会加速进化,帮助企业实现大数据的价值变现。
以上是小编为大家分享的关于大数据十大商业应用场景的相关内容,更多信息可以关注环球青藤分享更多干货
❷ 大数据在银行业的应用与实践
大数据在银行业的应用
一、舆情分析
对于银行来说,舆情分析包括:银行的声誉分析、品牌分析和客户质量分析。它主要是通过分析网络社交媒体的评论,对于客户的流失情况进行预警,还可以通过对新闻热点的跟踪以及政府报道的分析,为银行提供个性化的分析场所。
二、客户信用评级
银行可以通过手机客户申请信用卡的数据,分析客户的信用程度,从而帮助业务人员做出相应的决策。
三、客户与市场洞察
银行可以通过跟踪社交媒体的评论信息,利用各种非结构化数据,对客户进行细分,改进客户的流失情况。这是银行对于市场的趋势分析。
四、运营优化
银行通过大数据平台对各种历史数据进行保存和管理,同时可以对系统日志进行维护、预测系统故障,从而提升系统的运营效率。
五、风险与欺诈分析
主要包括财务风险分析、贷款风险分析、各种反洗钱和欺诈调查和实时欺诈分析等内容。所谓财务风险分析是分析信用风险和市场风险产生的数据;贷款风险分析是从媒体或者社会公众信息中提取企业客户和潜在客户的信息。提高对于风险的预测能力和预警能力;反洗钱与欺诈调查是提取犯罪记录的信息;实时欺诈分析则是对大量的欺诈数据进行分析。
银行数据架构规划
随着银行业务的扩展,可以对数据进行架构规划。大数据的数据架构规划可以采用Hadoop技术,即通过与节后或数据进行关联,进一步拓展对非结构化数据的处理。其数据源包括结构化数据、半结构化数据和非结构化数据。半结构化数据和非结构化数据通过网络爬虫的方式来搜集,再经过内容管理处理,将数据进行结构化处理,然后可以将内容管理处理得出的数据信息存放到基础数据存储中。这是基于HDFS存放的非结构化数据。
大数据为银行创造的价值
当银行客户与银行产生交易,会产生大量的数据,这些数据具有大量的业务价值,为银行进行有针对性的营销创造了机会。
在大部分的应用中,随着数据量指数级的增长,特别是一些非结构化数据的快速增长,大量的数据导致分析时间增长,传统的商业智能已经无法满足需求,阻碍了业务的发展,以FineBI为代表的新型BI的涌现,无论在数据处理量和速度上都相比传统BI有突破性的进步。
在很长的一段时间内,银行的大部分业务是建立在客户和银行的交易过程中的,但是为了能更好地为客户服务,光靠依赖这些数据是不够的。随着技术的进步,银行可以通过很多途径来搜集客户的资料。从而进行有针对性的营销。
随着互联网技术的发展,客户可以通过电子渠道对银行业务发表看法或者购买银行产品。这些操作都是为增强对于客户的了解,降低信息的不对称性。
目前来说,在利率市场化的趋势下,存款的稳定性降低,存贷款的利差收窄,数据分析已经逐渐成为银行实现核心业务价值的重要手段。金融脱媒会导致大量客户的流失和客户忠诚度的降低。银行作为“支付中介”的地位开始动摇,客户对于银行服务的要求越来越高。
在这种情况下,银行需要通过大数据深入全名了解客户的基本信息,提升业务运行的效率,逐步提高客户的体验。通过对大数据的加工以及挖掘,可能为银行带来极大的效益,特别是商业银行。
对于银行来说,风险管控和用户营销是未来最重要的两个方向。而对客户的信用评分是实现这两个方向的重要条件之一。信用评分是根据申请人的申请信息和证明材料,帮助业务员作出决策,降低坏账率。
比如:我们可以根据大数据的分析和查询,有针对性地为客户提供理财产品建议和提醒,同时通过对大数据的分析和挖掘,来评估客户的信用风险和资金偿还能力,降低了银行的各种风险。
❸ 大数据的应用领域有哪些
1.了解和定位客户
这是大数据目前最广为人知的应用领域。很多企业热衷于社交媒体数据、浏览器日志、文本挖掘等各类数据集,通过大数据技术创建预测模型,从而更全面地了解客户以及他们的行为、喜好。
利用大数据,美国零售商Target公司甚至能推测出客户何时会有Baby;电信公司可以更好地预测客户流失;沃尔玛可以更准确的预测产品销售情况;汽车保险公司能更真实的了解客户实际驾驶情况。
滑雪场利用大数据来追踪和锁定客户。如果你是一名狂热的滑雪者,想象一下,你会收到最喜欢的度假胜地的邀请;或者收到定制化服务的短信提醒;或者告知你最合适的滑行线路。。。。。。同时提供互动平台(网站、手机APP)记录每天的数据——多少次滑坡,多少次翻越等等,在社交媒体上分享这些信息,与家人和朋友相互评比和竞争。
除此之外,政府竞选活动也引入了大数据分析技术。一些人认为,奥巴马在2012年总统大选中获胜,归功于他们团队的大数据分析能力更加出众。
2.了解和优化业务流程
大数据也越来越多地应用于优化业务流程,比如供应链或配送路径优化。通过定位和识别系统来跟踪货物或运输车辆,并根据实时交通路况数据优化运输路线。
人力资源业务流程也在使用大数据进行优化。Sociometric Solutions公司通过在员工工牌里植入传感器,检测其工作场所及社交活动——员工在哪些工作场所走动,与谁交谈,甚至交流时的语气如何。美国银行在使用中发现呼叫中心表现最好的员工——他们制定了小组轮流休息制度,平均业绩提高了23%。
如果在手机、钥匙、眼镜等随身物品上粘贴RFID标签,万一不小心丢失就能迅速定位它们。假想一下未来可能创造出贴在任何东西上的智能标签。它们能告诉你的不仅是物体在哪里,还可以反馈温度,湿度,运动状态等等。这将打开一个全新的大数据时代,“大数据”领域寻求共性的信息和模式,那么孕育其中的“小数据”着重关注单个产品。
3.提供个性化服务
大数据不仅适用于公司和政府,也适用于我们每个人,比如从智能手表或智能手环等可穿戴设备采集的数据中获益。Jawbone的智能手环可以分析人们的卡路里消耗、活动量和睡眠质量等。Jawbone公司已经能够收集长达60年的睡眠数据,从中分析出一些独到的见解反馈给每个用户。从中受益的还有网络平台“寻找真爱”,大多数婚恋网站都使用大数据分析工具和算法为用户匹配最合适的对象。
4.改善医疗保健和公共卫生
大数据分析的能力可以在几分钟内解码整个DNA序列,有助于我们找到新的治疗方法,更好地理解和预测疾病模式。试想一下,当来自所有智能手表等可穿戴设备的数据,都可以应用于数百万人及其各种疾病时,未来的临床试验将不再局限于小样本,而是包括所有人!
苹果公司的一款健康APP ResearchKit有效将手机变成医学研究设备。通过收集用户的相关数据,可以追踪你一天走了多少步,或者提示你化疗后感觉如何,帕金森病进展如何等问题。研究人员希望这一过程变得更容易、更自动化,吸引更多的参与者,并提高数据的准确度。
大数据技术也开始用于监测早产儿和患病婴儿的身体状况。通过记录和分析每个婴儿的每一次心跳和呼吸模式,提前24小时预测出身体感染的症状,从而及早干预,拯救那些脆弱的随时可能生命危险的婴儿。
更重要的是,大数据分析有助于我们监测和预测流行性或传染性疾病的暴发时期,可以将医疗记录的数据与有些社交媒体的数据结合起来分析。比如,谷歌基于搜索流量预测流感爆发,尽管该预测模型在2014年并未奏效——因为你搜索“流感症状”并不意味着真正生病了,但是这种大数据分析的影响力越来越为人所知。
5.提高体育运动技能
如今大多数顶尖的体育赛事都采用了大数据分析技术。用于网球比赛的IBM SlamTracker工具,通过视频分析跟踪足球落点或者棒球比赛中每个球员的表现。许多优秀的运动队也在训练之外跟踪运动员的营养和睡眠情况。NFL开发了专门的应用平台,帮助所有球队根据球场上的草地状况、天气状况、以及学习期间球员的个人表现做出最佳决策,以减少球员不必要的受伤。
还有一件非常酷的事情是智能瑜伽垫:嵌入在瑜伽垫中的传感器能对你的姿势进行反馈,为你的练习打分,甚至指导你在家如何练习。
6.提升科学研究
大数据带来的无限可能性正在改变科学研究。欧洲核子研究中心(CERN)在全球遍布了150个数据中心,有65,000个处理器,能同时分析30pb的数据量,这样的计算能力影响着很多领域的科学研究。比如政府需要的人口普查数据、自然灾害数据等,变的更容易获取和分析,从而为我们的健康和社会发展创造更多的价值。
7.提升机械设备性能
大数据使机械设备更加智能化、自动化。例如,丰田普锐斯配备了摄像头、全球定位系统以及强大的计算机和传感器,在无人干预的条件下实现自动驾驶。Xcel Energy在科罗拉多州启动了“智能电网”的首批测试,在用户家中安装智能电表,然后登录网站就可实时查看用电情况。“智能电网”还能够预测使用情况,以便电力公司为未来的基础设施需求进行规划,并防止出现电力耗尽的情况。在爱尔兰,杂货连锁店Tescos的仓库员工佩戴专用臂带,追踪货架上的商品分配,甚至预测一项任务的完成时间。
8.强化安全和执法能力
大数据在改善安全和执法方面得到了广泛应用。美国国家安全局(NSA)利用大数据技术,检测和防止网络攻击(挫败恐怖分子的阴谋)。警察运用大数据来抓捕罪犯,预测犯罪活动。信用卡公司使用大数据来检测欺诈交易等等。
2014年2月,芝加哥警察局对大数据生成的“名单”——有可能犯罪的人员,进行通告和探访,目的是提前预防犯罪。
9.改善城市和国家建设
大数据被用于改善我们城市和国家的方方面面。目前很多大城市致力于构建智慧交通。车辆、行人、道路基础设施、公共服务场所都被整合在智慧交通网络中,以提升资源运用的效率,优化城市管理和服务。
加州长滩市正在使用智能水表实时检测非法用水,帮助一些房主减少80%的用水量。洛杉矶利用磁性道路传感器和交通摄像头的数据来控制交通灯信号,从而优化城市的交通流量。据统计目前已经控制了全市4500个交通灯,将交通拥堵状况减少了约16%。
10.金融交易
大数据在金融交易领域应用也比较广泛。大多数股票交易都是通过一定的算法模型进行决策的,如今这些算法的输入会考虑来自社交媒体、新闻网络的数据,以便更全面的做出买卖决策。同时根据客户的需求和愿望,这些算法模型也会随着市场的变化而变化。
❹ 大数据在金融科技领域有哪些运用
我觉得大数据在金融科技方面的运用蛮多的,在大数据时代进行抽样分析就像在汽车时代骑马一样,一切都在改变。我们得到的数据再也不是随机的抽样,而是所有的数据。“样本=总体”。大数据的核心:预测。 它是把数学算法运用到海量的数据上来预测事情发生的可能性。例如,名为Farecast的公司,找到了一个行业机票的预定数据库,系统预测的结果是根据美国商业航空产业中,每一条航线上每一架飞机内的每一个座位一年内的综合票价记录而得出的。通过预测机票价格的走势以及增降幅度,Farecast票价预测工具能帮助消费者抓住最佳购买时机。到2012年为止,Faecast系统用了将近十万亿条价格记录来帮助预测美国国内航班的票价,Farecast票价预测的准确度已经高达75%,使用Fcat票价预测工具购买机票的旅客,平均每张机票可节省50美元。
❺ 大数据应用与哪些行业
大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、娱乐等在内的社会各行各业都已经融入了大数据的痕迹。
1、制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
2、金融业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
3、汽车行业:利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
4、互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
5、餐饮行业:利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
6、电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
7、能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
8、物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
9、城市管理:利用大数据实现智能交通、环保监测、城市规划和智能安防。
10、生物医学:大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
11、公共安全领域:政府利用大数据技术构建强大的国家安全保障体系,公共安全领域的大数据分析应用,反恐维稳与各类案件分析的信息化手段,借助大数据预防犯罪。
12、个人生活:大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为轨迹,为其提供更加周到的个性化服务。
大数据的价值远不止于此,大数据对各行各业的渗透,是推动社会生产和生活的核心要素。
(5)大数据在美国银行的应用扩展阅读
七个典型的大数据应用案例
1、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
2、Tipp24AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。
3、沃尔玛的搜索。这家零售业寡头为其网站Walmart.com自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技悉指培术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。
4、快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。
5、Morton牛排店的品牌认知睁唯。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连逗改锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。
6、PredPolInc.。PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。
7、TescoPLC(特易购)和运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。
❻ 美国银行怎么利用大数据分析来制定银行存贷利率定价
美国的存款利息那么低,贷款利息却跟我们差不多:1、银行靠存贷差来赚取部分利润;
2、虽然贷款利息差不多,但是美国获取贷款的成本低,而中国的中小获取贷款需要利息之外的额外成本;
3、美国存款利率低主要是靠低利率刺激消费,并且有丰富的理财和金融衍生产品来做补充;
综上,美国的存贷利差大,存款利率低,贷款利率不低。
❼ 什么叫大数据分析 应用场景是什么
大数据不管在现在还是未来都会影响着每1个人。同时,大数据会冲击许多行业,如零售行业、医疗行业等,那么什么叫做大数据分析呢?
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为5个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)、真实性(Veracity)。
大数据分析可以分为大数据和分析两个方面。如今大数据已经经常出现在报纸新闻当中,但大数据与大数据分析并不是同一概念。假如没有数据分析,再多的数据都只能是一堆储存维护成本高而毫无用处的IT库存。国外发达国家的大数据分析更注重分析,从分析出发去找数据,然后再有效地将从数据中得到的信息有效利用;而国内,对大数据的理解有失偏颇,盲目注重于大数据的采集而未能对收集到的数据有效利用,或许只是简单的画个图表得出表层结论而已,难以对数据的深层价值进行深入挖掘。
开源大数据
1. Hadoop HDFS、Hadoop MapRece, HBase、Hive 渐次诞生,早期Hadoop生态圈逐步形成。
2. Hypertable是另类。它存在于Hadoop生态圈之外,但也曾经有一些用户。
一体机数据仓库
IBM PureData(Netezza), OracleExadata, SAP Hana等等。
一、金融行业
在金融行业,大数据广泛利用,典型例子如美国银行利用客户的点击数据集来给客户量身定制服务等。其实中国,金融行业大数据的利用及展开也比较早,但过去大都是利用大数据解决问题。如今,金融行业中的大多数企业都建立了大数据平台,以此对金融行业的交易数据分别进行搜集和处理。
二、医疗行业
医疗行业坐拥大量的病例、病理报告、医疗方案、药物报告等。对这些数据进行有效的整理和分析,将会给医生和病人代理啊极大的帮助。在未来,借助大数据平台,医疗行业可以更系统、更完全地搜集疾病的基本特点、患者病例和医治方案等,建立起来针对各种疾病的数据库,最大限度地帮助医生进行疾病诊断。
三、农牧行业
农牧产品最大的困难就是不容易保存,因此公道地管控种植和养殖农牧产品对凳亮农、牧民来讲非常重要。政府可以借助大数据提供的消费能力和趋势报告,来为农牧行业生产进行公道引导,根据需求最大化进行生产,以避免产能多余而造成资源和社会财富的浪费。借助大数据技术支持,可以实现农业的精细化管理和亏慎科学决策。具体操作:在大数据技术驱动下,结合无人机技术,农民就可以够全面、快速地搜集农产品生长和病虫害等信息。
四、零售行业
大数据爱零售行业的租用主要体现在:零售行业可以通过往客户的购买记录,了解客户们的购买喜好,从而将客户喜欢的,销粗敬相干的产品放到1起来增加产品销售额。例如,将与清洗衣物相干的化工产品如洗衣粉、消毒液、漂白剂等放到1起进行销售。据调查,根据客户对相干产品的购买记录而重新整合、摆放的货物将会给零售行业增加30%以上的产品销售额。
❽ 大数据在金融行业的应用与挑战
大数据在金融行业的应用与挑战
A 具有四大基本特征
金融业基本是全世界各个行业中最依赖于数据的,而且最容易实现数据的变现。全球最大的金融数据公司Bloomberg在1981年成立时“大数据”概念还没有出现。Bloomberg的最初产品是投资市场系统(IMS),主要向各类投资者提供实时数据、财务分析等。
随着信息时代降临,1983年估值仅1亿美元的Bloomberg以30%股份的代价换取美林3000万美元投资,先后推出Bloomberg Terminal、News、Radio、TV等各类产品。1996年Bloomberg身价已达20亿美元,并以2亿美元从美林回购了10%的股份。2004年Bloomberg在纽约曼哈顿中心建成246米摩天高楼。到2008年次贷危机,美林面临崩盘,其剩余20%的Bloomberg股份成为救命稻草。Bloomberg趁美林之危赎回所有股份,估值跃升至225亿美元。2016年Bloomberg全球布局192个办公室,拥有1.5万名员工,年收入约100亿美元,估值约1000亿美元,超过同年市值为650亿美元的华尔街标杆高盛。
大数据概念形成于2000年前后,最初被定义为海量数据的集合。2011年,美国麦肯锡公司在《大数据的下一个前沿:创新、竞争和生产力》报告中最早提出:大数据指大小超出典型数据库软件工具收集、存储、管理和分析能力的数据集。
具体来说,大数据具有四大基本特征:
一是数据体量大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量。
二是数据类别大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据。
三是处理速度快,在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是数据的真实性高,随着社交数据、企业内容、交易与应用数据等新数据源的兴起,传统数据源的局限被打破,信息的真实性和安全性显得极其重要。
而相比其他行业,金融数据逻辑关系紧密,安全性、稳定性和实时性要求更高,通常包含以下关键技术:数据分析,包括数据挖掘、机器学习、人工智能等,主要用于客户信用、聚类、特征、营销、产品关联分析等;数据管理,包括关系型和非关系型数据、融合集成、数据抽取、数据清洗和转换等;数据使用,包括分布式计算、内存计算、云计算、流处理、任务配置等;数据展示,包括可视化、历史流及空间信息流展示等,主要应用于对金融产品健康度、产品发展趋势、客户价值变化、反洗钱反欺诈等监控和预警。
B 重塑金融行业竞争新格局
“互联网+”之后,随着世界正快速兴起“大数据+”,金融行业悄然出现以下变化:
大数据特征从传统数据的“3个V”增加到“5个V”。在数量(Volume)、速度(Velocity)、种类(Variety)基础上,进一步完善了价值(Value)和真实性(Veracity),真实性包括数据的可信性、来源和信誉、有效性和可审计性等。
金融业按经营产品分类变为按运营模式分类。传统金融业按经营产品划分为银行、证券、期货、保险、基金五类,随着大数据产业兴起和混业经营的发展,现代金融业按运营模式划分为存贷款类、投资类、保险类三大类别。
大数据市场从垄断演变为充分市场竞争。全球大数据市场企业数量迅速增多,产品和服务的差异增大,技术门槛逐步降低,市场竞争日益激烈。行业解决方案、计算分析服务、存储服务、数据库服务和大数据应用成为市场份额排名最靠前的五大细分市场。
大数据形成新的经济增长点。Wikibon数据显示,2016年,全球大数据硬件、软件和服务整体市场增长22%达到281亿美元,预计到2027年,全球在大数据硬件、软件和服务上的整体开支的复合年增长率为12%,将达到大约970亿美元。
数据和IT技术替代“重复性”业务岗位。数据服务公司Eurekahedge通过追踪23家对冲基金,发现5位对冲基金经理薪金总额为10亿美元甚至更高。过去10年,靠数学模型分析金融市场的物理学家和数学家“宽客”一直是对冲基金的宠儿,其实大数据+人工智能更精于此道。高盛的纽约股票现金交易部门2000年有600名交易员而如今只剩两人,其任务全由机器包办,专家称10年后高盛员工肯定比今天还要少。
美国大数据发展走在全球前列。美国政府宣称:“数据是一项有价值的国家资本,应对公众开放,而不是将其禁锢在政府体制内。”作为大数据的策源地和创新引领者,美国大数据发展一直走在全球最前列。自20世纪以来,美国先后出台系列法规,对数据的收集、发布、使用和管理等做出具体的规定。2009年,美国政府推出Data.gov政府数据开放平台,方便应用领域的开发者利用平台开发应用程序,满足公共需求或创新创业。2010年,美国国会通过更新法案,进一步提高了数据采集精度和上报频度。2012年3月,奥巴马政府推出《大数据研究与开发计划》,大数据迎来新一轮高速发展。
英国是欧洲金融中心,大数据成为其领先科技之一。2013年,英国投资1.89亿英镑发展大数据。2015年,新增7300万英镑,创建了“英国数据银行”data.gov.uk网站。2016年,伦敦举办了超过22000场科技活动,同年,英国数字科技投资逾68亿英镑,而收入则超过1700亿英镑。另外,英国统计局利用政府资源开展“虚拟人口普查”,仅此一项每年节省5亿英镑经费。
C 打造高效金融监管体系
大数据用已发生的总体行为模式和关联逻辑预测未来,决策未来,作为现代数字科技的核心,其灵魂就是——预测。
侦测、打击逃税、洗钱与金融诈骗
全球每年因欺诈造成的经济损失约3.7万亿美元,企业因欺诈受损通常为年营收额的5%。全球最大软件公司之一美国SAS公司与税务、海关等政府部门和全球各国银行、保险、医疗保健等机构合作,有效应对日益复杂化的金融犯罪行为。如在发放许可之前,通过预先的数据分析检测客户是否有过行受贿、欺诈等前科,再确定是否发放借贷或海关通关。SAS开发的系统已被国际公认为统计分析的标准软件,在各领域广泛应用。英国政府利用大数据检测行为模式检索出200亿英镑的逃税与诈骗,追回了数十亿美元损失。被福布斯评为美国最佳银行的德克萨斯资本银行(TCBank),不断投资大数据技术,反金融犯罪系统与银行发展同步,近3年资产从90亿美元增至210亿美元。荷兰第三大人寿保险公司CZ依靠大数据对骗保和虚假索赔行为进行侦测,在支付赔偿金之前先期阻断,有效减少了欺诈发生后的司法补救。
大数据风控建立客户信用评分、监测对照体系
美国注册舞弊审核师协会(ACFE)统计发现,缺乏反欺诈控制的企业会遭受高额损失。美国主流个人信用评分工具FICO能自动将借款人的历史资料与数据库中全体借款人总体信用习惯相比较,预测借款人行为趋势,评估其与各类不良借款人之间的相似度。美国SAS公司则通过集中浏览和分析评估客户银行账户的基本信息、历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如搜索到该客户从新出现的国家为特有用户转账,或在新位置在线交易等),进行实时反欺诈分析。
美国一家互联网信用评估机构通过分析客户在Facebook、Twitter等社交平台留下的信息,对银行的信贷和投保申请客户进行风险评估,并将结果出售给银行、保险公司等,成为多家金融机构的合作伙伴。
D 数据整合困难
应用经济指标预测系统分析市场走势
IBM使用大数据信息技术成功开发了“经济指标预测系统”,该系统基于单体数据进行提炼整合,通过搜索、统计、分析新闻中出现的“新订单”等与股价指标有关的单词来预测走势,然后结合其他相关经济数据、历史数据分析其与股价的关系,从而得出行情预测结果。
追踪社交媒体上的海量信息评估行情变化
当今搜索引擎、社交网络和智能手机上的微博、微信、论坛、新闻评论、电商平台等每天生成几百亿甚至千亿条文本、音像、视频、数据等,涵盖厂商动态、个人情绪、行业资讯、产品体验、商品浏览和成交记录、价格走势等,蕴含巨大财富价值。
2011年5月,规模为4000万美元的英国对冲基金DC Markets,通过大数据分析Twitter的信息内容来感知市场情绪指导投资,首月盈利并以1.85%的收益率一举战胜其他对冲基金仅0.76%的平均收益率。
美国佩斯大学一位博士则利用大数据追踪星巴克、可口可乐和耐克公司在社交媒体的围观程度对比其股价,证明Facebook、Twitter和 Youtube上的粉丝数与股价密切相关。
提供广泛的投资选择和交易切换
日本个人投资理财产品Money Design在应用程序Theo中使用算法+人工智能,最低门槛924美元,用户只需回答风险承受水平、退休计划等9个问题,就可使用35种不同货币对65个国家的1.19万只股票进行交易和切换,年度管理费仅1%。Money Design还能根据用户投资目标自动平衡其账户金额,预计2020年将超过2万亿美元投资该类产品。
利用云端数据库为客户提供记账服务
日本财富管理工具商Money Forward提供云基础记账服务,可管理工资、收付款、寄送发票账单、针对性推送理财新项目等,其软件系统连接并整合了2580家各类金融机构的各类型帐户,运用大数据分析的智能仪表盘显示用户当前财富状况,还能分析用户以往的数据以预测未来的金融轨迹。目前其已拥有50万商家和350万个体用户,并与市值2.5万亿美元的山口金融集团联合开发新一款APP。
为客户定制差异化产品和营销方案
金融机构迫切需要掌握更多用户信息,继而构建用户360度立体画像,从而对细分客户进行精准营销、实时营销、智慧营销。
一些海外银行围绕客户“人生大事”,分析推算出大致生活节点,有效激发其对高价值金融产品的购买意愿。如一家澳大利亚银行通过大数据分析发现,家中即将诞生婴儿的客户对寿险产品的潜在需求最大,于是通过银行卡数据监控准妈妈开始购买保胎药品和婴儿相关产品等现象,识别出即将添丁的家庭,精准推出定制化金融产品套餐,受到了客户的积极响应,相比传统的短信群发模式大幅提高了成功率。
催生并支撑人工智能交易
“量化投资之王”西蒙斯被公认为是最能赚钱的基金经理人,自1988年创立文艺复兴科技公司的旗舰产品——大奖章基金以来,其凭借不断更新完善的大数据分析系统,20年中创造出35%的年均净回报率,比索罗斯同期高10%,比股神巴菲特同期高18%,成为有史以来最成功的对冲基金,并于1993年基金规模达2.7亿美元时停止接受新投资。在美国《Alpha》杂志每年公布的对冲基金经理排行榜上,西蒙斯2005年、2006年分别以15亿美元、17亿美元净收入稳居全球之冠,2007年以13亿美元位列第五,2008年再以25亿美元重返榜首。
推动金融产品和服务创新
E 面临三大挑战
目前,全球各行业数据量的增长速度惊人,在我国尤其集中在金融、交通、电信、制造业等重点行业,信息化的不断深入正在进一步催生更多新的海量数据。
据统计,2015年中国的数据总量达到1700EB以上,同比增长90%,预计到2020年这一数值将超过8000EB。以银行业为例,每创收100万元,银行业平均产生130GB的数据,数据强度高踞各行业之首。但在金融企业内部数据处于割裂状态,业务条线、职能部门、渠道部门、风险部门等各个分支机构往往是数据的真正拥有者,缺乏顺畅的共享机制,导致海量数据往往处于分散和“睡眠”状态,虽然金融行业拥有的数据量“富可敌国”,但真正利用时却“捉襟见肘”。
数据安全暗藏隐患
大数据本质是开放与共享,但如何界定、保护个人隐私权却成为法律难题。大数据存储、处理、传输、共享过程中也存在多种风险,不仅需要技术手段保护,还需相关法律法规规范和金融机构自律。多项实际案例表明,即使无害的数据大量囤积也会滋生各种隐患。安全保护对象不仅包括大数据自身,也包含通过大数据分析得出的知识和结论。在线市场平台英国Handshake.uk.com就尝试允许用户协商个人数据被品牌分享所得的报酬。
人才梯队建设任重道远
人才是大数据之本。与信息技术其他细分领域人才相比,大数据发展对人才的复合型能力要求更高,需要掌握计算机软件技术,并具备数学、统计学等方面知识以及应用领域的专业知识。
❾ 大数据有什么应用
主要由以下三点作用:
第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。
❿ 大数据在金融领域的应用
大数据在金融领域的应用如下:
1. 概述
近年来,随着大数据、云计算、区块链、人工智能等新技术的快速发展,这些新技术与金融业务深度融合,释放出了金融创新活力和应用潜能,这大大推动了我国金融业转型升级,助力金融更好地服务实体经济,有效促进了金融业整体发展。
在这一发展过程中,又以大数据技术发展最为成熟、应用最为广泛。
从发展特点和趋势来看,“金融云”快速建设落地奠定了金融大数据的应用基础,金融数据与其他跨领域数据的融合应用不断强化,人工智能正在成为金融大数据应用的新方向,金融行业数据的整合、共享和开放正在成为趋势,给金融行业带来了新的发展机遇和巨大的发展动力。
2. 大数据技术在金融行业中的典型应用
大数据技术在金融行业中有着广泛的应用, 下面将介绍大数据技术在银行、证券、保险等金融细分领域中的应用。
3. 金融大数据应用面临的挑战及对策
大数据技术为金融行业带来了裂变式的创新活力,其应用潜力有目共睹,但在数据应用管理、业务场景融合、标准统一、顶层设计等方面存在的瓶颈也有待突破。