❶ 大数据开发和DBA哪个发展前景好
应该是大数据开发比较好的,毕竟大数据,云计算和物联网是未来发展的三大趋版势。大数据权现在虽然没有发展到成熟的阶段。但是在以后的5到10年里,会渐渐的走向成熟的阶段的。以后我们的生活中时时都会出现大数据的影子的。
❷ 数据库工程师和大数据工程师有啥区别
两者是有区别的。数抄据库工袭程师主要是做数据库的sql开发、维护;大数据工程师主要是做数据的提取、解析、计算、分析。总的来说,一个偏底层建设,一个更偏向业务应用。数据库工程师入门门槛相对较低,了解各个数据库的基础特性,学习一些入门书籍,就可以入行,后续可以往DBA的方向发展;大数据工程师,入门门槛较高,要掌握很多的大数据算法、开源框架,并且,由于需要海量的数据进行测试,所以在有大数据量的公司里,大数据工程师更能得到快速的提升。在待遇方面,大数据工程师目前待遇比较好,但由于门槛高,对于一般的毕业生来说可能暂时达不到。以上,希望对你有所帮助。
❸ php程序员数据库 大数据DBA这两个哪个方向好
不要想的太宽,建议从PHP先学起,试想哪个公司会让新人一上去就去设计数据库呢。数据库在工作中自然能慢慢锻炼,并且由于硬件和实践的原因,在工作中学到的数据库方面的知识绝对是在学校拼命看书所不能比的
❹ 传统Oracle dba是否有转大数据学习hadoop等的必要
这个需求很奇怪。与其改变系统定义,撤销dba角色的导入权限,再把dba赋予用户,还不如重新创建一个角色,比如叫做weakdba,把需要的权限赋给它,再把这个角色赋给需要的用户。这样更规范
❺ 云计算时代 对oracle数据库DBA的影响,是否今后也不需要太多数据库管理员
云计算,理论上来说,数据库也可以放在云上,但是数据库的管理还是需要有人来做的,
就是云服务商可以帮你做一部分数据库的备份工作,但是数据库的调优,维护还是需要DBA来做,毕竟谁也不可能把自家数据让别人去维护。
其次现在数据库还是很少有放到公有云上的,最多是放在企业的私有云上,那么DBA还是不会失业!
最后说一点现在云计算一样火的就会大数据,大数据时代最重要的是什么--数据。
数据多了,必定需要更多的专业的人员来维护,来分析。
所有说对DBA来说,大数据和云计算更多的是机遇而不是挑战!
❻ 是骗局还是变革 大数据改变谁的命运
是骗局还是变革 大数据改变谁的命运
大数据会是一场概念的骗局么?近期这样的讨论在网上随着大数据的话题而不断涌现出来。其实大数据并不是一项全新的技术,它的本质表现在数据的形态更为复杂,增长的速度更快和交互的频率更高。如何对具备这样特征的数据集群进行管理和使用,是区别于传统数据应用的主要特点。更为重要的一点是:当前的技术将大数据应用的成本降低到了中小型企业也可以使用的阶段,在有关大数据的话题讨论中,这一点也是备受关注和认可的。
大数据分析意味着企业能够从这些新的数据中获取新的洞察力,并将它与已知业务的各个细节相融合。微软亚太研发集团服务器与开发工具事业部,中国云计算创新中心商务战略总监殷皓在接受记者专访时特别谈到了一个很有意思的案例:“某汽车销售机构希望了解历年油价的波动对汽车销售带来的影响,这时他们不需要重新采集关于油价的数据,而是通过WindowsAzure上的一个数据集市服务,获得了准确而专业的数据信息,很快的完成了这项分析,充分体现了数据服务带来的价值。”殷皓认为数据不能停留数据存储的阶段,而是要转换成为有价值的信息服务,创造新的商业机会。
大数据将改变谁的命运
DBA是在传统数据库应用领域中极为重要的人群,也许大数据会带给他们理念上的转变。“DBA曾经是IT行业中的金饭碗,因为核心的数据库技术发展相对来说变化的较少,所以有些DBA会慢慢变懒”,殷皓谈到:“但是,变化少不代表不变。如果DBA的工作定位偏向底层运维型的话,那么他们的职能会变得 越来越小,甚至会被自动化的服务来取代,未来DBA对基础设施的管理会越来越少,更多的向上层业务扩展。”
我们关注到发展中的DBA分工,其中的一种可能会涉及到企业核心安全保障,成为企业里数据的守门人之一。另一种角色是研发DBA,它和业务应用结合的非常紧密。包括数据定义、数据建模,从逻辑建模到物理建模,以及后端存储的设计等,未来更多的是成为企业数据模型的管理者。“这实际上也是一个职业发展 的过程”,殷皓认为:“运维DBA需要确保7*24的业务连续性,研发DBA更多的负责物理建模,完成开发人员写的存储过程。而我们看到的数据架构师层 面,就是需要从业务需求出发来实现逻辑建模。因为对业务的理解是自动化工具所不能取代的,这也是在大数据的趋势下,DBA所要面临的转变。”
SQL Server与大数据的对接
Hadoop是大数据的一个分布式系统架构。5月与微软SQL Server 2012同时发布的还有将Hadoop和SQL Server连在一起的连通器,他们通过标准的ODBC模式,把Hadoop和PDW微软并行数据仓库连在一起,实现多核并发的并行数据仓库。“用户无需对应用做出很大的改动,只是连接到SQLServer、数据仓库,或者是一个对象。通过这个对象可以把我的连接通过连接键引申出去,然后把所有的数据整合在一起”,殷皓兴奋的分享到:“在这种场景下,我可以把结构化数据和非结构化数据、甚至是数据仓库在模型中的数据整合在一起,做更加深入的数据分析。”
SQL Server 2012版本中,微软亚太研发集团服务器与开发工具事业部参与了两个大的功能研发:数据的迁移工具SSIS,数据库升级的服务。微软针对Hadoop在 Windows Server Kernel上做出性能的优化、安全认证的整合,形成企业级的AD整合,并实现了和BI工具的整合。“微软在NoSQL上加一个SQL的索引层,比如 eBay的底层用了MangoDB,但所有的交易数据都按照SQL来存储到结点中”,殷浩认为:“NoSQL提供了一个很好的存储机制,但要提高数据利用 的效率,最好回到SQL的场景。NoSQL将会是数据库发展过程中的一个中间阶段,会逐渐体现为数据服务中的一部分,而非数据平台的主流。”
关于大数据的话题还将继续争论下去,但可以看到的是,在企业商业智能的发展基础上,数据分析将作为一种服务提供给用户。IT技术提供商们开始实践的大数据,不仅是把数据用于企业内部的业务分析和决策支持,而是以提供数据分析模型的方式优化企业决策。这不仅仅是技术的更新,而是IT消费模式的变革。
❼ 大数据时代下,DBA该何去何从
大数据时代下,DBA该何去何从
数据库管理员(DBA)的职能已扩展到数据管理、基础架构管理以及工作负载和SLA管理上。作为大数据战略的一部分,DBA的角色又是如何变化的呢?
数据管理
* 为成为数据管理专家而努力。虽然SQL数据库可以扩展以处理大数据,但数据库并不是最优解决方案。DBA正在预算方面做努力,在预算范围内,以最低的成本满足SLA。
* 出现数据ops概念。数据管理和数据治理。数据操作是团队的一部分,在收集和创建数据时共享目标、协作工作。使用自动化来挤压延迟、采取最合适的敏捷方案以提高提高效率。
* 管理、治理和软件交付。维护数据库模型和模式。在大数据中,从定义明确的转换到应用程序和工程师之间的协同工作,一切都是具有探索性的。
* 虽然开发人员认为不需要数据管理,但为了后续的分析数据,DBA们仍需要进行数据管理。
* DBA从管理数据库转变为跨多个系统的数据工程师。他们关注的是数据如何从一个数据库转移到另一个数据库、数据的消耗、数据的调整以及数据流程的管理,对于数据自动分配和执行来说这些都至关重要。
* DBA已经不再是单单只关注像SQLServer和Oracle这样的个人产品,而是必须要处理好企业大数据实施方案的执行问题。
基础架构和平台
DBA的角色已经被推到第一线上。对IT栈的演变负责。基础设施和平台的认定范围变的更大。
*这是一个不容忽视的大挑战,应用程序所使用的数据库技术不再归于DBA的控制范围内。迁移到云上的比重越大,DBA的控制范围就越小。数据越来越多,同时也在不断推出新的数据库。管理数据基础设施、提出大数据的解决喝整合方案、掌握如何归档和处理灾难恢复的技能。AWS似乎将云中的数据库选项绑定到了DBA上。DBA仍然需要在备份、灾难恢复和海量存储上多费心思。值得在备份和存储方面进行更具战略性的思考。
DBA比以往更重要,因此他们也需要学习:如何有效地集成存储在RDBMS系统中的遗留数据,同时大数据技术也是必不可少的。
* 由于大数据改变了数据架构,DBA的存在可能需要不是立竿见影的,但确实是实实在在的。新技术为数据管理提供了新的契机,使DBA和数据模式打开了一个新时代。
* 事实上,没有数据模式和Hadoop的NoSQL平台,以及支持它的一系列工具,会越来越多地部署在企业中。现在开发人员在数据本身的设计上有更多的影响力。
* 这在扩大DBA的专业范围上起到了推动作用:必须学习NoSQL系统的机制和操作;掌握管理Hadoop集群的能力;实施“无需存储数据存储数据”的方法。
* 而且,NoSQL的灵活性是以数据完整性为代价,这种模型的难度更高。目前,许多公司的网络应用程序的数据完整性已经给灵活性让位了。
* DBA必须适应设计和开发的风格变化。DBA也需要运行几个关系系统,并且认真学习NoSQL技术,对指导公司做出的部署负责。将来可能会划分出几种类型的DBA:局限于技术的;传统的管理员;努力学习并适应管理大数据的新技术和工具的。
* DBA始终是整个软件开发流程的一部分。在目前的环境中,更是需要所有的DBA都参与到整个开发过程中,尤其是规划、范围界定和原型设计部分。DBA能为企业提供有关数据基础设施功能、所需变更成本、潜在性能影响以及总体容量规划等项目的具体信息。
*鉴于对数据的使用要求,更多特定数据平台范围之外的技术正被用于实施解决方案。DBA不仅仅要专注于SQL、DDL等,还要掌握javaScript、Java、.NET等技术。DBA会越来越精通应用容器化和系统容器化(Docker、Rkt、Linux容器等)。DBA压力会越来越大,一旦与其他角色联系到一起,数据及其管理都是穿插着多条生命线,因此需要掌握的技术就不断增加。
成功采用大数据策略的企业,早已经把DBA转变为新型数据基础管理员,包括NoSQL数据库和Hadoop在内。与开发数据管理逻辑的数据开发人员、处理和准备数据的数据科学家以及业务线上的数据分析人员相结合,DBA是操作大数据战略的重要部分。现在,DBA依赖于更智能的工具,这些工具可以管理并报告各种数据库和技术框架的数据基础架构和流程。
工作负载和SLA
* 工作结构消失了。有类型更为广泛的问题需要解决。要实现混合的环境在流和批处理中交付新的工作负载,同时又能跟得上变化。
* 现在,有许多不在数据库中管理数据,而是将数据组织成超级管理数据的数据生态系统一部分的做法。了解通信、链接的速度、安全性以及如何将来源汇集在一起。
* 比起以往,现在有更多的技术管理。理解并管理一个数据仓库的技术方法有10到20种。为了能给问题选择出正确的技术,便于管理,规模较大的企业正在考虑将搜索、NoSQL、Hadoop和GPU技术标准化。
* 从一个拥有数据库领域知识的系统管理员,到现在需要掌握处理数据集成、非结构化数据、自然语言处理、文档存储和统计。工具集可以能够简化工作。关系数据库不会有大的进展,但大数据存储会有新变化。
1. 大数据时代,DBA的角色发生了重大变化。在很长一段时间里,DBA仅仅只是一个系统管理员。他们的确有SQL知识、知道该如何优化SQL,以及对构建数据库的理解,但他们并没有主动参与到数据库系统里数据的特定用途上。
2. 大数据DBA对数据和非关系数据模型的应用程序有更深入的了解,并且必须具备执行数据集成的知识,这些数据集超出了用于商业智能(BI)应用的传统提取——转换——加载过程(ETL)。
❽ 大数据技术是学什么的就业方向
大数据技术是学数学专业、计算机专业的就业方向。
大数据技术里会用到很多学科学习的知识,并不是单一的专业可以学完大数据所需要掌握的技术,所以大数据属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。
❾ 大数据技术是学什么的 就业方向有哪些
大数据技术是中国普通高等学校专科专业。预计2025年前大数据人才需求仍将保持30%—40%的增速,需求总量在2000万人左右。
主要课程:大数据专业导论,面向对象程序设计(java),操作系统原理,Linux系统运维技术,云数据中心基础,数据库原理及应用,Hadoop大数据平台集群部署与开发,Python程序设计,机器学习,大数据可视化技术,数据分析与应用等。
学生经过本专业学习可以考取“大数据分析应用”、“1+X大数据运维”等职业资格证书以提高专业技能,增强其就业竞争力。毕业生亦可升本继续深造,对应本科专业如:数据科学与大数据技术、计算机科学与技术等。
专业紧贴市场需求,重点培育两个岗位:大数据应用开发岗、大数据BI岗,其中大数据应用开发岗培养大数据离线分析、实时分析及数据可视化核心能力;大数据库BI岗侧重于与行业企业运行系统、业务模块对接,掌握商业大数据管理。
大数据应用开发工程师、数据ETL技术员、数据可视化工程师、行业BI工程师、数据库管理员(DBA)、数据库程序开发员(Java开发);本专业毕业后半年的平均月薪5500元,最高可达1.5万元。
本专业毕业生主要面向互联网与软件信息、商业服务、医疗、教育、金融、生产制造等行业的大数据应用岗位就业,主要工作岗位:大数据运维工程师、数据分析工程师、数据可视化工程师、大数据运营工程师、大数据技术销售经理等。据统计,初次就业薪资待遇:5000-8000元左右。
❿ 大数据相关的职位都有哪些啊DBA属于大数据行业吗
数据库管理员(Database
Administrator,简称DBA),是从事管理和维护数据库管理系统(DBMS)的相关工作人员版的统称,属于运维工权程师的一个分支,主要负责业务数据库从设计、测试到部署交付的全生命周期管理。
DBA的核心目标是保证数据库管理系统的稳定性、安全性、完整性和高性能。
大数据相关的应该叫数据挖掘师=
=你连这个都分不清还咋找工作