1. 大数据分析与应用实践
随着互联网的不断发展,大数据技术在各个渠道都得到了广泛的应用,而今天昌平镇北大青鸟就通过案例分析来了解一下,大数据分析与大数据应用都有哪些实践操作。
大数据分析过去几个月出现的一股趋势是,越来越关注利用人工智能(形式和风格各异)来帮助分析大规模的数据,从而获得预测性的洞察。
其实近出现复兴的AI很大程度上算是大数据的产物。深度学习(近受到关注多的AI领域)背后的算法基本上是几十年前就诞生了的,但直到近能够以足够便宜、足够快速地应用到大规模数据之后才发挥出了它的大潜能。AI与大数据之间的关系如此紧密,以至于业界专家现在认为AI已经令人懊恼地“与大数据陷入了热恋当中”。
不过反过来,AI现在也在帮助大数据实现后者的承诺。分析对AI/机器学习越来越多的关注也符合大数据下一步演进的趋势:现在数据我都有了,但究竟从中能得到什么样的洞察呢?当然,这件事情可以让数据科学家来解决,从一开始他们的角色就是实现机器学习,否则的话就得想出模型来发现数据的意义。但是机器智能现在正在逐渐发挥辅助数据科学家的作用—只需要倒腾数据,新兴的产品就能从中提炼出数学公式(如ContextRelevant)或者自动建立和推荐有可能返回佳结果的数据科学模型(如DataRobot)。一批新的AI公司提供的产品能够自动识别像图像这样的复杂实体(如Clarifai、Dextro),或者提供强大的预测性分析(如HyperScience)。
同时,随着基于无监督学习的产品的传播和改善,看看它们与数据科学家之间的关系如何演变将非常有趣—将来这两者是敌还是友呢大弊?AI当然不会很快取代数据科学家的位置,但预计会看到数据科学家通常执行的更简单一点的工作越来越多的自动化,从洞链而可以极大提高生产力。
但不管怎样,AI/机器学习绝不是大数据分析值得关注的趋势。大数据BI平台的普遍成熟及其日益增强的实时能力也是一个令人兴奋滚颤族的趋势(如SiSense、ArcadiaData等)。
2. 工业大数据包括哪些工业大数据应用在哪些方面
【导读】众所周知,第二次世界大战也称为工业革命,可见工业在生活中是多么的重要,现在工业也已经趋于人工智能化,不过还是处于前期的观望试运行阶段,今天我们就来了解一下大数据在工业方面的应用有哪些,一起来看看吧!
大数据在工业中的应用有哪些?
从需求角度来看,目前国内制造企业对大数据的需求较为明显,但很多用户仍处于观望和试验阶段,不知道如何进行。因此,对于大数据服务提供商来说,有必要结合行业业务,寻找合适的应用场景。
工业大数据的应用有哪些?
互联网给传统制造业带来了挑战,而互联网大数据可以为企业管理者和参与者提供一个新的视角,通过技术创新和开发,以及对数据的全面感知、收集、分析和共享,来审视制造业价值链。所带来的巨大价值正在被传统企业所认可。
然而,不同于目前互联网大数据的火热,工业大数据的应用对于企业来说有着很高的门槛。与互联网不同,行业大数据与行业业务密切相关。因此,对企业的行业积累和对行业业务的深入了解都有很高的要求。此外,行业内的大数据分析比较准确,逻辑关系非常清晰。
工业大数据的应用有哪些?大数据在工业中的应用有哪些?通过大数据分析,企业可以使部门之间的数据更加协调,从而准确预测市场需求缺口。同时,通过更加灵活的工艺管理和更加自动化的生产设备装配调度,实现智能化生产。然而,据我们所知,在中国从事大数据应用的公司并不多。然而,拥有自主知识产权和核心技术的企业并不多。要做好工业大数据的应用,需要有一套严谨的数据推理逻辑,以及平台和工具。目前,国内大数据应用企业还没有足够的能力满足这一需求。
然而,仍有一些大型工业企业处于应用的前沿。以唐山钢铁集团为例,通过引进国际最先进的生产线,实现实时数据采集,与涵宇等企业合作,深入挖掘行业大数据价值,实时生产监控、生产调度、产品质量管理、能源控制等。此外,先进制造企业基于大数据在行业中的应用,将产品、机器、资源、人有机结合,推动基于大数据分析和应用的制造业智能化转型。
综上所述,在“互联网+”时代,用户需求具有实时性、小批量、碎片化、更新快等特点,对传统制造业提出了挑战。工业大数据有其鲜明的特点。随着信息化和工业化的融合,产业大数据的应用为制造业转型升级开辟了一条新途径。深入探讨工业大数据在制造过程中的应用场景和应用,将有利于更好地发挥其支撑作用。
以上就是小编今天给大家整理的关于“工业大数据包括哪些?工业大数据应用在哪些方面?”的相关内容,希望对大家有所帮助。总的来说,大数据的价值不可估量,未来发展前景也是非常可观的,因此有兴趣的小伙伴,尽早着手学习哦!
3. 工业大数据应用难点有
工业大数据应用难点有下面这些:
一是大数据技术的运用困难,存在数据不足、数据信噪比低以及数据分析难度高等问题;
二是大数据给信息安全带来新挑战,如工业大数据加大了隐私泄露的风险,对现有存储和安全措施提出了更高要求,以及大数据正在被运用到新的攻击手段中;
此一词语在2012年随着工业4.0的概念而出现,也和信息技术行销流行的大数据有关,工业大数据也意味着工业设备产生的大量数据有其潜在的商业价值。工业大数据会配合工业互联网的技术,利用原始资料来支援管理上的决策,例如降低维护成本以及提升对客户的服务。
工业大数据是指在工业领域中,围绕典型智能制造模式,从客户需求到销售、订单、计划、研发、设计、工艺、制造、采购、供应、库存、发货和交付、售后服务、运维、报废或回收再制造等整个产品全生命周期各个环节所产生的各类数据及相关技术和应用的总称。
其以产品数据为核心,极大延展了传统工业数据范围,同时还包括工业大数据相关技术和应用。其主要来源可分为以下三类:第一类是生产经营相关业务数据。第二类是设备物联数据。第三类是外部数据。
4. 工业大数据是什么,及其对企业未来发展的作用
我国工业大数据处于起步阶段
工业大数据是指在工业领域信息化应用中所产生的数据,是工业互联网的核心,是工业智能化发展的关键。工业大数据是基于网络互联和大数据技术,贯穿于工业的设计、工艺、生产、管理、服务等各个环节,使工业系统具备描述、诊断、预测、决策、控制等智能化功能的模式和结果。
工业大数据从类型上主要分为现场设备数据、生产管理数据和外部数据。
——以上数据来源于前瞻产业研究院《中国工业大数据产业发展前景与投资战略规划分析报告》。
5. 工业大数据应用在哪些方面
工业大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新不同行业的工业企业带来了更快的速度、更高的效率和更高的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等诸多方面。本文将对工业大数据在制造企业的应用场景进行逐一梳理。
1.加速产品创新
客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。
2.产品故障诊断与预测
这可以被用于产品售后服务与产品改进。无所不在的传感器、互联网技术的引入使得产品故障实时诊断变为现实,大数据应用、建模与仿真技术则使得预测动态性成为可能。
3.生产线的大数据应用
现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。
4.工业供应链分析和优化
当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。
5.产品销售预测与需求管理
通过大数据来分析当前需求变化和组合形式。大数据是一个很好的销售分析工具,通过历史数据的多维度组合,可以看出区域性需求占比和变化、产品品类的市场受欢迎程度以及最常见的组合形式、消费者的层次等,以此来调整产品策略和铺货策略。
6.生产计划与排程
制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的历史数据,对于需要快速响应的APS来说,是一个巨大的挑战。
大数据可以给予我们更详细的数据信息,发现历史预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。
帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。虽然,大数据略有瑕疵,只要得到合理的应用,大数据会变成我们强大的武器。当年,福特问大数据的客户需求是什么?而回答是“一匹更快的马”,而不是现在已经普及的汽车。所以,在大数据的世界里,创意、直觉、冒险精神和知识野心尤为重要。
7.产品质量管理与分析
传统的制造业正面临着大数据的冲击,在产品研发、工艺设计、质量管理、生产运营等各方面都迫切期待着有创新方法的诞生,来应对工业背景下的大数据挑战。例如在半导体行业,芯片在生产过程中会经历许多次掺杂、增层、光刻和热处理等复杂的工艺制程,每一步都必须达到极其苛刻的物理特性要求,高度自动化的设备在加工产品的同时,也同步生成了庞大的检测结果。
8.工业污染与环保检测
工业大数据应用的价值潜力巨大。但是,实现这些价值还有很多工作要做。一个是大数据意识建立的问题。过去,也有这些大数据,但由于没有大数据的意识,数据分析手段也不足,很多实时数据被丢弃或束之高阁,大量数据的潜在价值被埋没。还有一个重要问题是数据孤岛的问题。很多工业企业的数据分布于企业中的各个孤岛中,特别是在大型跨国公司内,要想在整个企业内提取这些数据相当困难。因此,工业大数据应用一个重要议题是集成应用。
工业大数据的应用将推动工业企业基于对内外部环境相关数据的采集、存储和分析,实现企业与内外部关联环境的感知和互联,并利用工业大数据分析技术开展挖掘分析,支撑工业企业基于数据进行决策管控,提升企业决策管控的针对性、有效性。
6. 智能制造:工业制造中的大数据分析
搞清出工业大数据分析,第一步我们应该如何定义制造业的大数据?这里我和大家通过大数据的三个特性,来经一步了解大数据的特性。
1
关注#1 -工业大数据数据来源
工业大数据的主要来源有两个,第一类数据来源与智能设备。普适计算有很大的空间,现代工人可以带一个普适感应器等设备来参加生产和管理。所以工业数据源是280亿左右大量设备之间的关联,这个是我们未来需要去采纳的数据源之一。
第二个数据来源于人类轨迹产生的数据,包括在现代工业制造链中,从采购,生产,物流与销售市场的内部流程以及外部互联网讯息等,都是此类大数据的战场。通过行为轨迹数据与设备数据的结合,大数据可以帮助我们实现客户的分析和挖掘,它的应用场景包括了实时核心,交易,服务,后台服务等。
2
关注#2 -数据的关系
数据必须要放到相应的环境中一起分析,这样才能了解数据之间的关系,可以分析出问题的根本原因(root cause)。譬如,每一款新机型在交付给航空公司之前都会接受一系列残酷的飞行测试。极端天气测试就是多项严酷的测试之一。该测试的目的是为了确保飞机的发动机、材料和控制系统能在极端天气条件下正常运行。
问题的处理关键在于找到产生问题的根源,而以知错误的消除,关键在于解决方案的可靠有效。一旦找到并确定了根本原因,同时产生了可接受的应急措施,就可把问题当成一个已知错误来处理。问题调查的过程一定需要收集所有可用,与事件相关的信息来确定并消除引起事件和问题的根本原因。数据采集与分析必须要事件/问题发生的环境数据结合。
3
关注#3 -数据的收益
对于数字化转型的其他方面而言,大数据不仅要关注实际数据量的多少,而最重要的是关注在大数据的处理方法在特定的场合的应用,让数据产生巨大的创新价值。如果离开了收益考虑或投资回报的设计,一味寻求大数据既无法落地也无法为企业创造价值。
工业大数据分析的定义
生产执行系统(MES)与飞机发动机 健康 管理系统如出一辙。我们可以从工厂的生产中,实时采集到海量的流程,变量,测量结果等数据。这些数据来源的原因都是因为在制造环境中,设备或资产连接后所产生的现象。然而基于大量数据集而生成的报表,或是基础统计的分析并不足以称之为制造业的大数据分析。
所以如果制造业大数据分析不仅仅意味着数据的量,作为一个行业,我们应该如何定义制造业的大数据分析?“大数据不仅仅是大量的数据”这句话里面包含了多重涵义。
当代大数据处理技术的价值在于技术进步,同时也是因为技术进步,使大数据成为商业中有价值的核心驱动因素。作为智能制造的三驾马车之一,工业大数据分析已经被多数的制造企业所认知并接受。许多制造业企业认为自己在生产运营方面也累积了大量的数据,是时候可以用到大数据了。
数据类型的多样性
大数据不仅仅是大量的数据的堆积。大数据的重要属性之一,便是,人们设法收集,并弄清楚,不断变化的数据类型。如果只是大量采集同一类型的数据的话,再大的数据量都不能称之为大数据。
数据必须包括高度可变性和种类多样性。制造工厂中存在无数的大数据应用,但并不包括简单地分类和展示一连串的流程测量结果,这些工作基本的统计展现就可以完成。一些大数据数据库或数据湖的构成部分数据类型也是文本信息、图像数据、地理或地质信息和非结构信息,例如,通过社交媒体或其他协作平台获得的数据类型。
制造业信息结构概括起来分为两层,一个是管理层,一个是自动化层。从经营管理,生产执行与控制三个纬度来实现决策支持、管理、生产执行、过程控制以及设备的连接与传感。制造业中大数据分析是指利用通用的数据模型,将管理层与自动化层的结构性系统数据与非结构性数据结合,进而通过先进的分析工具发现新的洞见。
大数据分析对生产的意义
制造业的创新的核心就是要依托大量的前沿 科技 。先进的技术是创新的手段。在新技术的支持下,可以通过一体化的制造运作管理系统MOM将企业管理应用系统,例如ERP,MES等系统与工业自动化的相关系统整合为一体。
从两化融合的角度来看,信息系统供应商要从企业的主信息系统提供商定位来做好规划、标准、功能设计、实施策略的统一性工作。协助企业做好风险控制,降低投资,降低操作维护成本,实现企业信息系统全集成。
7. 工业大数据市场现状及前景调研
我国工业大数据处于起步阶段
工业大数据是指在工业领域信息化应用中所产生的数据,是工业互联网的核心,是工业智能化发展的关键。工业大数据是基于网络互联和大数据技术,贯穿于工业的设计、工艺、生产、管理、服务等各个环节,使工业系统具备描述、诊断、预测、决策、控制等智能化功能的模式和结果。
工业大数据从类型上主要分为现场设备数据、生产管理数据和外部数据。
更多数据来来源及分析请参考于前瞻产业研究院《中国工业大数据产业发展前景与投资战略规划分析报告》。
8. 大数据可以应用在哪些方面
可以应用在云计算方面。
大数据具体的应用:
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
4、麻省理工学院利用手机定位数据和交通数据建立城市规划。
5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。
9、分析所有SKU,以利润最大化为目标来定价和清理库存。
10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
大数据的用处:
1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。
自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
网络--大数据
9. 大数据技术有在工业领域的成功应用案例吗
. 深圳市儿童医院成功部署IBM集成平台与商业智能分析系统
IBM利用其行业领先的大数据与分析技术,支持深圳市儿童医院搭建信息集成平台,整合原有分散在多系统中的海量数据,实现各部门的信息共享;同时通过商业智能分析对集成数据进行深入挖掘,为医院各部门人员的科学决策提供全面的辅助,提升医院的服务水平和管理能力。
2. Informatica帮助紫金农商银行深挖数据价值
紫金农商银行ODS数据仓库项目建设使用Informatica产品完成数据的加载、清洗、转换工作显得尤为简单,图形化、流程化设计使维护人员能够快速、顺畅的操作,即使数据源结构发生变化,也不会像以前必须修改大量的程序代码,只需要在PowerCenter中配置一下即可。
3. 华为大数据一体机服务于北大重点实验室
经过大量的前期调查,比较和分析准备工作,北大重点实验室选择了华为基于高性能服务器RH5885 V2的HANA数据处理平台。HANA提供的对大量实时业务数据进行快速查询和分析以及实时数据计算等功能,在很大程度上得益于华为RH5885 V2服务器的高可靠、高性能和高可用性的支撑。
4. IBM携手汉端科技为飞鹤乳业打造全产业链可追溯体系
IBM、汉端科技与中国飞鹤乳业联合宣布,通过利用IBM业界领先的全面大数据与分析能力,和汉端科技在商业智能领域丰富的行业经验,飞鹤乳业实现了产品的可追溯与食品安全的数字化管理,完成了系统数字化、透明化、服务化的升级。
5. 浪潮大数据平台大大提升了济南的警务工作能力
浪潮在帮助济南公安局在搭建云数据中心的基础上构建了大数据平台,以开展行为轨迹分析、社会关系分析、生物特征识别、音视频识别、银行电信诈骗行为分析、舆情分析等多种大数据研判手段的应用,为指挥决策、各警种情报分析、研判提供支持,做到围绕治安焦点能够快速精确定位、及时全面掌握信息、科学指挥调度警力和社会安保力量迅速解决问题。
6. 英特尔携杭州诚道科技构建智能交通
面对大数据挑战,杭州市和杭州诚道科技有限公司紧密合作,部署了基于英特尔大数据解决方案的诚道重点车辆动态监管系统,通过集中的数据中心将全市卡口、电子警察、视频监控、流量检测设备、信号机、诱导设备等有效地连接起来,从交通案件侦破能力、交通警察对机动车辆的监管能力到利用关联车辆的数据分析能力,都得到了极大提升。
7. 步步高集团借Oracle Exadata 大大提高了IT投资回报率
步步高集团采用 Oracle Exadata数据库云服务器搭建信息化平台,凭借Oracle Exadata数据库云服务器的高扩展性、安全性和冗余性,步步高集团得以在该基础架构上运行一系列Oracle零售行业以及Oracle的应用软件。此外,基于Oracle Exadata的步步高IT新架构比传统架构拥有更好的性价比,最大限度地增加了IT的投资回报率。
8. 华为Anti-DDoS助阿里巴巴检测DDoS变革
阿里巴巴现网多个数据中心出口都部署了华为的Anti-DDoS解决方案,平均每天防护的DDoS攻击次数超过100次,每年达数万次,峰值防护的DDoS攻击流量超过100Gbps。如今,DDoS攻击在阿里巴巴安全工程师眼里已经习以为常,由华为Anti-DDoS方案自动调度进行清洗防护即可。“双11”期间,华为Anti-DDoS方案一如既往地成功防护了多轮DDoS攻击事件,有力保障了阿里巴巴网络交易的顺畅平稳。
9. 华为大数据方案在福建移动的应用
为进一步提升外呼成功率,从2014年初开始,福建移动联合华为公司开展基于大数据的精准营销工作,采用大数据分析的方法选择外呼目标价值用户。基于大数据分析方法和传统外呼方法分别提供20万目标客户清单,在前台无感知下进行对比验证,确保对比效果不受人为因素影响,经过外呼验证,基于大数据分析方法较传统方法外呼成功率提升50%以上,有效支撑了福建移动4G用户发展战略。
10. 北京市人民政府“12345”便民电话中心选择Oracle Exadata 实现便携服务
为了进一步提升部门的调度能力、办理水平和群众满意度,北京市人民政府“12345”便民电话中心选择Oracle Exadata数据库云服务器,升级成为北京市非紧急救助服务综合受理调度平台,通过Oracle Exadata Database Machine支撑起新平台的数据库访问需求。升级后的平台能够整合全市的便民呼叫服务,支撑来自群众的各类诉求、求助、批评和建议,并可为公众提供方便、快捷的公共信息服务,真正成为全市的舆情中心、信息汇集中心和城市名片。
11. 民生银行借IBM BigInsights应对金融业的大数据挑战
IBM BigInsights大数据解决方案和企业级NoSQL数据库SequoiaDB合作,为民生银行搭建低成本、高性能、高可靠且水平扩张的数据平台,帮助民生银行通过大数据分析应对金融业的大数据挑战,完善交易流水查询分析系统,产业链金融管理系统,以及私人银行产品货架管理系统。
12. 中信银行信用卡实施EMC Greenplum 数据仓库解决方案
中信银行信用卡中心选择实施EMC Greenplum 数据仓库解决方案。Greenplum 数据仓库解决方案为中信银行信用卡中心提供了统一的客户视图,借助客户统一视图,中信银行信用卡中心可以更清楚地了解其客户价值体系,从而能够为客户提供更有针对性和相关性的营销活动。基于数据仓库,中信银行信用卡中心现在可以从交易、服务、风险、权益等多个层面分析数据。通过提供全面的客户数据,营销团队可以对客户按照低、中、高价值来进行分类,根据银行整体经营策略积极地提供相应的个性化服务。
13. 惠普助力雅昌集团掘金大数据
成立于1993年的雅昌集团首创“传统印刷+IT技术+文化艺术”的商业模式,形成环环相扣的文化产业链,为艺术市场提供全面、综合的一站式服务。基于企业内容数据管理体系,惠普为雅昌搭建了从数据采集、处理、管理到应用的全过程处理流程,使雅昌可以快速利用所需数据,缩短新品上线时间,快速响应市场变化。
14. 德国足球队采用SAP大数据方案迎战世界杯
德国足协和SAP公司通过联合创新引入SAP Match Insights解决方案,该方案基于SAP HANA平台运行处理海量数据,可以为球员和教练提供一个简明的用户界面,帮助双方开展互动性更强的对话,分析球队训练、备战和比赛情况,从而提升球员和球队的成绩。
15. 1号店借Oracle Exadata改善终端客户体验
1号店采用Oracle Exadata数据库云服务器成功优化统一整合的数据平台,满足了不断增长的业务处理需求,并进一步改善了终端客户体验。经过Oracle Exadata整合后的新平台采用混合负载互备架构,将平均处理性能提升7倍,既可以支持目前规划业务量的业务处理,还能够随着业务量的增长进行在线升级、扩容,满足处理能力和数据量的增长需求。软、硬件集成设计的Oracle Exadata 协助解决了1号店的I/O瓶颈问题,实现了比传统架构更高的性能和可扩展性。同时,基于Exadata的1号店IT新架构比传统架构拥有更好的性价比,最大限度地发挥了IT投资回报率。
16. 大数据在青岛银行:提升银行交易性能、简化运营和管理
利用IBM大数据专家PureData,青岛银行能够高效集成业务数据,简化运维。PureData for Transactions作为青岛银行重要业务处理系统,能够在一个系统中整合超过几十个数据库,同时提供良好的性能、可用性和可扩展性支持实现广泛的业务目标,例如地域扩张,突发的业务交易高峰,新柜面、流程银行等大规模的业务上线等。
17. Informatica方案帮助南京儿童医院实现信息互通共享
南京市儿童医院目前已建成包括HIS、LIS、PACS、电子病历EMR、医生工作站、移动护理、病案、财务管理、库房管理和手术麻醉等几十个应用系统,这些异构系统间数据调用分散,不能集中统一标准化管理。通过采用Informatica ETL工具构建数据仓库系统,并基于数据仓库建设医院数据调用公共资源中心库,南京市儿童医院实现了实时的数据交互和信息共享,干净、标准的数据为跨应用系统数据关联分析打下扎实基础。
18. 东吴大学采用达索系统EXALEAD启动大数据应用暨产学合作
台湾东吴大学采用达索系统EXALEAD大数据智能应用开发解决方案,全方位地整合校务信息,积极开发校务经营发展的各项应用。此外还将启动三方产学合作计划,协助建立校内大数据相关课程、人才培训和实习机制,使学生自入学就开始不断提升其未来职场所需的关键竞争力,学用合一,实现学校、学生、企业三赢。
19. 网络大脑PK人脑 大数据押高考作文题
为了帮助考生更好地备考,网络高考作文预测通过对过去八年高考作文题及作文范文、海量年度搜索风云热词、历年新闻热点等原始数据与实时更新的“活数据”进行深度挖掘分析,以“概率主题模型”模拟人脑思考,反向推导出作文主题及关联词汇,为考生预测出2014年高考作文的六大命题方向。
20. IBM助力同仁医院构筑强大的分析体系
同仁医院通过与IBM合作,同仁医院建立起了强大的分析能力和体系,包括对临床、运营、科研、考核等信息的分析,实现智慧的医院管理与考核;同时也能看到医疗设备的平均故障间隔周期,从而降低了设备的故障率、平均维修时间。这一切都让工作效率稳步提升,也缓解了病人看病难的问题,提高了患者就医满意度。
21. 微软助上海市浦东新区卫生局更加智能化
作为上海市公共卫生的主导部门,浦东新区卫生局在微软SQL Server 2012的帮助之下,积极利用大数据,推动卫生医疗信息化走上新的高度:公共卫生部门可通过覆盖区域的居民健康档案和电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应。与此同时,得益于非结构化数据的分析能力的日益加强,大数据分析技术也使得临床决策支持系统更智能。
22. 湖南电信通过分析掌握电信市场动向、针对性定制营销计划
利用IBM大数据专家PureData,湖南电信实现了通过分析掌握市场整体经营情况、快速制定市场策略以及加强客户经理营销维系的高效执行。PureData for Analytics作为湖南电信本地数据集市建设工程重要组成部分,高效整合了湖南电信旗下各本地网数据,为进一步分析创造先机。
23. 携程借SQL Server增强了数据采集和掌控
作为国内领先的综合性旅行服务公司,携程计算机技术有限公司曾面临分支机构、服务城市和员工数量的增长所带来的运营数据分散和数据集成难的 IT 问题。借助微软SQL Server 2012 商业智能解决方案,携程增强了其对所有下属分支机构的数据采集和掌控,大大减少了计划性停机时间以及非计划性停机的时间,灵活的部署选项也可以根据携程的需要实现从服务器到云的扩展。
24. 上海公共研发平台部署Oracle Exadata应对扩展需求
上海公共研发平台部署Oracle Exadata数据库云服务器,以应对其系统和应用的扩展需求。Oracle Exadata融合了一系列同类最佳的预配置的服务器、网络、存储和软件,能为数据仓库和在线事务处理应用程序提供超强性能。上海公共研发平台运行Oracle Exadata期间相对稳定,CPU占用率控制在5%以内,极大改善了用户应用体验。同时,Exadata平台的可扩展性极好的满足了上海公共研发平台的系统需求,目前整个公共研发平台的20多个应用系统已经全部迁移到Exadata上,应用部署量增长1倍,且运行十分稳定。
25. 360手机卫士10KB解决iPhone骚扰
360手机卫士通过对海量数据的运算和精准匹配下发,将一组大小仅为10KB的数据即1000个骚扰号码同步到用户手机上,打造个性化的骚扰号码数据库,此外,每天更新的骚扰号码库数据,会依据标记趋势调整骚扰号码库中各类数据比例,即每一位360手机卫士用户手机中的1000个骚扰号码都是动态的,随地域、身份以及骚扰趋势的变化而变化。
26. 神州数码助张家港市更“智慧”
在张家港实践的城市案例中,市民登录这款“神州数码”研发的市民公共信息服务平台后,市民只要凭借自己的身份证和密码,即可通过该系统平台进行240余项“在线预审”服务、130余项“网上办事”服务等,还可通过手机及时查看办事状态。相比于以前来说,市民办事的时间最少可以节省一半以上。
27. IBM助中网组委会构建安全和敏捷的内联网
IBM专门为中网设计了具有实时大数据分析功能的MatchTracker(赛事追踪系统),可以为球迷提供数据呈现、计分等功能。 MatchTracker基于IBM SlamTracker分析技术,使球迷能够利用历史和实时性数据,洞悉比分之后的态势和策略。此外,IBM还为中网组委会构建了安全和敏捷的内联网。
28. Cortana基于微软Bing大数据预测世界杯
微软为Cortana增加了世界杯预测的功能,基于微软Bing大数据,并综合考虑世界杯各支球队的过往比赛结果、比赛时间、天气情况、主场优势以及其他因素,使用大量的博彩市场公开数据、民意调查、社交媒体以及其它在线数据,利用大数据分析来判断每场比赛的结果。
29. 中科曙光助同济大学科研领域再创新高
为了满足爆炸式增长的用户和数据量,同济大学携手中科曙光,在全面整合云计算平台和现有资产的基础上,采用 DS800-F20存储系统、Gridview集群管理系统,以及Hadoop分布式计算平台构建出了业内领先的大数据柔性处理平台,使得同济大学在信息学科及其交叉学科研究领域迈上一个新台阶。
30. 华为助农行完成海量数据分布式处理的需求
华为向农行提供了良好的计算平台,基于华为RH2288 V2服务器的分布式并行计算集群进行测试,以及还提供了快速响应客户需求的研发能力,以及业界最快捷的售后服务。农行的测试结果表明,华为解决方案完全满足农行对海量数据进行分布式处理的要求。
10. 工业大数据应用难点有哪些
工业大数据应用难点有:
一是大数据技术的运用困难,存在数据不足、数据信噪比低以及数据分析难度高等问题。
二是大数据给信息安全带来新挑战,如工业大数据加大了隐私泄露的风险,对现有存储和安全措施提出了更高要求,以及大数据正在被运用到新的攻击手段中。
目前,工业大数据在产品创新设计、产品故障诊断与预测、供应链的分析和优化、产品销售预测与大数据营销、生产计划与排程、产品质量管理与分析等场景有广泛的应用。“数据是工业互联网的血液。”何友如此描述大数据与工业互联网的互为动力。
不过,由于工业大数据数据价值密度高,数据类型繁多,多源异构的机构化数据和非结构化数据并存,数据处理实行性要求也非常高,数据关系和关联性异常复杂等特征,企业如何从数据统计分析能力转变为大数据分析、预测和决策能力,促进传统工业升级改造和产业整合,是目前要解决的核心关键问题。