❶ 网络推广的技巧有哪些
一:投放广告
我们大家知道,喜欢上BBS的人,对于自己常常登陆的论坛有一种依赖感,而因为有这种依赖的原因,是他关注这个领域,热爱这样的论坛,时常会驻足论坛的各个角落,那么在这样的论坛,投放我们的广告是非常有针对性的,论坛大多都不生成真静态。
二:置顶贴
做过seo优化,或者推广的人,我们都了解一个这样的一说:高质量链接和垃圾链接!说到底,高质量的链接无非就是被非单个IP请求刷新,非常频繁的页面做了反向链接的链接。简单就是说,那个页面关注的人非常的多。既然关注的非常多,那么这一页面所起到的所用就是非常大,产品宣传的效果就不用说了。
三:签名广告
这个对于那些喜欢泡论坛的网络推广人员比较有效,我们知道要想让顾客和你成交的最好办法,就是和他成为朋友,如果你的顾客和你有同样的嗜好—灌水,那么成为你的客户只是时间的问题,我们在灌水的同时,每发布或者回复一个帖子,在签名里面都会有我们的广告,如果我们回复的精华或者置顶帖的一楼或者二楼,效果可想而知,我们逛论坛的时候可以看到一楼的同志,都在出售广告位这就体现了这个位置的重要性。
四:软文
在论坛里面发布软文一定要写的精彩,这样才有吸引力,不管是在标题还是内容都要别具一格,如果你的标题或者内容让用户一眼就看出是广告,那这样的软文就是失败的,弄不好还会被删帖,而且在论坛里面排在前面的帖子除了置顶帖,其他基本就是最新回复的帖。
五:新闻
发布自己公司的新闻,或者有争议的相关新闻,容易引起大家讨论的新闻,这样的新闻不但可以提高自己公司或者网站的知名度,如果连接添加得当,还可以对于相关关键字起到优化作用!
❷ 国家没有大数据的时候不良贷款没多少
是的,,,2020年年末银行业不良贷款率1.92% 较年初下降0.06个百分点
01-25 12:15
近日,银保监会公布了银行业保险业2020年运行及改革发展情况。相关数据显示,2020年,银行业共处置困皮不良资产3.02万亿元。截至2020年年末,不良贷款余额3.5万亿元,较年初增加2816亿元;不良贷款率1.92%,较年初下降0.06个百分点;逾期90天以上贷款与不良贷款的比例为76%,较年初下降5.1个百分点。银行保险机构流动性总体保持平稳,商业银行流动性覆盖率146.5%,保险公司经营活动现金流同比增长106.5%。
数据还显示,银行业保险业资产负债及业务稳步增长。2020年年末,银行业金融机构总资产319.7万亿元,同比增长10.1%;总负债293.1万亿元,同比增长10.2%。保险公司总资产23.3万亿元,同比增长13.3%;原保险保费收入4.5万亿元,同比增长6.1%;保险资金运用余额21.7万亿元,同比增长17%。
与此同时,2020年,人民币贷款增加汪启差19.6万亿元,同比多增2.8万亿元。民营企业、制造业贷款分别增加5.7万亿元、2.2万亿元。普惠型小微企业贷款、科学研究和技术服务业贷款、信息技术服务业贷款同比分别增长30.9%、20.1%、14.9%。银行保险机构新增债券投资9.5万亿元。保险业提供保险金额8710万亿元,同比增长34.6%;赔付支出1.4万亿元,同比增长7.9%。
此外,2020年,通过发行优先股、永续债、二级资本债等工具补充了商业银行资本1.34万亿元,银行业新提取拨备1.9万亿元,同旁和比多提取1139亿元。2020年年末,拨备覆盖率182.3%,贷款拨备率3.5%,均保持较高水平。初步统计,商业银行实现净利润2万亿元,同比下降1.8%。2020年年末,商业银行资本充足率14.7%。目前,保险公司综合偿付能力充足率242.5%,核心偿付能力充足率230.5%。
在银行业保险业改革开放方面,银保监会持之以恒推进完善银行保险机构公司治理,深化党的领导和公司治理有机融合,严格规范股权管理,强化董监高等治理主体履职监督。印发中小银行深化改革和补充资本工作方案,全面部署推进城商行、农信社改革化险工作。全面推进保险机制改革,发布车险综合改革指导意见,研究推动发展养老保险第三支柱,加快意外险和农业保险改革。稳步扩大金融对外开放。推动更多对外开放措施落地,积极审核外资机构市场准入申请。自2018年以来,共批准外资银行和保险公司来华设立近100家各类机构。
❸ 大数据.云计算有哪些上市公司
1,海康威视
海康威视是全球领先的以视频为核心的物联网解决方案提供商,致力于不断提升视频处理技术和视频分析技术,面向全球提供领先的监控产品和技术解决方案。
2,大华股份
浙江大华技术股份有限公司系按照《公司法》的有关规定,经浙江省人民政府企业上市工作领导小组浙上市(2002)18号文批准,由杭州大华信息技术有限公司依法整体变更设立的股份有限公司,发起人为傅利泉、陈爱玲、朱江明、刘云珍、陈建峰。股份公司设立时以截至2001年12月31日经审计的净资产1,080万元按照1:1的比例折合股本1,080万股。
3,华平股份
华平信息技术股份有限公司是一家在中国A股上市的领先的多媒体通信系统提供商,致力于向社会提供成熟、先进的网络视频通信产品和专业的系统解决方案。
4,中威电子
中威电子公司是中威有限通过整体变更方式设立的股份有限公司。中威有限经天健事务所审计的截至2009年12月31日的净资产为5,008.54万元,按1.6695:1的比例折合成股本3,000万元,折股溢价2,008.54万元计入资本公积,整体变更前后股东持股比例不变。
5,科大讯飞
科大讯飞股份有限公司(IFLYTEK CO.,LTD.),前身安徽中科大讯飞信息科技有限公司,公司总部在合肥,成立于1999年12月30日,2014年4月18日变更为科大讯飞股份有限公司 ,专业从事智能语音及语言技术研究、软件及芯片产品开发、语音信息服务及电子政务系统集成 。拥有灵犀语音助手,讯飞输入法等优秀产品。
❹ 数据安全有哪些案例
“大数据时代,在充分挖掘和发挥大数据价值同时,解决好数据安全与个人信息保护等问题刻不容缓。”中国互联网协会副秘书长石现升在贵阳参会时指出。
员工监守自盗数亿条用户信息
今年初,公安部破获了一起特大窃取贩卖公民个人信息案。
被窃取的用户信息主要涉及交通、物流、医疗、社交和银行等领域数亿条,随后这些用户个人信息被通过各种方式在网络黑市进行贩卖。警方发现,幕后主要犯罪嫌疑人是发生信息泄漏的这家公司员工。
业内数据安全专家评价称,这起案件泄露数亿条公民个人信息,其中主要问题,就在于内部数据安全管理缺陷。
国外情况也不容乐观。2016年9月22日,全球互联网巨头雅虎证实,在2014年至少有5亿用户的账户信息被人窃取。窃取的内容涉及用户姓名、电子邮箱、电话号码、出生日期和部分登陆密码。
企业数据信息泄露后,很容易被不法分子用于网络黑灰产运作牟利,内中危害轻则窃财重则取命,去年8月,山东高考生徐玉玉被电信诈骗9900元学费致死案等数据安全事件,就可见一斑。
去年7月,微软Window10也因未遵守欧盟“安全港”法规,过度搜集用户数据而遭到法国数据保护监管机构CNIL的发函警告。
上海社会科学院互联网研究中心发布的《报告》指出,随着数据资源商业价值凸显,针对数据的攻击、窃取、滥用和劫持等活动持续泛滥,并呈现出产业化、高科技化和跨国化等特性,对国家和数据生态治理水平,以及组织的数据安全能力都提出了全新挑战。
当前,重要商业网站海量用户数据是企业核心资产,也是民间黑客甚至国家级攻击的重要对象,重点企业数据安全管理更是面临严峻压力。
企业、组织机构等如何提升自身数据安全能力?
企业机构亟待提升数据安全管理能力
“大数据安全威胁渗透在数据生产、流通和消费等大数据产业的各个环节,包括数据源、大数据加工平台和大数据分析服务等环节的各类主体都是威胁源。”上海社科院信息所主任惠志斌向记者分析称,大数据安全事件风险成因复杂交织,既有外部攻击,也有内部泄密,既有技术漏洞,也有管理缺陷,既有新技术新模式触发的新风险,也有传统安全问题的持续触发。
5月27日,中国互联网协会副秘书长石现升称,互联网日益成为经济社会运行基础,网络数据安全意识、能力和保护手段正面临新挑战。
今年6月1日即将施行的《网络安全法》针对企业机构泄露数据的相关问题,重点做了强调。法案要求各类组织应切实承担保障数据安全的责任,即保密性、完整性和可用性。另外需保障个人对其个人信息的安全可控。
石现升介绍,实际早在2015年国务院就发布过《促进大数据发展行动纲要》,就明确要“健全大数据安全保障体系”、“强化安全支撑,提升基础设施关键设备安全可靠水平”。
“目前,很多企业和机构还并不知道该如何提升自己的数据安全管理能力,也不知道依据什么标准作为衡量。”一位业内人士分析称,问题的症结在于国内数据安全管理尚处起步阶段,很多企业机构都没有设立数据安全评估体系,或者没有完整的评估参考标准。
“大数据安全能力成熟度模型”已提国标申请
数博会期间,记者从“大数据安全产业实践高峰论坛”上了解到,为解决此问题,全国信息安全标准化技术委员会等职能部门与数据安全领域的标准化专家学者和产业代表企业协同,着手制定一套用于组织机构数据安全能力的评估标准——《大数据安全能力成熟度模型》,该标准是基于阿里巴巴提出的数据安全成熟度模型(Data Security Maturity Model, DSMM)进行制订。
阿里巴巴集团安全部总监郑斌介绍DSMM。
作为此标准项目的牵头起草方,阿里巴巴集团安全部总监郑斌介绍说,该标准是阿里巴巴基于自身数据安全管理实践经验成果DSMM拟定初稿,旨在与同行业分享阿里经验,提升行业整体安全能力。
“互联网用户的信息安全从来都不是某一家公司企业的事。”郑斌称,《大数据安全能力成熟度模型》的制订还由中国电子技术标准化研究院、国家信息安全工程技术研究中心、中国信息安全测评中心、公安三所、清华大学和阿里云计算有限公司等业内权威数据安全机构、学术单位企业等共同合作提出意见。
❺ 外呼防封号系统的公司哪家好
800呼-电话外呼中心
(网络直接搜索好码肆)
800呼的智能呼叫中心,是专为电话销售打造的呼叫系统,一套系统打通筛客育客触客全流程。 800呼的智能呼叫中心灵活对接融合CRM,借助人工智能与大数据技术,帮助企业快速开展电销业务。
云呼叫,4G话机,APP,外呼机器人等随心选。800呼云呼叫中心:统一外显统一充值,电销访销一体化(适用于大中型企业)。使用呼叫中心外呼时,可以在管理后台,为员工配置坐席和号码;
800呼叫的线路模式分两种,“SIP话机”和“手机”;
1、无需个人办卡,以公司资质申请和备案,运营商提供号码 。
2、号码地全国1-3线城市都有,任你选择 。
3、每天每个业务员拨打500-1000次,解决高频问题。
4、过滤名单池,对高危名单,黑名单自动过滤,提升呼出效率。
5、耳麦插在电脑上,打开网页登录或者手机APP就可拨打电话。
6、号友轿码企业独享,不是号码池很多公司共用的,确保交付到手模嫌都是新号 。
7、通话稳定,音质清晰的SIP电话,沟通更流畅 。
解决方案二:回拨线路
1、保留传统通话习惯,无需耳麦,使用手机即可通话
2. 外显真实手机号,归属地可选,客户未接到,可通过该号码回拨,减少意向客户流失
3. 中间号拨打,主叫变被叫,双方处于接听,实现运营商查询不到呼叫记录。
4. 通话稳定,沟通更流畅,和正常拨打无异
“八百呼”以客户需求为核心,连接企业一切通讯为理念,包含座机电话、手机、网站、微信、视频等全方位整合,为企业提供文字/语音/视频通讯、智能硬件研发、人工智能等一站式解决方案。目前拥有10多年行业经验,运营商一手线路,目前合作5000多家企业,既有世界五百强招行银行、四川建行,也有服务全国的宗申集团、网络、汇中财富、新希望物业、校管家、四维卫浴、新东方、中青旅、高速公路等企事业单位。完善的售后服务体系和团队、10多年客户服务经验的积累和软件迭代升级,是“八百呼”品牌在行业的核心竞争力!
❻ 大数据的历史
李娜再度夺得大满贯,超越了张德培的华人大满贯纪录,非举国体制下的奇迹造就了举国的愉悦。
在总结李娜成功因素的时候,也再次看到了这样的言论:是大数据起到了重要的作用。但这次李娜夺冠,最靠谱的解释就是李娜在卡洛斯的帮助下大大提升了心理层面的战斗力。
在技术层面领先的前提下,李娜在整场比赛中克服了节奏问题,她具备了一颗冠军的心脏。2012年9月6日,代表亚洲网球至高水平的中国选手李娜在美国迎战名将小威廉姆斯。
当时,IBM公司在综合了美网过去8年的全部比赛数据之后,为参赛球员制定了“Keys to the march”的比赛制胜策略。李娜一方获得赢球的关键包括3个指标:1.一发得分率超过69%;2.4-9拍相持中得分利率要超过48%:3.发球局30-30或40-40时得分率要超过67%。
比赛结果是,李娜溃败。比赛结束后,IBM高调地宣布李娜仅仅完成了三项制胜策略中的项,而小威廉姆斯则完成了自己三项制胜策略中的两项。
于是,很多人就顺着IBM的思路问,李娜为什么不照着BM的策略去打球?其实,当当事人的主观愿望不积极的时候,大数据对他们来说不过是噪音而已。同样,数据也会因为主观意愿具有欺骗性。
我们很多时候都会被误导,认为大数据的作用是让历史提示未来。其实不然。
在网球这样的领域里,历史数据甚至常常会成为陷阱。有意思的是,在另一场女子网球比赛中,一位球员做到了IBM为其制定的三项指标中的两个,她却失败了。
而胜利的一方,只完成了一个指标。
可按照时间点划分大数据的发展历程。
大数据时代发展的具体历程如下:2005年Hadoop项目诞生。 Hadoop其最初只是雅虎公司用来解决网页搜索问题的一个项目,后来因其技术的高效性,被Apache Software Foundation公司引入并成为开源应用。
Hadoop本身不是一个产品,而是由多个软件产品组成的一个生态系统,这些软件产品共同实现全面功能和灵活的大数据分析。从技术上看,Hadoop由两项关键服务构成:采用Hadoop分布式文件系统(HDFS)的可靠数据存储服务,以及利用一种叫做MapRece技术的高性能并行数据处理服务。
这两项服务的共同目标是,提供一个使对结构化和复杂数据的快速、可靠分析变为现实的基础。2008年末,“大数据”得到部分美国知名计算机科学研究人员的认可,业界组织计算社区联盟 (puting munity Consortium),发表了一份有影响力的白皮书《大数据计算:在商务、科学和社会领域创建革命性突破》。
它使人们的思维不仅局限于数据处理的机器,并提出:大数据真正重要的是新用途和新见解,而非数据本身。此组织可以说是最早提出大数据概念的机构。
2009年印度 *** 建立了用于身份识别管理的生物识别数据库,联合国全球脉冲项目已研究了对如何利用手机和社交网站的数据源来分析预测从螺旋价格到疾病爆发之类的问题。同年,美国 *** 通过启动://Data.gov网站的方式进一步开放了数据的大门,这个网站向公众提供各种各样的 *** 数据。
该网站的超过4.45万量数据集被用于保证一些网站和智能手机应用程序来跟踪从航班到产品召回再到特定区域内失业率的信息,这一行动激发了从肯尼亚到英国范围内的 *** 们相继推出类似举措。2009年,欧洲一些领先的研究型图书馆和科技信息研究机构建立了伙伴关系致力于改善在互联网上获取科学数据的简易性。
2010年2月,肯尼斯库克尔在《经济学人》上发表了长达14页的大数据专题报告《数据,无所不在的数据》。库克尔在报告中提到:“世界上有着无法想象的巨量数字信息,并以极快的速度增长。
从经济界到科学界,从 *** 部门到艺术领域,很多方面都已经感受到了这种巨量信息的影响。科学家和计算机工程师已经为这个现象创造了一个新词汇:“大数据”。
库克尔也因此成为最早洞见大数据时代趋势的数据科学家之一。2011年2月,IBM的沃森超级计算机每秒可扫描并分析4TB(约2亿页文字量)的数据量,并在美国著名智力竞赛电视节目《危险边缘》“Jeopardy”上击败两名人类选手而夺冠。
后来 *** 认为这一刻为一个“大数据计算的胜利。” 相继在同年5月,全球知名咨询公司麦肯锡(McKinsey&pany)肯锡全球研究院(MGI)发布了一份报告——《大数据:创新、竞争和生产力的下一个新领域》,大数据开始备受关注,这也是专业机构第一次全方面的介绍和展望大数据。
报告指出,大数据已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。
报告还提到,“大数据”源于数据生产和收集的能力和速度的大幅提升——由于越来越多的人、设备和传感器通过数字网络连接起来,产生、传送、分享和访问数据的能力也得到彻底变革。2011年12 月,工信部发布的物联网十二五规划上,把信息处理技术作为4 项关键技术创新工程之一被提出来,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分。
2012年1月份,瑞士达沃斯召开的世界经济论坛上,大数据是主题之一,会上发布的报告《大数据,大影响》(Big Data, Big Impact) 宣称,数据已经成为一种新的经济资产类别,就像货币或黄金一样。2012年3月,美国奥巴马 *** 在白宫网站发布了《大数据研究和发展倡议》,这一倡议标志着大数据已经成为重要的时代特征。
2012年3月22日,奥巴马 *** 宣布2亿美元投资大数据领域,是大数据技术从商业行为上升到国家科技战略的分水岭,在次日的电话会议中, *** 对数据的定义“未来的新石油”,大数据技术领域的竞争,事关国家安全和未来。并表示,国家层面的竞争力将部分体现为一国拥有数据的规模、活性以及解释、运用的能力;国家数字 *** 体现对数据的占有和控制。
数字 *** 将是继边防、海防、空防之后,另一个大国博弈的空间。2012年4月,美国软件公司Splunk于19日在纳斯达克成功上市,成为第一家上市的大数据处理公司。
鉴于美国经济持续低靡、股市持续震荡的大背景,Splunk首日的突出交易表现尤其令人们印象深刻,首日即暴涨了一倍多。Splunk是一家领先的提供大数据监测和分析服务的软件提供商,成立于2003年。
Splunk成功上市促进了资本市场对大数据的关注,同时也促使IT厂商加快大数据布局。2012年7月,联合国在纽约发布了一份关于大数据政务的白皮书,总结了各国 *** 如何利用大数据更好地服务和保护人民。
这份白皮书举例说明在一个数据生态系统中,个人、公共部门和私人部门各自的角色、动机和需求:例如通过对价格关注和更好服务的渴望,个人提供数据和众包信息,并对隐。
进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。
它已经上过《 *** 》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。 数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。
正如《 *** 》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是 *** ,所有领域都将开始这种进程。”
。
大数据时代:最早提出大数据时代到来的是全球知名咨询公司麦肯锡, 大数据在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
大数据提出的背景:进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《 *** 》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。
数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。正如《 *** 》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。
哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是 *** ,所有领域都将开始这种进程。” (6)华微大数据封号扩展阅读 大数据影响 现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。 在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、O2O、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。
有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。
这些数据的规模是如此庞大,以至于不能用G或T来衡量。大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量)。
发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万…… 截止到2012年,数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB) EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。国际数据公司(IDC)的研究结果表明,2008年全球产生的数据量为0.49ZB,2009年的数据量为0.8ZB,2010年增长为1.2ZB,2011年的数量更是高达1.82ZB,相当于全球每人产生200GB以上的数据。
而到2012年为止,人类生产的所有印刷材料的数据量是200PB,全人类历史上说过的所有话的数据量大约是5EB。IBM的研究称,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。
而到了2020年,全世界所产生的数据规模将达到今天的44倍。 每一天,全世界会上传超过5亿张图片,每分钟就有20小时时长的视频被分享。
然而,即使是人们每天创造的全部信息——包括语音通话、电子邮件和信息在内的各种通信,以及上传的全部图片、视频与音乐,其信息量也无法匹及每一天所创造出的关于人们自身的数字信息量。这样的趋势会持续下去。
我们现在还处于所谓“物联网”的最初级阶段,而随着技术成熟,我们的设备、交通工具和迅速发展的“可穿戴”科技将能互相连接与沟通。科技的进步已经使创造、捕捉和管理信息的成本降至2005年的六分之一,而从2005年起,用在硬件、软件、人才及服务之上的商业投资也增长了整整50%,达到了4000亿美元。
大数据的精髓 大数据带给我们的三个颠覆性观念转变:是全部数据,而不是随机采样;是大体方向,而不是精确制导;是相关关系,而不是因果关系。A.不是随机样本,而是全体数据:在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(随机采样,以前我们通常把这看成是理所应当的限制,但高性能的数字技术让我们意识到,这其实是一种人为限制); B.不是精确性,而是混杂性:研究数据如此之多,以至于我们不再热衷于追求精确度;之前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记录,随着规模的扩大,对精确度的痴迷将减弱;拥有了大数据,我们不再需要对一个现象刨根问底,只要掌握了大体的发展方向即可。
适当忽略微观层面上的精确度,会让我们在宏观层面拥有更好的洞察力; C.不是因果关系,而是相关关系:我们不再热衷于找因果关系,寻找因果关系是人类长久以来的习惯,在大。
大数据是一种现代云基础架构,它包含了多种与其他人连接和共享信息的方法。它推动了“物联网”的发展,如通过社交网站连接人、通过共享朋友或网络来寻找人们之间互相认识的可能性。大数据的背后运行着人工智能,而它对于大多数人而言是完全透明的,人们不知道背后有这样的技术。大数据位于人们日常使用的智能手机之后,然后人们通过它给移动互联网贡献信息,即使他们并没有意识到这一点。
为什么大数据如此重要?
第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。
总结
在大数据时代到来的时候,要用大数据的思维去发掘大数据的潜在价值。大数据的意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。从前我们所了解的数据是冷冰冰的、死气沉沉的,被存到冷备份默默地等着人拿出来用,我们对待数据的感觉十分消极,要先想清楚其用处才开始分析应用。现在,数据时代来临了,人们正在试图点燃数据,使其变热,赋予生命。所谓“活数据”,是动态的数据,流通的数据,因互动而产生,因产生而互动,是自然演化的数据,要用大数据的思维去考虑这些数据怎样才能带来效益。未来大数据的发展前景非常好,与大数据相关的职业比如数据挖掘师,数据分析师等必定会有广阔的发展空间。
这个问题是这样的:
首先你要明确你的插入是正常业务需求么?如果是,那么只能接受这样的数据插入量。
其次你说数据库存不下了 那么你可以让你的数据库上限变大 这个你可以在数据库里面设置的 里面有个数据库文件属性 maxsize
最后有个方法可以使用,如果你的历史数据不会对目前业务造成很大影响 可以考虑归档处理 定时将不用的数据移入历史表 或者另外一个数据库。
注意平时对数据库的维护 定期整理索引碎片
❼ 华为 FusionData 发布,大数据痛点消失不见
作者 | 胡巍巍发自北京民生现代美术馆
出品 | CSDN(ID:CSDNnews)
2009年,世界上出现了一种叫做甲型H1N1流感的病毒。由于当时全球尚未研发出对抗这种病毒的疫苗,公共卫生专家能做的只是减慢传播速度。
更可怕的是,人们一般是在感染这种病毒多日后、也就是实在受不了的时候,才会去医院。所以,公共卫生机构在告知公众流感预告时,往往会有一两周的延迟。
有意思的是,在甲型H1N1流感爆发的几周前,谷歌的工程师们在《自然》杂志上发表了一篇论文,文章称,患者在看病前往往会上网搜索,而谷歌通过观察人们的搜索记录,从而可以判断出流感来源地,并且预测得比官方更准确、更及时。而这,就是数据的力量!
而随着5G的到来,数据能做的事儿,远不止于此。
近日,5G牌照的发放,让5G应用开始照进现实。而德国专利数据公司IPlytics的报告显示,截至2019年4月,华为拥有1554族专利,领先于诺基亚、三毕备游星等公司,是拥有5G标准必要专利(5G SEP)数量最多的公司。
进入5G时代后,人类产生的数据必将翻倍,据We Are Social和Hootsuite发布的2019年数字报告显示,全球人口数76.76亿人,其中手机用户51.12亿人,网民43.88亿人,有34.84亿人活跃在社交媒体上。但是,当下的数据解决方案,是否跟上了人类产生数据的速度呢?
据华为Cloud & AI产品与服务总裁侯金龙介绍,目前,很多企业的数字化程度不足,90%的数据没有进入系统,大量的IoT数据缺失,要么就是完整性不足,要么就是各个部门的数据没有打通,这种困境导致了很多数据孤岛。
另据华为全球产业展望(GIV)报告显示,全球数据量将从2018年32.5ZB快速增长到2025年的180ZB。
但企业生产活动产生的数据中只有不到2%被保存,而其中得到分析利用的不足10%,数据价值没有得到充分释放。并且企业普遍存在烟囱式业务系统,导致数据管理、应用效率低。
故此,华为发布了智能数据解决方案FusionData。6月5日,在北京民生现代美术馆,几百人的发布会场座无虚席。
发布会上,华为EBG中国区总裁蔡英华表示:“站在智能时代的入口,在坚持‘被集成’的基础上,华为企业业务通过‘无处不在的联接+数字平台+无所不及的智能’,致力于打造数字世界的底座。其中数字平台整合了包括云、大数据、AI、IoT等在内的各种新ICT技术,向上支持应用快速开发、灵活部署,使能各行业业务敏捷创新;向下通过无处不在的 联接 ,做到云管端协同优化,真正实现物理世界的数字化。”
华为EBG中国区总裁蔡英华提到数字化时表示滚早:“站在智能时代的入口,在坚持‘被集成’的基础上,华为企业业务通过‘手销无处不在的联接+数字平台+无所不及的智能’,致力于打造数字世界的底座。其中数字平台整合了包括云、大数据、AI、IoT等在内的各种新ICT技术,向上支持应用快速开发、灵活部署,使能各行业业务敏捷创新;向下通过无处不在的 联接 ,做到云管端协同优化,真正实现物理世界的数字化。”
华为IT产品线副总裁、智能数据与存储领域总裁周跃峰,在提到数据应用的痛点时也表示:“各行各业在实现数据价值时面临数据接入难、分析难、消费难等挑战,亟待更智能的数据解决方案。华为智能数据解决方案FusionData,包含数据接入、数据处理、数据使能等关键部件,帮助客户打通全域数据连接、建立统一的数据平台、提升实时数据服务能力,拥抱行业数字化。”
周跃峰发布FusionData那么,FusionData究竟可以解决哪些痛点呢?
作为领先的智能数据解决方案,华为FusionData支持智能的数据全生命周期管理,从以下三个层面,重定义数据基础设施:
智能数据连接部件ROMA支持多数据源接入、消息和API的统一管理、智能通道选择等技术实现智能全连接,加速数据流动,让应用与数据连接更高效。
1、多数据源接入:支持1100多种应用和异构数据源接入,通过开放式数据接入框架可灵活接入第三方数据源。
2、消息和API的统一管理:支持分布式消息和API的路由统一配置管理,轻松实现分布式消息和API服务的跨网跨域跨云集成,让数据自由流动。
3、智能通道选择:支持数据多通道传输,并且可根据数据特点智能选择传送通道,大幅提升数据接入效率。
智能数据处理部件包含分布式存储FusionStorage、分布式数据库GaussDB和大数据平台FusionInsight等,通过多类型数据融合存储、融合分析引擎等技术实现从单一处理到智能融合处理,加速实现数据价值。
1、多类型数据融合存储:通过存储与计算分离技术,打破系统烟囱式建设;通过智能分布式存储的多协议融合技术,实现一份数据同时支持数据库、大数据、AI等多种业务的分析需求,让融合数据分析成为可能。
2、融合分析引擎:支持数据库、大数据、AI多引擎融合分析和多样性算力统一调度。通过统一架构,降低海量数据处理难度,实现极简分析。
智能数据使能部件DAYU通过智能元数据感知和OneQuery Turbo 技术构建数据处理与业务创新的桥梁,提升业务体验,让业务更敏捷。
1、智能元数据感知:通过AI技术,自动感知和采集多个系统的元数据,并进行智能化分级分类,生成全局统一的数据视图,数据寻找秒级响应。
2、OneQuery Turbo :提供统一的数据访问接口,实现多数据源、多类型数据的统一访问,简化数据加工流程,数据获取速度提升10倍以上。
传说中,三皇五代时期的大禹治理花了13年时间,治理黄河洪水。老百姓在他的帮助下,过上了筑室而居的生活。
今天,华为FusionData的使命,也是为了让企业不再对数据洪水束手无策,而是让海量数据变成滋养企业不断发展的资源!如果你对华为FusionData很有信心,就在文末点个“再看”吧!
参考资料:
维克托·迈尔-舍恩伯格《大数据时代》第一章
❽ 大数据攻略案例分析及结论
大数据攻略案例分析及结论
我们将迎来一个“大数据时代”。与变化相始终的中国企业,距离这场革命还有多远?而追上领先者又需要多快的步伐?
{研究结论}
■大数据营销的本质是一个影响消费者购物前心理路径的问题,而这在大数据时代前很难做到。
■对于传统企业而言,要打通线上与线下营销,实现新的商业模式,如O2O等,离不开大数据。
■虽然大数据应用往往集中于大数据营销,但对于一些企业,大数据的应用早已超越了营销范畴,全面进入了企业供应链、生产、物流、库存、网站和店内运营等各个环节。
■对于大部分企业,由于数据分析人员与业务人员之间的彼此视角与思考方向不同,大数据分析和运营之间存在脱节情况,这是大数据无法用于企业运营最大的阻力
■对于大多数互联网公司来说,大数据量、大用户量是一个相互促进,强者越强的循环过程。
■对于大型互联网平台,大数据已经成为其生态循环中的血液,对于这些企业,最重要
的不是如何利用大数据改进自身运营,而是利用大数据更好地繁荣平台生态。
■对于平台企业,它们的大数据策略正逐渐从大数据运营,向运营大数据转变,前者和
后者的差别在于,前者只是运营改进的动力,而后者则成为企业实现未来战略的核心资源。
我们都已被反复告知:我们将迎来一个“大数据时代”。
大数据应用,将和云计算、3D打印这些技术变革一样,颠覆既有规则,并成为先行企业的制胜关键。
与变化相始终的中国企业,距离这场革命还有多远?而追上领先者又需要多快的步伐?
来自于互联网、移动互联网、物联网传感器、视频采集系统的数据正海量增长,汇成大数据的海洋,相伴的是海量数据存储、分析技术的突破性发展,所有这一切都给企业的应用带来了无限可能性。
中国企业家研究院对当前中国企业大数据应用的状况进行了归纳分类,以帮助企业了解实际应用大数据时的困局难点,并提供领先企业的典型案例以资借鉴。
表1
表2
大数据运营—企业提升效率的助推力
对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量辩笑亏数据扑面而至。于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。大数据运营应用中,大数据的应用分为三类:用于企业外部营销、用于内部运营,以及用于领导层决策。
一、大数据营销
大数据营销的本质是影响目标消费者购物前的心理路径,它主要应用在三个方面:1、大数据渠道优化,2、精准营销信息推送,3、线上与线下营销的连接。在消费者购物前,通过各种方式,直接介入其信息收集和决策过程。而这种介入,是建立在对于线上与线下海量用户数据分析的基础之上。相比传统狂轰滥炸或等客上门的营销,大数据营销无论在主动性和精准性方面,都有非常大的优势。它是目前主要的大数据应用领域。
大数据营销不仅仅是用大数据找出目标顾客,向其发布促销信息,它还可以做到:
实现渠道优化。根据用户的互联网痕迹进行渠道营销效果优化,就是根据互联网上顾客的行为轨迹来找出哪个营销渠道的顾客来源最多,哪个来源顾客实际购买量最多,是否是目标顾客等等,从而调整营销资源在各个渠道的投放。例如东风日产,它利用对顾客来源的追踪,来改进营销资源在各个网络渠道如门户网站、搜索和微博的投放。
精准营销信息携神推送。精准建立在对海量消费者的行为分析基础之上,消费者网络浏览、搜索行为被网络留下,线下的购买和查看等行为可以被门店的POS机和视频监控记录,再加上他们在购买和注册过程中留下的身份信息,在商家面前,正逐渐呈现出消费者信息的海洋。
一些企业通过收集海量的消费者信息,然后利用大数据建模技术,按消费者属升猛性(如所在地区、性别)和兴趣、购买行为等维度,挖掘目标消费者,然后进行分类,再根据这些,对个体消费者进行营销信息推送。比如孕妇装品牌十月妈咪通过对自己微博上粉丝评论的大数据分析,找出评论有“喜爱”相关关键词的粉丝,然后打上标签,对其进行营销信息推送。京东商城副总经理李曦表示:“用大数据找出不同细分的顾客需求群,然后进行相应的营销,是京东目前在做的事情。”小也化妆品将自身网站作为收集消费者信息的雷达,对不同消费者推荐相应的肌肤解决方案,创始人肖尚略希望在未来,大数据营销能替代网站的作用,真正成为面向顾客的前端。
打通线上线下营销。一些企业将互联网上海量消费者的行为痕迹数据与线下购买数据打通,实现了线上与线下营销的协同。比如东风日产,线上与线下的协同营销方式为:其门户网站带来订单线索,而通过这些线索,服务人员进行电话回访,从而推动顾客在线下交易。在此过程中,东风日产记录了消费者进入、浏览、点击、注册、电话回访和购买各个环节的数据,实现了一个横跨线上线下,以大数据分析为支持的,营销效果不断优化的闭环营销通路。而国双科技,衡量某一地区线下促销活动的效果,就是看互联网上,来自这个地区对于促销内容的搜索量。一些企业,通过鼓励线下顾客使用微信和Wi-Fi等可追踪消费者行为和喜好的设备,来打通线上与线下数据流,银泰百货计划铺设Wi-Fi,鼓励顾客在商场内使用,然后根据Wi-Fi账号,找出这个顾客,再通过与其它大数据挖掘公司合作,以大数据的手段,发掘这个顾客在互联网的历史痕迹,来了解这个顾客的需求类型。
二、大数据用于内部运营
相比大数据营销,大数据在内部运营中的应用更深入,对于企业内部的信息化水平,以及数据采集和分析能力的要求更高。本质上,是将企业外部海量消费者数据与企业内部海量运营数据联系起来,在分析中得到新的洞察,提升运营效率。(详见P96表5:大数据在内部运营中的应用)
表5
三、大数据用于决策
在大数据时代,企业面对众多新的数据源和海量数据,能否基于对这些数据的洞察,进行决策,进而将其变成一项企业竞争优势的来源?同大数据营销和大数据内部运营相比,运用大数据决策难度最高,因为它需要一种依赖数据的思维习惯。
已有少数企业开始尝试。比如国内一些金融机构在推出一个金融产品时,会广泛分析该金融产品的应用情况和效果、目标顾客群数据、各种交易数据和定价数据等,然后决定是否推出某个金融产品。
但是,中国企业家研究院在调研中发现,目前中国企业当中,大数据决策的应用非常之少,许多企业领导者进行决策时,仍习惯于凭借历史经验和直觉。
大数据产品——企业利润滋长的新源泉
大数据除了用于运营外,还能够与企业产品结合,成为企业产品背后竞争力的核心支持或者直接成为产品。提供大数据产品的企业分为两类,直接提供大数据产品的企业,以及将大数据作为产品和服务核心支撑的企业。前者主要为大数据产业链中提供数据服务的参与者,包括数据拥有者、存储企业,挖掘企业、分析企业等,后者则主要是那些以大数据为产品核心支撑的企业,它们大多是互联网企业,其产品和服务先天就有大数据基因,这些企业包括搜索引擎、在线杀毒、互联网广告交易平台以及众多植根于移动互联网之上,为用户提供生活和资讯服务的APP等。
表3
表4
一、大数据作为产品核心支持
它们主要在以下几方面使用大数据:
1、提供信息服务。很多互联网企业通过对海量互联网信息和线下信息的整合和分析,为个人和企业提供信息服务,典型的如网络、去哪儿、一淘、高德地图、春雨医生等等。在美国,一些互联网企业甚至根据大数据提供更深度的预测信息服务,美国科技创新公司farecast,通过分析特定航线机票的价格,帮助消费者预测机票价格走势。
2、分析用户的个性化需求,借此提供个性化产品和服务,或者实现更精准的广告。典型的有移动社交工具陌陌、网络、腾讯、广告交易平台品友互动以及一些互联网游戏商。这种应用往往先是收集海量用户的互联网行为数据,将用户分类,根据不同类型的用户,提供个性化的产品,或者提供个性化的促销信息。比如网易等门户网站推出了订阅模式,让使用者按照个人喜好方便地定制和整合不同来源的信息。
3、增强产品功能。对于很多互联网产品,如杀毒软件、搜索引擎等等,海量数据的处理能够让产品变得更聪明更强大,如果没有大数据,产品的功能就大大减弱。比如奇虎360公司的360杀毒软件,凭借每天海量的杀毒处理,建立了庞大的病毒库,这使它能够更快地发现病毒,而一些小的杀毒软件公司则无法做到这一点。
4、掌控信用状况,提供信贷服务。阿里巴巴上汇集了海量中小企业的日常资金与货品往来,通过对这些往来数据的汇总与分析,阿里巴巴能发现单个企业的资金流与收入情况,分析其信用,找出异常情况与可能发生的欺诈行为,控制信贷风险。
5、实现智能匹配。婚恋网站、交易平台等,利用大数据可以进行精准而高效的配对服务。网易花田会挖掘用户行为数据,比如点击哪些异性的页面,发表什么样的评论,建立用户兴趣模型,从而挖掘到用户所期待另一半的类型,然后主动推荐与对方匹配度比较高的人选。2010年,阿里巴巴尝试性地推出“轻骑兵”服务,由阿里巴巴将中国各产业集群地的供应商与海外买家的个性采购需求进行快速匹配,所凭借的,就是对供应商的海量交易数据信息的整合与挖掘。
二、大数据直接作为产品
对一些企业,大数据直接成为了产品,这些产品包括海量数据、分析、存储与挖掘的服务等,目前大数据产业链正在形成过程中,出现了一批开放、出售、授权大数据和提供大数据分析、挖掘的公司和机构,前者主要是一些拥有海量数据的公司,将数据服务作为新的盈利来源。如大型的互联网平台、民航、电信运营商、一些拥有大数据的政府机构等等,后者主要包括一些能够存储海量数据或者将海量数据与业务场景结合,进行分析和挖掘,或者提供相关产品的公司,如IBM、SAP、拓而思、天睿公司。它们为大数据应用者们提供海量数据存储、数据挖掘、图像视频、智能分析等服务以及相关系统产品。
大数据平台——企业群落繁荣的滋养剂
而网络已建成了包括网络指数、司南、风云榜、数据研究中心和网络统计在内的五大数据体系平台,帮助其营销平台上的企业了解消费者行为、兴趣变化,以及行业发展状况、市场动态和趋势、竞争对手动向等信息。
为解决这些问题,各个平台在积极地努力。比如阿里巴巴建立了数据委员会,在统一数据格式标准、从源头上保证数据的质量,采集和加工出精细化的数据,确保其能符合平台企业的应用场景等方面,不遗余力地尝试。尤其在大数据精细化方面,阿里巴巴更是作为其大数据战略的重点。这方面,腾讯目前也在加快步伐。比如新版腾讯网出现了“一键登录”的提示,用户可以在上面通过一些细分标签,订阅自己关注的内容。实际上,这也是腾讯收集更精细化的用户兴趣数据的一个有效手段。
Tips
大数据实战手册
将大数据应用于内部运营中时,企业会遇到一些常见问题
1企业如何获取与分析数据?
互联网是大数据的一个主要来源,一些线下的传统企业很难获得。但它们可以:
a和拥有或能抓取海量数据的平台、企业以及政府机构合作。比如淘宝上的电商就购买淘宝收集的海量数据中与自身运营相关的部分,用于自身业务。再如卡夫通过与IBM合作,在博客、论坛和讨论版的内容中抓取了47.9万条关于自己产品的讨论信息,通过大数据分析出消费者对卡夫食品的喜爱程度和消费方式。
b建立自己在互联网上的平台,比如朝阳大悦城利用自己的微信、微博等平台收集消费者评论数据。
c许多传统企业没有分析海量数据的能力,此时它们可以和大数据分析和挖掘公司合作,目前市场上已经有天睿公司、IBM、百分点、华胜天成等一批提供大数据分析和挖掘服务的公司,它们是传统企业进行大数据分析可以借助的力量。
2如何避免大数据应用时的部门分割?
对于许多企业,其信息流被各部门彼此分割,数据难以互通,对于这种情况下,大数据的共享和汇集就只是一个泡影,更难以实现大数据的深度应用。
要打通部门之间信息分割的局面,首先要建立统一的、集中的数据系统。就像立白信息与知识总监王永红所说的,“要真正用好大数据,企业要采用大集中的信息系统。”从更深入的角度来谈,企业信息流的部门分割,更在于企业部门之间的分割,比如有一些企业的营销按照渠道分割,导致对于顾客的大数据收集和分析效果大打折扣。
IBM智慧商务技术总监杨旭青认为,“很多时候由于组织结构问题,大数据分析有效性大大降低了。”这就需要组织与流程层面的重新设计,在这方面,阿里巴巴的部门负责人轮岗制度,对于打破部门壁垒无疑是一剂好药。而一些企业为了打破部门分割,建立了矩阵型的组织结构,强化部门间的横向合作,这些无疑为大数据的汇集、共享与应用创造了良好条件。
3如何让业务人员重视大数据的应用?
解决这个问题,一方面在于一把手对整个企业数据文化的倡导,比如1号店董事长于刚就要求业务人员无论在开会,还是汇报工作时,都以数据说话,而马云更是将大数据提升到了战略高度。
另一方面,也在于数据部门的带动,阿里巴巴数据委员会负责人车品觉分享了经验,“因为运营部门的业务人员很难看到大数据的潜力,可以首先从一些对业务见效快,见效显著的数据项目出发,通过一两个项目的成功,调动对方的积极性,然后再逐步一个个地引导。”
4为何大数据工作与运营需求脱节?
这往往是由于数据人员与业务人员视角、专业知识不同而导致的。大数据人员做了很多努力,但是业务人员却认为这些努力无关痛痒。如何解决这个问题?
有的企业从组织设计上发力,将大数据纳入业务分析部门的管理之下,用业务统驭数据。对于朝阳大悦城,由主要负责战略和经营分析的部门来管理大数据工作,其中的大数据分析人员则作为支持人员。在负责人张岩看来,大数据要靠商业法则指导,关键是找到业务需求的点,然后由数据分析和挖掘人员实现。在具体操作中,大悦城对微信的数据挖掘,挖掘什么样的关键词,由业务分析人员确定,而具体挖掘则由数据部门做;有的企业从流程设计上着手,推动业务部门与数据部门人员之间的沟通,建立数据人员工作与效果挂钩的考核机制。
例如阿里巴巴根据数据挖掘的成效(比如带来的商品转化率的提升)来考核数据挖掘师,考核数据分析师则看其分析结果能否出现在经营负责人的报告中。从数据部门自身角度则需要降低运营部门使用数据的障碍和门槛,比如立白集团的数据人员会努力尝试向运营部门提供更易懂、更生动的图形化数据分析界面,在立白老板办公室上,就有一份“客户运营健康体检表”,让老板对全国经销商的当月销售情况一目了然。再如阿里巴巴开发的无线Bi,让经营人员在手机上也可以看到大数据分析结果,拿车品觉的话说,“以数据之氧气包围经营人员。”
❾ 智能安全帽是什么
智能安全帽是由传统的安全帽演化而来的,更准确地说,它是传统安全帽的高科技升级版。传统安全帽仅具备单一的保护人员头搜返部安全的功能,为适应施工现场多样化的需求;
华微智能安全帽是由智能头盔和智能管控中心两大部分组成。采用了物联网、移动互联网、人工智能、大数据和云计算等技术,让前端现场作业更加智能,让后端管理更加高效;同时实现前端现场作业和后端管理的实时联动、信息的同步传输与存储以及数据的采集与分析。前端现场操作人员可以用语音、智能手表或手机操控智能头睁谨盔上的电话、WIFI、热点、录像、拍照、照明灯、人脸识别、红外成像、RFID、人员定位、电压感知、AR成像和安全防护预警等功能,及时将数据和后台对接,实现后端实时监控前端,并将收集的数据进行有效分析,以提高工作和管理效率,降低企业运营成本。
看下能不能适用你企业的业务流程,个人感世早饥觉还是蛮好用的。