A. 大数据分析:零售业谋变新路径
大数据分析:零售业谋变新路径
只有将客户数据转化为洞察,用数据指导营销计划和销售规划的制定,才能把这些冷冰冰的数字转化为客户亲密度,将零售商与客户紧紧绑定在一起。
数据显示,截止到2013年底,中国电子商务市场交易规模达10.2万亿,同比增长29.9%。在电商呈现如火如荼之势时,传统零售业受到挤压,线上线下遭遇截然不同:客流减少、业绩不佳、甚至被迫关闭门店……实体零售业经营陷入困局。面对来自电商的强烈冲击,实体零售商也开始思索如何谋变,进行了一系列新尝试。部分不甘沦为“试衣间”的零售商勇敢试水O2O,打通线上线下渠道。来自更多渠道的数据重塑商业模式的同时,也让零售商看到了其蕴含的商业价值。数据中的丰富客户洞察也推动了“以客户为中心”的业务转型。
大数据时代,亟待突围的零售商该如何在探索中把握先机,SAS公司结合国外零售商最佳实践给出了如下建议:
以客户为中心的数据驱动营销管理,从多种渠道获得成功转型
在技术的帮助下,零售商可以通过社交媒体、移动应用、定位服务和电子邮件等更多渠道与消费者交流。更多沟通桥梁也带来了更为丰富的客户信息,而仅仅获取这些信息是不够的,只有将客户数据转化为洞察,用数据指导营销计划和销售规划的制定,才能把这些冷冰冰的数字转化为客户亲密度,将零售商与客户紧紧绑定在一起。
1.梅西百货:有的话,只想说给你听
美国著名连锁百货公司梅西百货设立电商部门Macy’s.com,希望消费者无论在哪里,都能同步享受最新上市商品和促销活动,寻找购物魔力。Macy’s.com设立了互联网客户洞察部门,利用大数据分析改进个性化营销、广告策略等方面,迅猛发展在线渠道营销,从传统的线下经营成功转型为全渠道经营模式。面对激烈的竞争,Macy’s.com亟需关于客户偏好的更精准实时决策。梅西百货认为,获取跨越全渠道的客户洞察是提高顾客满意率和营收增长的关键。为了更高效地了解和评估在线营销活动对实体店销售额的影响,Macy’s.com采用SAS解决方案大大加强分析实力,自此改变了群发通用型电子邮件的低效营销方式,对客户进行更精细的分类,针对性地发送促销邮件。出乎意料的是,邮件发送频率的降低并没有减少网站访问量,邮件退订率反而减少了20%。
2.Harry & David:尝尝分析的甜头吧
在经历了经济衰退带来的业绩下滑之后,美国美食和礼物零售商领军Harry & David利用分析技术判断谁是目标客户,目标客户希望以何种方式以及何时接收促销信息以及哪类人群最有可能驱动销售额增长,从数据中理清未来发展的思路。在开始的几个月里,营销团队在获取顾客行为和偏好方面取得进展。一年内,在客户细分、客户生命周期和并发价值分析上更进一步。三年之内,Harry & David新的客户维系率上升了14%,顾客带来的销售额也增长了7个百分点,高质量忠诚客户增加了10%。使用SAS? Campaign Management之后,Harry & David获取了更多有价值的客户洞察,例如:通过导入外部数据和分析历史交易行为,他们得出了由社交网络渠道吸引而来的客户更值得进一步培养这一结论。客户档案建模和管理也为销售情况预测提供了可靠依据。由此,Harry & David尝到了数据分析的甜头,走上了数据驱动型的营销道路。
3.Chico’s:告别猜测,和直觉说再见
成衣女装零售商Chico’s FAS Inc.在全美境内拥有超过1000家门店。除了实体店外,Chico’s还通过商品目录和在线渠道开展营销活动。在面临行业衰退时,Chico’s决定好好利用多年积攒下来的客户信息,并由此驱动商业决策。但是,现实远比想象艰难,来自于Chico’s 旗下的多个品牌数据难以整合,且公司并不具备海量数据处理能力。相较于真实可靠的客户数据,营销人员更多倚赖的是直觉。Chico’s需要一个为管理和整合海量数据提供可靠追踪记录的系统,并希望业务人员在没有数据工作人员和程序员的情况下也能使用数据。Chico’s选择了随需应变解决方案:营销自动化(SAS? OnDemand:Marketing Automation)。这是一个包含了一整套预测分析和数据挖掘工具、允许营销人员计划、测试和执行任意规模营销活动的企业级解决方案。
该解决方案帮助Chico’s策划节假日促销活动。数据显示,在使用该解决方案后,Chico’s季度利润达到1700万美元,而在上一年同一季度中,Chico’s亏损了4200万美元。在营销自动化解决方案的帮助下,Chico’s将客户进行精细分类,并区别不同推广活动达到的效果。Chico’s将目标群体划分为三类,并采取相应行动:第一类顾客为希望第一时间购买新品的消费者。这类顾客能收到包括所有尺寸和价位商品、并标注出新品的商品目录和邮件。第二类顾客是热衷于折扣商品的顾客,Chico’s向这类顾客邮寄针对性更强的更薄的商品目录和促销传单。第三类为网站用户,Chico’s向线上客户推送符合其消费偏好的电子邮件。
一旦发现销售不佳的商品,Chico’s即可迅速调整促销策略。Chico’s挽回了更多的流失客户,成功率是此前的三倍。通过大数据分析,Chico’s从过往交易记录中鉴别更受欢迎的商品,并选择相应的促销手段。作为一家拥有多个品牌的零售商,通过判断消费者喜好,如今Chico’s能够通过策划促销活动引导某一品牌忠实顾客也能会光临旗下另一品牌,带来了更多潜在销售机遇。过去需要30天才能出炉的营销计划现在只需4天就能策划完成。团队也拥有了更快创造精准营销活动的能力。
通过大数据分析,零售商可以用过往交易记录指导营销活动,创造切实符合客户所需的深入人心的营销活动,用个性化的消费体验建立更紧密的客户关系,最终促进营收增长。
洞察中的精准预测,指导策略规划
从总结过去和观察现在中预测未来,是大数据的另一魔力。这也启发了零售商从一开始的供应环节就在大数据的指导下进行精准且具有可行性的需求预测,由此优化客户的购买体验。
DSW:7码还是9码,我知道!
不同于成衣的尺码灵活性,消费者在购买鞋类时必须选择合脚的尺码,这对鞋类零售商的供应体系提出了更高要求。美国鞋业零售巨头DSW利用SAS解决方案整合采购和供货系统。有了SAS解决方案的合理分配逻辑,DSW对于尺码供应有了更精准的判断。这让“按店铺所需分配尺码(size by store)”模型开发成为可能。从前,DSW实行统一标准供货,12箱包含各个尺码鞋子的包裹被寄送到各个门店。事实上,有的门店仅仅需要7码和8码的鞋子,而它们依然会收到6码和9码的货品。数据分析能够计算出在减少促销活动并且无缺货情况下每个地区所需的特定鞋码和款式货品数量和订单补给量,确保门店内供应充足的正确尺码货品,并能实现及时补货。门店运作更为高效,顾客更少等待,满意度也大幅上升。
减少IT开支,增加系统灵活性,高性能分析技术创造更高价值
大数据的蓬勃发展催生了具有高度灵活性的技术,例如可视化分析、高性能分析和云端应用等。得益于随需应变的高度灵活的技术,零售商大大减少了IT运营的开支,并从更高级的分析中获取了更有价值的洞察。
SM-MCI:“亚洲百货之王”的分析利器
“亚洲百货之王”SM集团旗下的SM Marketing Convergence Inc.(SM-MCI)运作着全菲律宾最大的客户忠诚度计划。这一计划中记录了每一名顾客在SM集团旗下购物中心消费中所获积分的情况,存储了超过十亿次的消费记录,却并未得到有效利用。SM-MCI需要一种可以促进销售,改善运营,同时也能增进顾客忠诚度的解决方案。最终,SM-MCI选择了融合内存分析技术和商业智能高级数据可视化的SAS可视化分析(SAS? Visual Analytics)解决方案。它不仅拥有无与伦比的统计计算能力和速度,还能通过直观的方式展示分析结果。在新变量添加时也不会产生多余的数据规划和提取转化加载流程。从更加深度的报告中,SM-MCI能够更加深入地了解消费模式,并鉴别趋势,以此来及时策划促销活动,传递更优质服务,提升顾客满意度,吸引新会员加入,发现有利可图的追加销售机会。
在发达国家,电子商务的崛起早已证明其对实体零售业的强烈冲击,而国外零售商们在对抗冲击中也累积了更多经验。这些实践经验带给近年来饱受电商威胁的中国实体零售商更多思考:云服务、数据可视化和Hadoop等新兴技术在零售业落地应用并发展迅猛,为行业注入了活力。
以上是小编为大家分享的关于大数据分析:零售业谋变新路径的相关内容,更多信息可以关注环球青藤分享更多干货
B. 便利店行业如何通过线下大数据实现快速精准拓店
烧烤摊、麻辣烫、大排档被定义为中国版的深夜食堂,然而随着写字楼的灯火蔓延,便利店也成为了年轻人的深夜栖息地。有别于传统杂货铺,90年代传入中国的现代便利店呈现规模化和统一管理,行业规模发展迅猛,2019年中国便利店行业实现销售额2556亿元。
随着行业规模的高速发展,一线城市消费市场开始饱和,外资连锁便利店也开始走向下沉市场,二三线城市的便利店竞争将会日渐激烈。大数据时代如何利用数据及人工智能赋能于线下品牌连锁将是实体零售从业者面临的难题之一,本文将从便利店现状及大数据如何赋能的角度,为从业者们提供思考方向。
便利店诞生于美国,因其小型化、高毛利、便利性、精简SKU等特性,逐渐成为一种新的零售业态。90年代中期,便利店概念开始进入中国。2019年中国便利店门店总数达到13.2万家,较上年增加了1万余家。
从单个便利店企业扩张表现来看,石油系便利店(易捷、昆仑好客)在门店扩张上表现抢眼,其次是本土品牌美宜佳和天福,外资便利店则主要分布与一二线城市。
但观察近年来外资便利店在中国的城市版图布局:从去年底开始,7-ELEVEn先后在福州、长沙、西安、合肥开设首店,另一家日资便利店罗森行动更为迅速,已于去年在长沙、沈阳、泰州等城市先后开出首店。
对于全国商业格局而言,此次外资便利店的布局,被认为是近年来“市场下沉”的又一个印证,同时也意味着下沉市场连锁便利店的竞争更加激烈。
随着 科技 和城市的发展,一线城市的消费市场逐渐饱和,而在二三线城市,连锁品牌便利店存在着拓店难、无法融入当地市场的问题。
传统夫妻店投入资本小、受地理位置限制小,经营的可控性比较强,且选址往往在居住地附近。而对于连锁便利店来说,店铺选址除了需要考虑周边的消费市场,更要考虑采购与进货问题(小街小巷无法统一配货,增大成本)、客群画像等。
这时候,传统的选址方法是通过人工到线下多个目标位置点进行观察测算,人力和时间成本非常高,且客群画像无法精准。试想一下如何能够短时间内通过一个人的外表确定其消费能力呢?
但在大数据时代,这些信息都可以高速便捷获取。
数位是国内最早一批涉足线下大数据智能应用的大数据 科技 公司,深耕线下人场大数据5年,能够实时洞察人和场的智能动态数据,高效为企业提供用户分析、客群画像和周边客流。数位对线下零售(如连锁便利店)有三大价值:
1 快速拓店选址: 数位拥有全维度动态的人场大数据,自有海量数据标签,覆盖200+城市,8000万POI库,能够为企业提供批量化的线下人场数据,利于连锁品牌的规模化拓展。
当品牌进入一个新城市,能够快速判断城市不同区域位置信息,帮助品牌根据自己的定位(如社区型/商圈型等)快速有效占领消费市场,并运用人工智能算法对周边客群、人流方向进行洞察分析,从而利于品牌在商品定位上更趋近于消费者心理。
2 老店数据实时监控: 对于品牌连锁店来说,许多经营多年的老店面临着周围市政或消费环境的变动,如新商场建立、老建筑拆迁等。
当老店营业额产生波动时,传统检验方式是线下踩点考证,但客流的变动易观察,客群画像的变动却无法短时间进行判别。数位大数据则能够第一时间反馈老店周边市场与客群画像的变动,及时做出经营方向和商品选择上的调整。
3 竞对商铺比较: 入驻前,同一片区域内原有的竞对商铺的数量及客流画像能够给品牌带来极高参考价值;开店后,区域内出现新的竞对商铺也是影响店铺营业额的重要原因。数位线下大数据能够帮助品牌实时观察周边竞对环境,分析优劣势,及时做出经营上的调整;
4 经营模型沉淀: 为什么同样开在市中心的两家店营业额却大相径庭?开在医院对面与开在学校对面哪一家营业额更佳?如何根据人群移动规律调整商品陈列?这些传统人力难以系统统计的数据,利用大数据可以快速帮助门店沉淀一套方法论,形成品牌自有的经营模型,对品牌进一步布局和拓店有重大参考价值,有效节省新店拓店成本。
品牌便利店"下沉"二三线城市,是城市发展的必然,也极有可能是一次再定义当地消费趋势的机会。在这样的前提下,品牌占领市场的时间显得尤为宝贵。
零售行业已从“货——场——人”转变为大数据时代的“人——货——场”,提前洞察客流及客群信息,加上当地场景数据,最后再结合品牌本身特性才能够快速打入当地消费市场,抢占消费份额。
连锁品牌入驻新城市时投入成本高,传统的选址方式已不足以支撑品牌的快速拓展,批量化的人场大数据才是现代品牌快速拓展版图的“秘密武器”。数位基于5年高精度技术的沉淀,拥有全国最大的识别数据库,在品牌选址、客群洞察及市场营销中,都能够为连锁品牌带来强有力的决策支持。
C. 什么是大数据精准营销平台该平台对零售行业影响与意义
什么是大数据精准营销平台?该平台对零售行业影响与意义?下面就我们来针对这个问题进行一番探讨,希望这些内容能够帮到有需要的朋友们。
总体来说,大数据可以协助公司开展营销战略的调节和提升,还能协助知名品牌扩展新的顾客和新的销售市场等,而营销云系统软件,不但能协助传统式公司进行智能化的转型发展,还能为公司给予强劲的技术性和信息适用,提升出更合乎品牌调性和客户个性化的营销战略。
D. 零售行业的大数据分析该怎么去做有案例之类的可以参考吗
零售行业对接大数据也是个不错的选择,下面我简述下我的看法:
1,通过门店客流监控,制定营销推广方案,辅助运营决策。
2、利用大数据的优势调研顾客特征,帮助深刻认知、理解和找到目标消费者群体。
3、发挥大数据的优势,监测地域人流量从而进行选址决策
4、分析客群画像,全面掌握客群属性及兴趣、品牌关注。
5、以定制化精准营销服务形式,通过大数据海量渠道资源进行规模化曝光。
6、通过对会员、到店顾客以及商圈与全网潜在客群的行为意图、兴趣偏好等动态数据深度分析,进行精准营销。
希望我的回答能帮助你,若还要不清楚的地方可向我提问。
E. 零售业拥抱大数据:用数据读懂消费者
零售业拥抱大数据:用数据读懂消费者
在过去一年,"大数据"的概念持续加温,热度已经覆盖除互联网以外的各个行业。关于大数据的概念已经无需再多说,大数据不仅仅是“看起来很美”,如何有效运用大数据创造商机,让大数据更好的发挥其自身的价值,为企业带来更多的效益,成为了各个企业亟待解决的问题。
大数据的起源要归功于互联网与电子商务,但大数据最大的应用前景却在传统产业。一是因为几乎所有传统产业都在互联网化,二是因为传统产业仍然占据了国家GDP的绝大部分份额。
具体来讲,中国最需要大数据服务的行业就是受互联网冲击最大的产业,首先是线下零售业,其次是金融业。受电商的冲击,国内很多零售巨头都增长严重放缓,甚至遭遇负增长,线下零售已经到了不得不变革的危机关头。我们看到银泰百货、王府井百货、万达集团这些具有创新意识的传统巨头开始利用互联网和大数据来改造线下商业。坐拥成百上千门店的传统零售企业,该如何面对迅速兴起的互联网战场?拥有海量会员信息和购买记录的传统零售企业,在逐渐变革的消费市场中如何利用数据优势迅速抢占市场?
在所有的零售渠道中,实体店占据着绝大多数的市场份额,但是线上渠道的吸引力在迅速增强,并且以中国消费者尤为突出。随着线上线下购物逐步融为一体,生存和成功将取决于零售商通过各种渠道接触到消费者的能力,更重要的是其为消费者提供多渠道的无缝连接购物体验的能力。如今掌握主动权的消费者希望能同时享受线上线下两种渠道的优点,并将会到那些能够提供优异的多渠道购物体验的零售商那里购物。
如何建立一个线上线下无缝连接的品牌和购物体验方便消费者的选择,从而赢得顾客的忠诚度和持久的客户关系?这些曾经棘手的问题,如今都迎刃而解。国内大数据技术服务商百分点推出的大数据管理平台(BigDataManagement,以下简称“BDM”)通过整合第一、二、三方的用户数据,对数据进行清洗、加工和建模,为企业的战略、运营、管理、市场、营销等提供各种数据产品和应用。传统零售业拥有海量数据。每天,每笔交易、每个订单、每次促销、都会产生无数的数据。一个值得关注的现状是,目前大部分的企业还没有将这个数据利用起来。这些数据的整合和解读将是企业无形的资产,并成为企业最大的优势,帮助传统零售企业在瞬息万变的互联网市场迅速抢占一席之地。
那么,零售商们应该如何将大数据运用到商业活动中呢?来看看百分点是如何描绘的。
A用户是一位标准的摄影发烧友,我们知道他最常浏览的网站就是“摄影爱好者论坛”。某天当A用户打开一个网站准备浏览今天的新闻,却被相机厂商发布在网站首页的广告迅速的吸引。A用户发现正是他关注的“新款镜头”,于是A用户决定去实体店看看。是的,百分点BDM通过A用户的浏览习惯等知道他是个理智型消费者”。
当A用户来到实体店时,一场数字化旅程即将开始。作为某商城的会员,A用户用商城会员卡买了咖啡,发现购物小票上显示“会员今日购买数码类产品享受9.0折优惠。登陆该商城免费的Wi-Fi时,A用户又收到商城推送的个性化推荐信息“最新款镜头,今日购买可低价换购相机包”。最终,A用户以优惠的价格买下了心仪已久的“最新款镜头”,并得到了“x商城”低价换购的“相机包”。
在上面的故事中,“摄影爱好者论坛”、“相机厂商”、“网站”、“商城”都是百分点大数据家族的一员。百分点BDM收集社交媒体、论坛和第三方的海量数据,并加以分析整合,宏观用户画像显示“85%的消费者在购买单反之后的两年内会购买镜头。”
以上只是百分点BDM对用户分群、画像,并将这些信息利用到商业活动中的举例。事实上,98%的中国消费者希望零售商能够利用他们掌握的信息提供个性化的促销和建议。在这个领域中,百分点关注两方面的内容,一是将线上线下数据的打通,为用户提供一致的购物体验;二是将电商的经验运用到传统卖场,为他们提供新的营销手段。
百分点BMD通过对海量数据的整合和解读更好地了解和预测消费者行为,掌握消费者偏好和需求甚至终生客户价值,以便把握住全新的促销机会,为他们提供更多个性化的产品和服务。通过融合多方数据,零售商为消费者提供创新的购物体验,促进消费者的品牌忠诚度和重复购买,进一步实现零售商的利润和市场份额的增长。
作为大数据服务商百分点一直致力于大数据的技术的研发和应用。百分点利用大数据分析技术为用户画像,以及利用用户画像来帮助企业实现个性化服务。在任何一门生意中,能够读懂用户并分析用户数据来预见未来都是行之有效的,这也是未来商业创新发展的必由之路。
以上是小编为大家分享的关于零售业拥抱大数据:用数据读懂消费者的相关内容,更多信息可以关注环球青藤分享更多干货
F. 零售企业如何面对“大数据时代”
零售企业如何面对“大数据时代”
当“物联网”、“云计算”我们都还没有理解清晰时,又出来了一个新名词——“大数据”,这些IT名词仅仅是概念,还是与我们所处的商业环境有直接关系?笔者认为,大多数的零售从业者都不能清晰地回应。
首先我们需要明白,商业行为的本质是什么?就是企业发现和挖掘客户需求,并提供有价值的服务以满足客户需求。最佳的商业行为就是企业通过提供不同形式的服务超越客户的需求,让客户的物超所值的感觉持续下去;这样的商业行为将能够获得更高且持续的利润。
“物联网”、“云计算”或“大数据”都是帮助我们发现和挖掘客户需求,提供快速和准确的市场数据以便客户及时决策的工具。相对传统的工具,它们更高效率、更低成本、更准确。笔者认为作为商业信息领域的从业人员,可以不需要过多地了解其内在核心技术及方式,但它们能够给零售用户和行业带来哪些变革或趋势是我们不能忽视的。
2008年马云成功地预测了经济危机,并帮助成千上万的小制造商准备了过冬的粮食。此举让马云在业内赢得崇高荣誉的同时,更为阿里巴巴带来持续的客户。马云如何做到这些事情的呢?是“大数据”给了他启示。马云对未来的预测是建立在对用户行为分析的基础上。一般而言,买家在采购商品前,会比较多家供应商的商品。此举反应到阿里巴巴的统计数据中,就是查询点击的数量和购买点击的数量相对会保持一个数值,综合各个纬度的数据能够建立用户的行为模型。因为淘宝网用户样本量巨大,从而保证了用户行为模型的准确性。“大数据”为阿里巴巴清晰地预测了用户需求和市场变化。
什么是大数据
相信马云的案例已经给我们一些启示了。
那么什么是“大数据”呢?谈到大数据,离不开物联网和云计算的关系。物联网、云计算和大数据实际上是不可分割的三大技术,不可孤立而言;物联网的快速发展为大数据提供了广泛的数据来源,云计算为大数据的诞生创造了基础环境,脱离物联网和云计算的层面,就没有大数据存在的巨大价值。
从数据的角度来看,物联网仅仅是数据的来源或者承载的方式,我们可以简单地认为是收集信息和数据的一种更加简单和有效的终端方式。
云计算是一种新的IT业务模式,这种模式的特点在于提供极低的成本、极快速的交付手段、极简单的使用方式,并且让各个关联的系统协同变得异常简单和轻松。云计算的蓬勃发展,客观上开启了大数据时代的大门,如果用高速公路来形容比喻云计算,那么大数据就是所有汽车中的货物。云计算为大数据提供了存储空间、访问渠道及运算能力。大数据是云计算的灵魂。
大数据技术简单来讲就是从各种类型的数据中,快速获取有价值信息的能力;在互联网时代,我们的数据已经不单单是传统的结构化数据了,非结构化数据、半结构化数据开始占据了我们数据的大部分内容,我们从中找到有价值的信息,已经变得不是那么容易。大数据技术的发展开始让这些问题的解决变得简单。
大家可以清晰看出,我们提及的智慧商业脱离了大数据是不可能实现的,大家熟悉的商业智能离开了大数据就是一个忽悠人概念了。
大数据具备四大特征:第一,数据量巨大,从TB跃升到PB级别;第二,数据类型丰富,包含日志、视频、音频、图片、地理信息、文档等等;第三,数据价值密度低,以视频数据为例,一个超过一小时的视频,可能有价值的信息不到三秒;第四,数据处理速度快,要达到秒极,需要能够实时获取有价值的数据。
这些还都是大数据的概念和特征,回归到我们实际的商业行为中,大数据能够为我们带来什么益处?
以往我们进行商业判断时,大多靠我们的经验和直觉,所以会出现不是很确定的判断或者走一步看一步的探路式情况发生。大数据时代很多企业的正确决策是依靠数据分析得出,从而为企业带来巨大的运营效益。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。在零售业中,数据分析的技术与手段更是得到广泛的应用,传统企业如沃尔玛通过数据挖掘重塑并优化供应链,新崛起的电商如卓越亚马逊、淘宝等则通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。
各类企业如何应对大数据时代发展
我们怎样来面对大数据时代?笔者认为可以分为几步来考虑。
首先企业的领导者要重视大数据的发展、重视企业的数据中心,把收集客户数据做为企业运行第一目标;第二,对企业内部人员进行培训及建立收集数据的机制;第三,以业务需求为准则,确定哪些数据是需要收集;第四,确认在企业已有的数据基础上或者未来方向前提下,如何达成前三项目标的基础建设方案。
看完这些,很多人会认为,这些IT基础工作需要巨大的投入和庞大的信息化团队,做为中国商业最大的一份子——中小微型零售企业不可能或没有足够的能力来面对这样一场变化。
大中型企业因为本身业务及利润的积淀,已经能够承担这样一场需求趋势的需要成本。中小微型企业还处于快速发展过程中,如果也如同大中型企业进行全方面投入,将很快会被新型的IT工具拖垮或者遭受重创。幸运的是IT的发展为所有的企业都提供了平等的选择,云计算的广泛应用即是对这样一场变革带来的临时礼物。做为中小微型零售企业,完全不必考虑自己建设一套IT系统,他们从精力、成本、能力上来说都不适合,因此此类企业可以将企业的IT建设外包给适合的服务商,企业本身的所有精力投入到客户的开发上。
亚马逊在全球率先推出了云服务的基础平台,为中小微型商业企业提供了大型企业和超大型企业同样的基础环境及系统架构,小企业只需清晰规划自己的目标和适合的步骤后,使用云平台按需付费即可,大可不必进行巨大的初始投入及不可预测的运行成本。目前国内已经出现一批在为国内中小微型零售企业提供类似服务的信息服务商,比如基于客户关系管理的“XTOOLS”,基于客户服务的“迅鸟”云呼叫平台,基于连锁店面管理的“甩手掌柜”等等。至于各中小微型企业怎么选择适合自己的发展平台,则需要依靠该企业领导者本人的智慧。
以上是小编为大家分享的关于零售企业如何面对“大数据时代”的相关内容,更多信息可以关注环球青藤分享更多干货
G. 传统零售业运用大数据思维的四大要点
传统零售业运用大数据思维的四大要点
大数据不是一天冒出来的,不管是统计学还是模糊数学,做生意的人对概率是有心中有数的——什么时间什么地点投什么样的广告差不多带来多少收益他们明明白白清清楚楚的,他们更厉害的人,通过营造环境氛围及训练员工专业度热情度来提高成交的概率,有的特厉害的,只要进来人,就不会让人空手走出去。那为什么这么厉害在大数据面前就败得一塌糊涂了呢?我们先不揣测终端零售商对概率背后的“规律”进行分析的不够,只逻辑倒推一下,想清楚几个问题:
1、消费者从哪来的?
是自然流量?
是借助大商场大商超?
商超是怎么聚人气的?
选择什么样的地点才是科学的?
和您做同一品类商品的,哪家比您好?人家是怎么吸引消费者的?
2、每日销售数据是记账用的,还是反馈到设计及生产部门?
各个商品品类数据细化到什么程度?有没有分析?
从数据是否能看出单店和全国各店所有单品排行情况?
根据排行情况,区域销售走势,如果放到全年里是什么情况?如果放到若干年里,有什么规律,波浪线的趋势是什么样的?
3、产品是厂家生产的,是消费者需求拉动生产的,还是厂家设计人员创造了需求?
您是掌控了设计和终端渠道,还是只是销售终端的售卖机器?还是从批发或是代理那拿货?
您的企业移动互联上展示的是什么内容?是否引导挖掘消费者潜在的需求,从而设计开发系列主题产品,在批量生产的情况下满足消费者的个性化需求?
在灵活反应上,您的新品从设计到生产再到消费者手中时间是一周是半个月?
如何让所有商品在工业信息化时代都实现“前店后厂”那样新鲜?
4、利益分配上是共享还是垄断?
每售卖出一个单品,设计者、生产线上工人、终端消费员,厂家、代理商是否利益都挂钩了?
不管是线上推广线下体现后然后在线上购买,还是直接线上购买,还是线下传统售卖,线上线下数据同步的同时,如何各方利益照顾得到且起到竞争作用?
总之,解决了上述问题,传统零售业的冬天也有梅花怒放燃烧的迎春红!
以上是小编为大家分享的关于传统零售业运用大数据思维的四大要点的相关内容,更多信息可以关注环球青藤分享更多干货
H. 实体店翻身的机会来了,牢记这4个核心,抓住新零售趋势
纯电商和纯实体店都将消失,未来零售业想要发展,就要打通线上线下,依托互联网、云计算及大数据,搭建新零售模式。
当新零售的时代来临,未来将会产生4大商机,实体店是最大的受益者!
1
近两年实体店大量倒闭,主要是由于人们的消费结构变了。
尤其是智能手机普及以后,人们大量的时间都停留在线上。
因此人们会选择通过线上的电商、社交媒体场景去消费。
在生活中经常会有这样的一种现象,就是无论购买任何商品,会先到实体店去试款,然后在扫码识别到线上消费。
那么当人们的消费结构改变了,实体店想要生存,同样也要转变经营思维。
也就是说,要顺应市场的需求,就要弱化实体店的卖货功能,把实体门店作为体验场景。
比如我们是做服装行业的,可以在商业综合体内开始体验店,消费者可以到实体店去体验。
当消费者在线下试穿满意后,可以选择到在线下交易,也能扫码到线上下单。
这样消费者可以同时选择多家店的服装,收藏到购物车,然后回家对比后搭仔然后在下单。
2
未来的实体店想要打造上述的购物场景,必须要打造一套属于自营式商城。
可以通过线下作为体验店和流量入口,把线下的客户导入线上。
这样就能够与用户保持实时连接,通过公众号为用户推荐软文及营销内容,驱动二次消费。
同时在公众号的基础上,可以搭建一套小程序系统,作为线上的商品载体。
后续消费者可以通过公众号看内容,在小程序商城下单,最终可以提升用户的价值。
在自营式商城的基础上,实体店就可以实现内容营销、私域直播、搭建会员管理系统,获取用户的画像和数据。
3
对于拥有200家以上连锁店或者直营店实体商家而言,除了可以借助私域场景打造自营式商城,也能够借助短视频打造公域小店。
连锁企业可以以城市为单位,打造短视频同城号矩阵。最终的目的是借助短视频做内容营销,吸引大量本地粉丝。
如一个省会城市,开了20家下线化妆品店,可以通过短视频,把同城的客户引流到线下消费。
但想要实现这个目标,就要通过短视频内容为消费者提供产品以外的附加值。
同时在发布内容的时候,要通过门店和优惠券的功能,提升客户的消费频次。
也就是说,同城的消费者在看内容的时候,可以通过视频了解产品卖点,有消费意向的可以领取优惠券到下线核销,或者到线上小店购物。
当通过公域流量吸引大量客户,就能够提升实体店的客流量,就可以把弱关系的客户导入私域商城,变成私域流量和会员,提升复购率。
有人可能会问,可以通过线上引流,也可以在线上小店消费,那么要实体店的作用是什么呢?
其实,实体店不仅可以做体验,也能够作为信任背书,作为聚会的场所。
以同城短视频+线上小店为例,客户知道我们有线下店的,消费的答枝消时候就会更放心。
而且,当我们积累大量的私域流量和会员后,也可以把实体店作为聚会的场所,定期可以举办会员活动,与用户建立强关系。
4
在新零售时代,实体店想要提升客流量和整体业绩,也可以运用共享经济的思维,在自营式商城的基础上,打造依托社交裂变机制,让所有的用户参与传播推广。
如只要是我们的会员用户,在看完营销软文、干货内容后,只要分享到社交空间,就可以获取积分。
积分可以在商城兑换商品,也能够抵用现金。相当于我们可以借助会员去裂变会员,增加整体的客流量和业绩。
同理,会员也可以申请成为自营式商城的虚拟店主,只要分享店铺或者商品链接,带来新客、产生交易清知就可以获得奖励及分润。
在新零售的基础上,借助社交裂变,打造社交新零售模式,最适合的就是大的连锁企业。
相当于把每个用户都作为了一个店主,依托用户的社交空间作为经营空间,利用用户的碎片时间增加经营时间,最终提升整体的业绩。
不过想要实现这个目标,除了把实体店作为体验场景,也可以作为招商的渠道,通过线下门店做交流会、做赋能、培养更多的店主。
I. 传统零售企业在互联网+背景下如何拥抱大数据
传统零售企业在互联网背景下拥抱段山誉大唯晌数据的方法为:
1、理解关心消费者的需求,做好品牌规划。
2、需要握段线上线下结合,内部基于大数据做营销,外部与流量方合作。
J. 新零售时代,大数据智能如何运用到销售业务
首先,声明一个观点,“不管是哪个时代,只要企业还是要创造客户价值,还需要人与人之间的沟通,销售就不会消亡”,借一句名言,“销售永远不死,只是需要不断修行”。说几点理由,
1)新零售时代,客户体验最重要。“无人便利店”等替代的不是销售员,而是只会做简腔核基单工作(如收款,野蛮推销)的店员。其实能与客户进行感情沟通,对商品和服伍谨务具备专业知识等,恰恰是各小区门口便利店的关键需求。好的体验离不开有“温度”的人,这点从星巴克,7/11等都有体现。
2)2C生意,很多人认为产品最重要,产品经理大行其道。但目前还没有一款“伟大产品”是埋头开发,一出来就大行天下的。产品需要收集客户需求(不是只做客户需求),需要让用户知道,需要用户使用转换,即使一切都通过线上完成,也要有“连接”把产品与用户连起来。大家都了解,最有效的连接是人,是人与人之间的关系,最有效的传播是建立在信任度连接之上的传播。网红就是一种变型过的销售,只不过从技能上多了一些社交,内容媒体等要求。以后的生意模式也许会流行S2B2C。S是大的品牌商,保证产品质量,提高效率,降低价格;B是一些由专业“达人”构成的小B,通过便利店,工作室,小众社群等手段运营用户,把S的商品或服务专业化,高体验地传递给C端用户,本质上是承接了S端的很多销售任务。(OPPO,vivo遍布在各零售终端导购员就是一种雏形)
3)流量越来越贵,大家会逐渐把运营重点从引流拉新转移到维护好老客户,销售既要做好产品销售转换,也需要能解决用户问题,维护氏兆好老客户,对其综合能力要求越来越高,以后的分工不会把岗位按用户不同阶段划分的那么细(以前分市场,销售,售后服务等,其实更多考虑的工业时代的企业内部效益,对最终用户的体验反而是不一致的,会有损害),而是把用户分群,由一个销售组织来完成用户全生命周期的运营。这对组织管理,绩效考核,任务协同等都提出了新要求。
4)新技术应用到销售管理中,不仅仅是为了规范流程,提高效率等作用,也会在增强体验,改善情感交流等方面有很大空间。游戏化销售技能培训和过程管理,智能匹配等大数据算法都是很好的一些尝试。