1. 运营商的大数据问题出在哪
问题如下:
1、运营数据不统一,难以发挥整体性的作用。
2、数据分级管理平台分隔的情况下,大数据应用时依然很难整体操作。在解决一些全局性问题的时候就无能为力。
3、场景不够,缺乏突破点,不知道大数据应用到何方,对商业社会的各个方面了解缺乏,手中有数据也不知道应该用到什么地方。
2. 你要的大数据标准都在这里
NIST 1500-4 大数据通用框架草案 第四卷 安全与隐私.pdf
NIST 大数据定义(草案).pdf
大数据安全标准化白皮书2017 .pdf
大数据安全标准化白皮书(2018版).pdf
大数据标准化白皮书(2018).pdf
大数据标准化白皮书(2020版).pdf
1 基础
GB T 35295-2017 信息技术 大数据 术语.pdf
GB T 35589-2017 信息技术 大数据 技术参考模型》.pdf
GB T 38672-2020 信息技术 大数据 接口基本要求.txt
JRT 0236—2021《金融大数据 术语》.pdf.pdf
TGZBD 2-2020 大数据标准体系总体架构.pdf
2 数据
GBT 18142-2017 信息技术 数据元素值表示 格式记法 ISOIE C FDIS 149572009.txt
GBT 18391.1-2009 信息技术 元数据注册系统 (MDR) 第1部分: 框架 ISOIEC11179-1 2004, IDT.txt
GBT 18391.2-2009 信息技术 元数据注册系统 (MDR) 第2部分: 分类 ISOIEC11179-2 2005, IDT.txt
GBT 18391.3-2009 信息技术 元数据注册系统 (MDR) 第3部分: 注册系统 元模型与基本属性 ISOIEC11179-3 2003, IDT.txt
GBT 18391.4-2009 信息技术 元数据注册系统 (MDR) 第4部分: 数据定义 的形成 ISOIEC11179-4 2004, IDT.txt
GBT 18391.5-2009 信息技术 元数据注册系统 (MDR) 第5部分: 命名和标 识原则 ISOIEC11179-5 2005, IDT.txt
GBT 18391.6-2009 信息技术 元数据注册系统 (MDR) 第6部分: 注册 ISOIEC11179-6 2005, IDT.txt
GBT 23824.1-2009 信息技术 实现元数据注册 系统内容一致性的规程 第 1部分: 数据元 ISOIEC TR20943-1 2003, IDT.txt
GBT 23824.3-2009 信息技术 实现元数据注册 系统内容一致性的规程 第 3部分: 值域 ISOIEC TR20943-3 2004, IDT.txt
GBT 30881-2014 信息技术 元数据注册系统 (MDR)模块 ISOIEC 197732011.txt
GBT 32392.1-2015 信息技术 互操作性元模型 框架(MFI) 第1部分: 参考 模型.txt
GBT 32392.2-2015 信息技术 互操作性元模型 框架(MFI) 第2部分: 核心 模型.txt
GBT 32392.3-2015 信息技术 互操作性元模型 框架(MFI) 第3部分: 本体 注册元模型.txt
GBT 32392.4-2015 信息技术 互操作性元模型 框架(MFI) 第4部分: 模型 映射元模型.txt
GBT 32392.5-2018 信息技术 互操作性元模型 框架(MFI) 第5部分: 过程 模型注册元模型.txt
GBT 32392.7-2018 信息技术 互操作性元模型 框架 第7部分: 服务模型注.txt
GBT 32392.8-2018 信息技术 互操作性元模型 框架 第8部分: 角色与目标 模型注册元模型.txt
GBT 32392.9-2018 信息技术 互操作性元模型 框架 第9部分: 按需模型选 择.txt
GBZ 21025-2007 XML使用指南.txt
3 技术
YDT 3772-2020 大数据 时序数据库技术要求与测试方法.txt
YDT 3773-2020 大数据 分布式批处理平台技术要求与测试方法.txt
YDT 3774-2020 大数据 分布式分析型数据库技术要求与测试方法.txt
YDT 3775-2020 大数据 分布式事务数据库技术要求与测试方法.txt
大数据开放与互操作技术
信息技术 大数据 互操作 技术指南 拟研制.txt
大数据生存周期处理技术
GBT 32908-2016 非结构化数据访问接口规范.txt
GBT 36345-2018 信息技术 通用数据导入接 口规范.txt
信息技术 大数据 面向分 析的数据检索与存储技术 要求 在研.txt
大数据集描述
GBT 32909-2016 非结构化数据表示规范.txt
GBT 34945-2017 信息技术 数据溯源描述模型.txt
GBT 34952-2017 多媒体数据语义描述要求.txt
GBT 35294-2017 信息技术 科学数据引用.txt
GBT 38667-2020 信息技术 大数据 数据分 类指南.txt
GB T 38667-2020 信息技术 大数据 数据分类指南.pdf
4 平台、工具
GBT 38673-2020 信息技术 大数据 大数据 系统基本要求.txt
GBT 38675-2020 信息技术 大数据 计算系 统通用要求.txt
GB T 37721-2019 信息技术 大数据分析系统功能要求》.pdf
GB T 37722-2019 信息技术 大数据存储与处理系统功能要求.pdf
GB T 38633-2020 信息技术 大数据 系统运维和管理功能要求.pdf
GB T 38643-2020 信息技术 大数据 分析系统功能测试要求.pdf
GB T 38676-2020 信息技术大数据存储与处理系统功能测试要求.pdf
JRT 0206—2021 证券期货业大数据平台性能测试指引.pdf
YDT 3762-2020 大数据 数据挖掘平台技术要求与测试方法.txt
5 安全和隐私
GAT 1718-2020《信息安全技术 大数据平台安全管理产品安全技术要求》.txt
GBT 大数据系统软件安全防护指南》标准草案.pdf
GB T 35274-2017 信息安全技术 大数据服务安全能力要求 立项.pdf
GB T 37973-2019 信息安全技术 大数据安全管理指南.pdf
YDT 3736-2020 电信运营商大数据安全风险及需求.txt
YDT 3741-2020 互联网新技术新业务安全评估要求 大数据技术应用与服务.txt
YDT 3800-2020 电信网和互联网大数据平台安全防护要求.txt
信息安全技术电信领域大数据安全防护实现指南.doc
d
3. 运营商发展大数据的核心价值在于商业化
运营商发展大数据的核心价值在于商业化
近年来,电信运营商利润率增幅放缓甚至下降,传统话音业务收入增长乏力,日趋边缘化、管道化;数据业务占比迅速增长,但量收的剪刀差持续扩大,投入多回报少。
在运营商转型路上,大数据技术的深入应用与商业模式的开发大有可为,可以说是运营商规避同质化竞争,打造智能数据管道,寻找差异化经营“蓝海”的必由之路。大数据的技术架构寻求高性能与低成本的统一,可以降低电信运营商庞大的IT资本开支压力。大数据的商业应用促使电信运营商从单纯提供网络资源、前向收费方式转变为基于网络资源和依据海量数据资源提供服务的灵活多样的混合模式,是一种新的商业模式。
国内运营商大数据应用受限
国内电信运营商在大数据应用方面主要受到了以下方面的限制。
第一,数据采集散乱、深度不足:电信运营商拥有海量数据的来源,但采集渠道散乱,通常分级、分地区、分系统建设,整体规划不足,数据标准化程度低,汇聚困难,无法形成有效的数据资产。
第二,数据分析能力不足:电信运营商建有以数据仓库为核心的经营分析系统,通常采用小型机加高性能存储架构建设,针对传统话单日志等结构化数据设计,还不具备非结构化数据与流数据的分析处理能力。
第三,数据商业应用不足:电信运营商大量数据尚没有充分发掘数据应有的价值,智能管道的建设正处在初期阶段。现有分析系统仅对内部提供服务,缺乏对外数据开放平台,大量数据未能有效进行商业利用。
电信运营商大数据发展探析
(1)大数据的政策支撑
电信运营商应积极寻求政府的支持,推动政府为大数据产业发展提供积极的政策支撑与引导、对关键技术的研发提供专项财政资金支持、对重点工程项目的实施提供支持与保障。电信运营商应高度重视大数据信息安全,推动政府部门牵头启动大数据立法,解决大数据信息权属与隐私保护问题;制定大数据技术标准与运营标准,规范大数据安全体系。通过政策支撑保障大数据产业的可持续发展。
2012年10月,中国计算机学会和中国通信学会均成立了大数据专家委员会,从行业学会的层面来组织和推动大数据的相关产学研用活动。运营商可以依托该平台推动企业内部大数据的发展。
(2)大数据技术架构与算法的研发
根据2012年美国市场调查咨询公司(Gartner)发布的新兴技术曲线,大数据技术正处于“期望膨胀期”,距离真正成熟尚需2~5年。电信运营商应抓住机遇加强技术研发,在开源技术的基础上,发展适合运营商的大数据技术;同时应积极对技术标准做出贡献,掌握技术主动权。在技术的拓展可主要集中在三个方面:(a)大数据的采集与传输技术。采集技术是指基于智能管道和物联网的大数据获取技术和算法;大数据传输技术研究应注重海量数据传输的安全可靠性,解决调度与控制问题。(b)大数据的存储与分析技术。存储技术主要指面向海量数据文件的有效存储与读取能力、大数据的新型表示方法和去冗降噪算法;分析技术的拓展方向应包括数据可用性和可计算性,计算复杂性问题,研究求解算法,进行高效处理等。(c)大数据的隐私安全技术。在大数据时代,如何保护用户隐私安全不仅是法规层面需要解决的问题,也是电信运营商在技术层面亟待解决的问题。
(3)大数据支撑运营中心
运营商要充分发挥大数据的价值,首要条件是具备采集、融合、存储、分析海量数据的能力。电信运营商可以在现有经分系统或数据仓库的基础上,针对目前数据采集散乱、采集深度不足、分析能力不足的问题,构建数据集中、平台统一的省级或全国级大数据支撑运营中心,为大数据的应用与商业化提供精确支撑。大数据支撑运营中心可以设置如下逻辑架构。
数据采集层:通过建设数据采集聚合网关,汇聚跨地区、跨系统的采集的丰富数据源。
数据融合层:建设海量结构化数据、非结构化数据以及流数据处理能力,建立数据标准化体系,进行统一处理和存储。
数据应用层:通过构建不同的数据挖掘与分析模型,融合结构化数据,形成数据仓库,对外提供统一服务能力。
资源管理层:提供统一监控、资源管理与运营等功能。
(4)大数据应用与商业化
大数据应用与商业化是大数据发展的核心价值与落脚点。电信运营商拥有极其丰富的数据资源,相比互联网公司更具天然优势。对大数据进行全面、深入、实时的分析和应用,以客户体验为核心发展流量经营,是电信运营商应对新形势下挑战避免沦为哑管道的关键。
通过大数据助力业务创新,提供市场营销与客户服务的精准支撑能力。在互联网社会中,拥有数据,就拥有了了解用户行为的基础,从足够多数据的叠加中可以探知一个人的过往行为,同时可以精准的预测出其未来的需求。通过对海量的行为和内容数据处理,可以获得用户的时间、位置、业务、终端等基础信息,分析出用户的身份、兴趣、社交圈等,这样可以开发出很多新的增值业务。
通过大数据提升企业管理水平,提供透明管控与科学运营的精准支撑能力。运营商可以融合市场、财务、网络等多个系统产生的海量数据,将相关联的数据进行处理分析,有利于运营商更全面、更准确、更快速地获得企业运营数据,为投资决策和网络优化方案提供更多视角。
通过大数据发展开放合作平台,开辟新的商业模式,助力电信运营商转型。电信运营商可以通过大数据支撑运营中心发展开放合作平台,为广大开发者提供海量数据资源,发挥大数据的价值,将数据作为资源,进而提升的运营商利润增长点。
大数据技术的发展及规模商用,使得电信运营商能够充分挖掘管道内容,创造新的业务增长模式,应对“去电信化”的趋势,转型为综合信息服务提供商,成为未来大数据时代中最大的赢家。但在推动商业化应用的过程中还应全面认识大数据的内涵,避免陷入单纯的计算能力和存储能力建设,要清醒认识大数据发展的成熟度,客观分析用户的应用需求,避免过度建设
4. 联通大数据 移动大数据 运营商大数据精准客户抓取
联通移动大数据,运营商大数据是根据运营商用户的基础信息数据和大数据建模分析能力相结合的精准获客营销产物。主要是通过分析运营商用户的上网行为,通话行为,通信行为,消费行为等综合信令行为数据,为用户建立完整的用户画像,再根据不同行业对于精准意向客户需求的不同,帮助相关企业,公司,行业分析定位其需要的精准意向目标客户。
相关行业,企业,公司可以通过对同行竞品的相应标签进行搜集,再通过联通大数据,移动大数据,运营商大数据进行大数据建模分析和抓取(标签:网站/网址/网页/url+手机APP应用+400/固话/座机+短信+关键词等等标签进行建模),还可以通过以下维度进行精准客户分析和定位:(如省/市/地域/地区/性别/年龄/籍贯/工作地/归属地/移动终端信息/网站访问次数/APP访问次数/电话拨打时长,次数等等维度)进行相关行业,企业,公司需求的精准意向客户数据的分析抓取和定位。
联通大数据,移动大数据,运营商大数据的出现对各个行业,企业,公司来说帮助还是非常大的。传统的电销企业获客营销方式是购买大批客户资源,有专门的电话销售人员进行触达,由于本身客户资源不够精准或者资质低下,导致电话销售打得心累,获客效率还非常低,并且还有一定程度的法律风险。联通大数据,移动大数据,运营商大数据不光可以提供精准的,资质信息全面的精准客户挖掘能力,包括还有完整的风控体系,可以大大降低行业获客的风险,甚至零风险;还可以帮助行业,企业,公司实时精准锁定意向目标客户群体,多渠道,多平台抓取,实时精准触达,为相关行业,企业,公司争取更多成交转化,和商业合作机会;
1.海量数据 :联通,移动运营商共计有12亿左右的用户群体,联通大数据,移动大数据,运营商大数据完全有能力为各个行业以及企业,公司的提供大数据获客营销服务能力,可以针对不同行业,企业,公司其个性化的精准客户需求,为其搭配合适的标签,维度进行建模,快速支撑其行业,企业,公司的精准营销能力,最大化的满足其精准获客需求。
2.数据风控 :联通大数据,移动大数据,运营商大数据是在充分保护用户的信息安全,个人隐私不被侵犯的的前提下,通过大数据开放能力为如房产,教育,装修,金融,企业服务, 招商加盟, 汽车 等多种行业提供精准有效的客户。
3.客户触达 :联通大数据,移动大数据,运营商大数据通过建模分析和抓取的用户数据会进行脱敏加密处理,第一时间部署到CRM外呼系统,实现客户管理和外呼触达两个功能。
4.合作保障 :联通大数据,移动大数据,运营商大数据都是官方大数据业务,可以签订合作协议,对公打款。
1、 网站/网页/网址/URL :客户通过搜索引擎找到相关网站,网页并访问,浏览。即可抓取实时访客数据。提供相关网站链接,url即可。
2、 手机APP应用 :客户使用注册了相关手机APP应用,即可实时获取活跃用户,注册用户。提供相关手机APP名称即可。
3、 400电话/固话/座机 :客户拨打和接听相关400电话,固话,座机,即可实时截取主叫被叫通话记录。提供相关400电话/固话/座机号码即可。
4、手机短信 :客户接收,发送过相关手机短信,或者接收过特定短信通道的客户进行截流。
5、筛选维度 :可根据全国/省/市/区/县/性别/年龄/访问次数,时长/通话次数,时长等维度进行精准的筛选。
5. 运营商大数据靠谱吗
运营商大数据当然是靠谱的,那些数据都是运营商的大量用户的使用数据汇总而成的,总体上是比较精确的。
6. 大数据安全问题及应对思路研究
大数据安全问题及应对思路研究
随着互联网、物联网、云计算等技术的快速发展,全球数据量出现爆炸式增长。与此同时,云计算为这些海量的多样化数据提供了存储和运算平台,分布式计算等数据挖掘技术又使得大数据分析规律、研判趋势的能力大大增强。在大数据不断向各个行业渗透、深刻影响国家的政治、经济、民生和国防的同时,其安全问题也将对个人隐私、社会稳定和国家安全带来巨大的潜在威胁,如何应对面临巨大挑战。
一、大数据安全关键问题
随着数字化进程不断深入,大数据逐步渗透至金融、汽车、制造、医疗等各个传统行业,甚至到社会生活的每个角落,大数据安全问题影响也日益增大。
(一)国家数据资源大量流失。互联网海量数据的跨境流动,加剧了大数据作为国家战略资源的大量流失,全世界的各类海量数据正在不断汇总到美国,短期内还看不到转变的迹象。随着未来大数据的广泛应用,涉及国家安全的政府和公用事业领域的大量数据资源也将进一步开放,但目前由于相关配套法律法规和监管机制尚不健全,极有可能造成国家关键数据资源的流失。
(二)大数据环境下用户隐私安全威胁严重。随着大数据挖掘分析技术的不断发展,个人隐私保护和数据安全变得非常紧迫。一是大数据环境下人们对个人信息的控制权明显下降,导致个人数据能够被广泛、详实的收集和分析。二是大数据被应用于攻击手段,黑客可最大限度地收集更多有用信息,为发起攻击做准备,大数据分析让黑客的攻击更精准。三是随着大数据技术发展,更多信息可以用于个人身份识别,个人身份识别信息的范围界定困难,隐私保护的数据范围变得模糊。四是以往建立在“目的明确、事先同意、使用限制”等原则之上的个人信息保护制度,在大数据场景下变得越来越难以操作。
(三)基于大数据挖掘技术的国家安全威胁日益严重。大数据时代美国情报机构已抢占先机,美国通过遍布在全球的国安局监听机构如地面卫星站、国内监听站、海外监听站等采集各种信息,对采集到的海量数据进行快速预处理、解密还原、分析比对、深度挖掘,并生成相关情报,供上层决策。2013年6月底,美中情局前雇员斯诺登爆料,美国情报机关通过思科路由器对中国内地移动运营商、中国教育和科研计算机网等骨干网络实施长达4年之久的长期监控,以获取网内海量短信数据和流量数据。
(四)基础设施安全防护能力不足引发数据资产失控。一是基础通信网络关键产品缺乏自主可控,成为大数据安全缺口。我国运营企业网络中,国外厂商设备的现网存量很大,国外产品存在原生性后门等隐患,一旦被远程利用,大量数据信息存在被窃取的安全风险。二是我国大数据安全保障体系不健全,防御手段能力建设处于起步阶段,尚未建立起针对境外网络数据和流量的监测分析机制,对棱镜监听等深层次、复杂、高隐蔽性的安全威胁难以有效防御、发现和处置。
二、国外大数据安全相关举措及我国应对思路
目前世界各国均通过出台国家战略、促进数据融合与开放、加大资金投入等推动大数据应用。相比之下,各国在涉及大数据安全方面的保障举措则起刚刚起步,主要集中在通过立法加强对隐私数据的保护。德国在2009年对《联邦数据保护法》进行修改并生效,约束范围包括互联网等电子通信领域,旨在防止因个人信息泄露导致的侵犯隐私行为;印度在2012年批准国家数据共享和开放政策的同时,通过拟定非共享数据清单以保护涉及国家安全、公民隐私、商业秘密和知识产权等数据信息;美国在2014年5月发布《大数据:把握机遇,守护价值》白皮书表示,在大数据发挥正面价值的同时,应该警惕大数据应用对隐私、公平等长远价值带来的负面影响,建议推进消费者隐私法案、通过全国数据泄露立法、修订电子通信隐私法案等。
我国在布局、鼓励和推动大数据发展应用的同时,也应提早谋划、积极应对大数据带来的安全挑战,从战略制定、法律法规、基础设施防护等方面应对大数据安全问题。
(一)将大数据资源保护上升为国家战略,建立分级分类安全管理机制。一是把数据资源视为国家战略资源,将大数据资源保护纳入到国家网络空间安全战略框架中,构建大数据环境下的信息安全体系,提高应急处置能力和安全防范能力,提升服务能力和运作效率。二是通过国家层面的战略布局,明确大数据资源保护的整体规划和近远期重点工作。三是对国内大数据资源按实施分级分类安全保护思路,保障数据安全、可靠,积极开展大数据安全风险评估工作,针对不同级别大数据特点加强安全防范。五是尽快制定不同级别的大数据采集、存储、备份、迁移、处理和发布等关键环节的安全规范和标准,配套完善相应的监管措施。
(二)完善法律法规,加大个人信息保护监管力度。一是积极推动个人信息保护法律的立法工作,探索通过技术标准、行业自律等手段解决法律出台前的个人信息保护问题。加快《网络安全法》的出台,在《网络安全法》中对电信和互联网行业用户信息保护作出明确法律界定,为相关工作开展提供法律依据。二是加强对个人隐私保护的行政监管,同时要加大对侵害个人隐私行为的打击力度,建立对个人隐私保护的测评机制,推动大数据行业的自律和监督。
(三)加强国家信息基础设施保护,提升大数据安全保障与防范能力。一是促进技术研究和创新,通过加大财政支持力度,激励关系国家安全和稳定的政府和国有企事业单位采用安全可控的产品,提升我国基础设施关键设备的安全可控水平。二是加强大数据信息安全系统建设,针对大数据的收集、处理、分析、挖掘等过程设计与配置相应的安全产品,并组成统一的、可管控的安全系统,推动建立国家级、企业级的网络个人信息保护态势感知、监控预警、测评认证平台。三是充分利用大数据技术应对网络攻击,通过大数据处理技术实现对网络异常行为的识别和分析,基于大数据分析的智能驱动型安全模型,把被动的事后分析变成主动的事前防御;基于大数据的网络攻击追踪,实现对网络攻击行为的溯源。
以上是小编为大家分享的关于大数据安全问题及应对思路研究的相关内容,更多信息可以关注环球青藤分享更多干货