导航:首页 > 网络数据 > 大数据时代的教育决策

大数据时代的教育决策

发布时间:2023-04-14 10:52:12

大数据在教学管理中的运用

大数据在教学管理中的运用
随着大数据时代的崛起,云数据时代的来临,大数据给各行各业的发展模式和决策带来前所未有的革新与挑战,教育行业同样不可避免。大数据的发展给困境中的教育变革提出了新的挑战。进入大数据时代,依靠言传身教的古代精英式教学和注重快速实效的现代大众式教学正在有效结合,基于数据分析的共享式精准教学不再遥远,按需学习、因材施教将真正成为可能。
一、对“大数据”的理解《自然》杂志在2008年9月推出了名为“大数据”的封面专栏,讲述了数据在数学、物理、生物、工程及社会经济等多个学科扮演了愈加重要的角色。加里?金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”大数据也称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、处理、并整理成为帮助企业更好经营决策的各种资讯,同时与大数据相关的数据存储、数据安全、数据分析等领域也都属于大数据范畴。简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。“大数据”具有数据体量巨大,数据类型繁多,价值密度低,处理速度快的特点。二、“大数据”对教学的影响 法家思想的集大成者韩非子也有“世异则事异,事异则备变”的观点,足见教育是需要根据现实变化的。 在教育领域中,“大数据”除体现传统数据的所有宏观功能外,还能收集分析详尽的微观个性化数据,大数据的优势立显。传统数据诠释宏观、整体的教育状况;大数据用于调整教育行为与实现个性化教育;传统数据来源于阶段性的,针对性的评估,其采样过程可能有系统误差;大数据来源于过程性的,以第三方、技术型的观察采样的方式误差较小。传统数据分析所需要的人才、专业技能以及设施设备都较为普通,易获得;大数据挖掘需要的人才,专业技能以及设施设备要求较高,并且从业者需要有创新意识与挖掘数据的灵感而不是按部就班者。 大数据带来新一轮教育信息化的浪潮已然随着硬件的高速革新和软件的高度智能无法抗拒地推到了我们面前。作为新时期的教育管理者,唯有掌握良好的“大数据”技术,转变教育思想,及时利用“大数据”服务学校管理、改革教育教学,提高办学质量。 三、大数据教学管理模式 随着时代的发展,科技的日新月异,以往的教学管理模式正在慢慢退出历史舞台。这种以现代信息技术为支撑,“大数据”为载体的新型管理模式极大地实现了教育资源的共享与充分利用,促进了工作效率的提升,转变了工作效能,让工作更加具有时效性,科学性,及时性。1、大数据管理的模型 正如2014年全国教育工作会议提出的,今后一个时期我国教育管理的目标是“加快推进教育治理体系和治理能力现代化”,我国的教育管理模式将发生质的变革,大数据管理模型应运而生。 大数据支撑的教育管理模型:以“主体、对象、资源、目标”为核心要素,建立多级连通共享的教育云,构建教育管理复杂系统,利用云技术处理教育云端大数据,为教育公共服务机构、教师和学生提供全天候多终端个性化需求的教育资源服务、专业发展服务和综合素质发展服务,提升教育资源配置的合理性和公平性,提升教育决策科学化水平。 在教育管理中,人的因素是重要的教育数据,是一切教育数据的来源。教育资源的配置,首先要进行科学合理的资源基本分类:人才资源、财物资源、知识资源;教育内容、教育理论、教育方法、教育经验等,是教育资源配置中的隐性资源,却是根本资源;技术资源是大数据教育管理的生产力资源,教育技术尤其是教育信息技术、大数据、云技术的应用,是管理主体满足教育服务需要,合理配置教育资源的应用型资源。 2、大数据管理的运行策略 教育大数据管理是一个长远的伟大工程,从当前的教育信息化建设水平和面临的挑战综合考虑,还有相当长的路程要走。我们需要在思想上、理论上和实践上全面推进,迫切需要制订正确而长远的行动路线图如又图所示。 这是三个层级的运行策略:底层是大数据教育管理的基础建设教育云的建设,各区域应遵循国家教育数据标准,建设分布式教育数据中心(云)资源库+数据库+数据关系逻辑的建构,为云端教育教学资源配置提供基础硬件支撑,进而建设三层智慧平台智慧校园、智慧学堂(课堂)和智慧终端(尤其是移动终端)应用平台建设,同样作为基础层级的是教育资源的大数据挖掘对教育过程所产生的数据进行统计、分析、建模等处理,为教育管理决策提供数据应用;位于高层的是教育大数据管理的操作系统,从公共服务到学生个体发展,利用大数据进行教育资源的公平配置和个性化供给,推进教育发展与改革,使人人享有优质恰当的教育资源,促进教育的优质可持续发展,推进教育品牌建设和创新提升,形成高效绿色的教育文化。 四、大数据教学管理的优越性 用数据说话、用数据决策、用数据管理、用数据创新的数据文化正在成形,大数据时代已经来临。顺应大数据时代的发展,教育变革已经进入了一个新的阶段,教育领域将迎来一场前所未有的大变革。
大数据的发展给困境中的教育变革提出了新的挑战。进入大数据时代,依靠言传身教的古代精英式教学和注重快速实效的现代大众式教学正在有效结合,基于数据分析的共享式精准教学不再遥远,按需学习、因材施教将真正成为可能。大数据带来的一系列变革,对新型创新人才的培养提出了更为迫切和现实的要求:日益强大的互联网、多媒体及概念软件、开源软件等为师生提供了更加自由、灵活的学习和探索空间,求知的视野被极大拓宽;日益频繁的师生活动及社会互动被大数据予以记录、分析和共享,教育环境的时空界限和信息隔阂得以打破,长期以来潜伏于数据之下的教育理论和规律将日益凸显和明朗,人才培养将更具灵活性和多样性;学习与生活、教育与社会不再被孤立,学生、学校与现实生活的体验更为接近,学生学习兴趣、学校办学动力将被大大激发

⑵ 教育大数据的内涵

本章主要介绍教育大数据的内涵、体量与价值。

1、什么是大数据

2012 年联合国发布了大数据白皮书“Big Data for Development:Challenges& Opportunities”明确提

出大数据时代已经到来。

大数据作为信息技术发展的新趋势"具有海量的数据规模(Volume)、快速的数据流转(Vwlocity)、多样的数据类型(Variety)和巨大的数据价值(Value)。通过对海量数据的分析挖掘,以一种前所未有的方式获得巨大的产品服务,深刻的真知灼见,为我们理解生活以及认识世界提供了一种全新的思维方式,实现思维的三大转变:一是不再依赖于小样本数据,而是与现象相关的所有数据;二是不再热衷于追求微观层面的精确,而是宏观层面的洞察力;三是从传统的因果关系追求中解脱出来,关注相关关系的发现和应用。

大数据不仅仅是一种技术,也是一种能力,即从海量复杂的数据中寻找有意义关联、挖掘事物变化规律、准确预测事物发展趋势的能力。

2、教育大数据的内涵

教育大数据特指教育领域的大数据,即整个教育活动过程中所产生的以及根据教育需要采集到的、一切用于教育发展并可创造巨大潜在价值的数据集合。

教育大数据直接产生于各种教育活动(包括教学活动、管理活动、科研活动、校园活动等),每个教育利益相关者既是教育数据的生产者也是教育数据的消费者。教育大数据具有明确的目标指向性,即指向教育发展,能在提升教育质量、促进教育公平、实现个性化学习、优化教育资源配置、辅助教育科学决策等方面发挥有效作用。

3、教育大数据的特性

与电子商务、交通、医疗、金融保险等领域的大数据相比,教育大数据具有以下特征:

教育大数据的采集呈现高度的复杂性;

教育大数据的应用需要高度的创造性;

教育大数据不仅注重相关关系,更强调因果关系;

4、教育大数据的分层架构

为了更加清晰地认识教育大数据的概貌,根据教育数据的来源与范围,将其分成

五层架构,如下图所示:

5、教育大数据的体量

IT 界普遍认为,大数据指体量在 Tb 级别以上或者条目在百万级别以上的数据。实际上,大数据是个相对于小数据而言的概念;大数据并非等同于大量的数据,而是突出强调跨领域数据的交叉融合和数据的流动生长。

《中国基础教育大数据发展白皮书》编委会对基础教育阶段一年的数据量进行了估算。基础教育大数据体量估算的维度与基准值如图 1 所示,包括对师生基本信息数据、课业测试与作业数据、校园实录数据和课程资源数据的估量。

图 1  基础教育大数据体量估算的维度与基准值

图 2  基础教育大数据体量估算结果(一年)

可以肯定地说,无论是按 Eb 还是 Pb 量级来规定大数据的体量要求,中国教育领域都存在真正的大数据。

6、教育大数据的价值

(1)战略层价值

①教育大数据是一种无形的战略资产、是一座可无限开采的“金矿”,充分的挖掘与应用是实现数据“资产”增值的唯一途径;

②教育改革既要有胆魄,更要有科学的依据,教育大数据是推动教育领域全面深化改革的科学力量;

③教育大数据汇聚、存储了教育领域的信息资产,是发展智慧教育最重要的基础。

(2)应用层价值

①开展数据驱动的教育决策,实现教育设备与环境的智能管控,提升教育危机预防与安全管理的能力;

②持续优化教与学,辅助教师开展精准教学,辅助学生实现个性化学习;

③促使教育评价从“经验主义”走向“数据主义”、从“宏观群体评价”走向“微观个体评价”、从“单一评价”走向“综合评价”;

④教育数据的合理、合法、有效、创新应用,不断催生越来越多样化且越来越智慧化的教育服务;

⑤推动社会科学的研究范式从抽样模式走向全样本模式,使社会科学成为一门实实在在的实证科学。

教育大数据的最终价值应体现在与教育主流业务的深度融合以及持续推动教育系统的智慧化变革上。目前,国内外已有一些教育大数据的创新应用案例,涵盖教学、管理、评价、服务等方面。

参考文献

教育大数据的技术体系框架与发展趋势——“教育大数据研究与实践专栏”之整体框架篇  杨现民

教育大数据的应用模式与政策建议  杨现民

⑶ 如何通过大数据手段为教育部的学科设置调整做决策支撑

大数据时代的到来为治理理念的转型带来了新机遇。对于而言,要提升自身的治理能力,必须要在其中融入新的思维和新的文化,在这一方面,大数据中的数据思维与文化模式可以为治理工作的转型提供思路,如果将大数据充分地利用起来,治理工作便可以实现多层次、多元化、多角度发展,最终实现管理工作以公共服务为主、协同共治为辅的目的。如今,开展治理工作时,不能仅仅依靠传统的经验了,任何工作都必须要基于数据的基础上开展,这就要求工作人员深入到群众之中,采集客观资料,并进行科学的实证分析,以此作为开展工作的基础。也就是说,任何一项工作的开展都必须要用数据来说话,这对于促进工作的转型有着非常积极的效果。
大数据为治理模式的创新带来了新的发展机遇。大数据是对海量数据的科学运算,人们可以找寻到不同数据之间的密切联系,这也是大数据方法论的思想。此外,在大数据技术的支持下,人们可以采用众包、等一系列的组织模式来革新治理的组织架构,将传统的组织架构向合作、协同方面进行转型,从这一层面而言,将大数据理论引入到治理工作中,可以为治理模式的开展提供创新的模式。种种实践证实,大数据给治理模式的创新主要带来了几个方面的发展机遇:一是促进了治理模式从粗放式到精细化的转型;二是促进了治理模式从单一性到协同共享性的转型;三是促进了治理模式从被动性到主动性的转型。
大数据时代的到来提升了决策工作的科学性。近年来,各项公共事务变得越来越复杂,仅仅依靠工作人员的个人感知是无法对所有事务做出科学、准确的判断的,要想从根本上提升决策工作的科学性,就需要合理应用大数据思维模式,收集数据,分析现阶段经济社会运行过程中的规律,采取合理的数据挖掘来开展决策工作。从本质上而言,大数据给决策部门带来了如下的改变:首先,在制定决策时,的决定已经不是个别领导的决策,而是必须要使用数据说话,根据数据来制定出决策,与传统的决策模式相比,该种决策模式更加的科学、精准;其次,在决策实施跟踪阶段,可以充分利用社交网络与物联网来分析决策的实施情况,利用数据对实施成果进行监控,这可以帮助及时地调整决策方向和决策模式。
大数据为服务效能的提升带来新的机遇。要提升的综合治理能力,必须采取科学有效的措施提升的服务效能,这也是大数据背景下建设服务型的关键性因素。在治理的背景下,要提升的服务效能,不仅需要提升行政部门的审批效率,还要采取相应的措施提升公共服务产品的质量。一是在提升行政审批效率方面,凭借大数据能够帮助打破不同部门之间的信息孤岛,构建出完善的行政审批服务云,利用大数据能真正的为老百姓办实事,为老百姓节约时间,这既有效提升了开展行政工作的效率,还可以大范围的节约开支。二是在提升公共产品的服务质量方面,工作人员可以利用大数据对公共服务产品的数据进行深入的分析与挖掘,让公共服务产品供给走向个性化、分层化以及精准化发展道路。还可以利用大数据的兼容性和开放性,鼓励越来越多的社会大众参与到决策活动中,让他们对决策工作进行科学的监督,不断提升公共服务产品的综合质量。

⑷ 大数据时代带来更理性、更可靠的决策

大数据时代带来更理性、更可靠的决策_数据分析师考试

究竟是什么魔力,让“大数据”这一概念得到全球各国的普遍关注?到底什么是“大数据”?它能够在多大程度上改变我们的生活?在我们寻求对这些重要问题的解答时,牛津大学网络学院互联网研究所教授维克托·迈尔-舍恩伯格出现在我们的视野中;希望我们对他的采访,可以帮助读者们找到这些疑问的答案。

最近一段时间,“大数据”的热潮席卷全球,正如美国《福布斯》杂志所说的那样,如今,在浏览新闻网站或者参加行业会议时,想看不见或听不到“大数据”这个词几乎不可能。去年,美国6个联邦政府部门宣布将启动“大数据研发计划”,投资超过2亿美元以改进从海量和复杂的数据中获取知识的能力。同时,我国科技部发布的“‘十二五’国家科技计划信息技术领域2013年度备选项目征集指南”也把大数据研究列在首位。眼下召开的全国“两会”上,有全国人大代表提出要把发展“大数据”上升为国家战略。

究竟是什么魔力,让“大数据”这一概念得到全球各国的普遍关注?到底什么是“大数据”?它能够在多大程度上改变我们的生活?眼前对“大数据”的关注度是否已经过高了呢?在我们寻求对这些重要问题的解答时,英国牛津大学网络学院互连网研究所教授维克托·迈尔-舍恩伯格(Viktor Mayer-Schonberger)出现在我们的视野中,讨论“大数据”,他如果不是最合适的人选,也起码是合适人选之一。

20多年来,维克托一直致力于网络经济、信息与创新、信息监管、网络规范与战略管理的研究。还在“大数据”这一概念众说纷纭时,维克托就已进行了系统深入的研究,2010年,他在英国《经济学人》杂志上和数据编辑肯尼思·库克耶一起,发表了长达14页的大数据专题文章。称他为最早洞见大数据时代发展趋势的数据科学家之一,并不为过。

《经济学人》说,在大数据领域,维克托是最受人尊敬的全方位发言人之一;美国《科学》杂志说,若要发起一场关于这个问题的深入讨论,没有比他更好的发起者了。

除了理论研究以外,维克托还非常接近实战世界,早在上大学期间,他就先后成立了两家数据安全和制作反病毒软件的公司,而在他写就的《大数据时代》一书中,那些最前沿、最崭新的大数据应用案例,都得益于他多年来紧跟企业与商业应用的步伐。他的咨询客户中,不乏微软、惠普、IBM、亚马逊、脸书、推特、VISA等大数据先锋们。

目前,维克托还是欧盟互联网官方政策背后的重要制定者与参与者,尤为重要的是,他还任职过新加坡商务部、文莱国防部、科威特商务部等部门,特别熟悉亚洲信息产业的发展与战略布局。

希望我们通过电子邮件对维克托的采访,可以帮助读者们找到这些疑问的答案。

失去微观层面上的精确度,为的是获取宏观层面上的洞察力

文汇报:今天,“大数据”已经成为全球炙手可热的词汇,您是从何时开始关注它的?

迈尔-舍恩伯格:多年来,我一直致力于研究数据在信息经济的发展中所扮演的重要角色,我与肯尼思·库克耶(Kenneth Cukier,我的合著者)一起发布了一系列相关研究报告。大约三年前,在我自己组织的一次会议上,我俩都意识到“大数据”的存在已经不仅仅是一种炒作或者什么宏大的宣言了,而将实实在在地改变我们的工作、生活以及整个社会,于是,我们决定就此专题写一本书。

文汇报:那么在您看来,究竟什么是大数据时代?它和传统数据时代到底有什么差别?我们知道,像沃尔玛这样的公司早在多年前,就已经将大数据运用到了商业实践中。

迈尔-舍恩伯格:事实上,过去几个世纪以来,数据已经在科学家们制定决策的过程中扮演了一定的角色,而过去几十年间,这一做法又延伸到了一些公司的决策制定过程。但在大数据时代之前,数据是非常匮乏的,我们拥有的数据非常少。因此,我们的决策、我们构建的制度都是建立在这样一种数据匮乏的基础上。今天,一切变得非常不同,它体现在三个不同的方面,我们称之为“更多”、“更乱”和“相关性”。

文汇报:这三个特征也是您在《大数据时代》一书中非常强调的,它们甚至会颠覆我们过去的整个思维方式。您能否具体描述一下这到底是怎样的过程?

迈尔-舍恩伯格:好的。我所说的“更多”,是指围绕任何一个我们想要调查的特定问题,或者是需要我们回答的疑问,我们都可以比过去任何时候获取更多的数据。在大数据时代,我们可以利用海量的数据得到非常详尽的见解,这是传统方法所不能做到的。

可以这么说,大数据时代和传统数据时代的区别,就像分辨率在200万像素的旧数码照片,一下子提高到2400万像素那样。后者是一个非常非常大的文件,它可以提供更多细节。它可以让我们不断放大,看清楚小到颗粒状的细部,而具有较低分辨率的图像在这些细节方面就会非常模糊。

基因信息就是一个很好的例子。美国有一家叫23andMe的新公司提供个人的DNA测试分析,以发现一些疾病征兆。它的成本只有两三百美元,并提醒客户关注会发展成严重疾病的个人癖好。但是公司并不对每个客户的全基因组进行测序,而是针对已知特征的位点(经研究得知因某种疾病存在,而可能会出问题的DNA片段)进行比对。这意味着,当一个新的特征被研究发现时,23andMe公司就不得不再次对客户的DNA进行测序并建立更完整的档案。

苹果公司的史蒂夫·乔布斯尝试了非常不同的方法。他得了癌症后,就有了自己全部的基因密码,数十亿的碱基对测序。这花费了他超过10万美元的成本,但这可以让医生完整地洞察他的基因密码。每当药物由于乔布斯的癌症病变而失去有效性,他们就可以根据乔布斯特定的基因信息,寻找到有效的替代药物。遗憾的是,这也没有保住乔布斯的命,但是在这一过程中获得的数据,已经延长了他的生命。

由于技术创新,现在收集大量信息的成本变得越来越低。数年前,史蒂夫·乔布斯花费了六位数的金额才做到的事情,今天,不到1000美元就可以获得同样的服务了。

而“更乱”指的是,在小数据时代,因为数据是如此稀少,我们可以确保自己收集的每一个数据点都是非常准确的。相比较而言,大数据往往是凌乱和质量参差不齐的。但是,相比以高额代价来保证测量和收集少量数据的精确性,在大数据时代,我们将接受这种杂乱,因为我们通常需要的只是一个大方向,而不是努力了解一种现象的细枝末节。我们并不是要完全放弃精确性,我们只是放弃对精确性的热衷。我们失去微观层面上的精确度,为的是获取在宏观层面上的洞察力。

电脑翻译就是其中一个例子。1990年代,IBM的研究人员使用了一套非常精确的文件(加拿大议会记录的法语和英语版)来训练计算机。尽管计算机完全按照规则行事,但基于此的翻译质量却非常低。然后,谷歌在2006年开始介入这一领域,他们没有使用来自加拿大政府的几百万句标准翻译,而是使用随手可得的任何语言。他们在整个互联网上,利用数十亿页质量参差不齐的翻译,这些翻译不怎么标准——但是,这是一个小的权衡——他们能够使用的数据大大增加了,结果翻译质量反而提高了。与更少、更标准的数据相比,更多凌乱的资料完胜了。

“更多”和“更乱”组合到一起,产生了第三个特点,“相关性”,这也是大数据带给我们的最根本性的转变。我们的思维将从因果关系转向相关关系。至今为止的整个人类历史里,全世界的人们都在寻找事件发生的原因,探寻“为什么”。但我们对原因的执着探索往往带领我们走向错误的方向。所以,我们建议,在大数据时代,在许多情况下,我们可以仅仅寻找“是什么”,而不必完全理解“为什么”。例如,对于大数据的分析中,我们可以发现机器震动中一些非常微小的变化,这些变化表明机器将很快损坏。这使我们能够在部分机器零件报废前更换它们,这被称为“预测性维护”,它可以节省不少钱。但除了提高消费效率,“相关性”还可以做更多的事情。

比如对早产儿而言,即使他们长大成人,这些小宝宝仍旧是非常脆弱的,哪怕是遇上很小的感染。医生卡罗琳·麦格雷戈研究如何给这些婴儿最好的生存机会。使用大数据分析,每分钟可以搜集这些婴儿超过一千个数据点,麦格雷戈发现一个令人震惊的事实:每当这些早产儿出现非常稳定的标志时,他们的身体其实并不稳定,正在准备发病。有了这方面的知识,她就能在一个非常早期的阶段,确定婴儿是否需要药物治疗,从而挽救更多孩子的生命。

这是典型的大数据应用:医生麦格雷戈通过更全面的传感器,可以比以往搜集到更多的数据。她也接受,在这种情况下,并不是所有的数据都是准确的,从而也会导致她分析中存在不精确的可能。她把“为什么”这个问题放在一边,而用一种更务实的方式来提供帮助,她寻找“是什么”,这才是一个更好的预见感染的办法。

我们应该记住:大数据也可以挽救生命。

正确使用大数据,可以改善医疗、教育水平,促进人类发展

文汇报:大数据时代的到来,是否将会引领新一轮的产业革命?我们应该怎样客观地看待它的价值?

迈尔-舍恩伯格:大数据将会极大地改变社会生活的方方面面,但是它的价值能否等同于工业革命,这个问题目前还不好说。我个人猜想可能不能,原因是在19世纪初工业革命刚刚开始的时候,经济发展还处于非常低的水平上,所以相对来说,当时的人们从工业化过程中所能获得的生活水平的提升是非常巨大的,今天则非常不一样了。

我们真正想强调的是,大数据时代将推动我们从根本上改变企业的运作方式,以及我们在社会中的生活方式。大数据可以提高人类制定决策的能力,这种提高将是大幅度的。有了大数据,我们不是简单地提高经济效率,而是将挽救人类生命,延长我们自己的寿命。我们还将改善教育,促进发展。同样的道理,我们必须要小心。大数据同样也有“阴暗面”,正如我们在书中讨论的那样。如果应用错误,大数据也可能会化为一个强有力的武器。因此,我们必须确保正确使用大数据。

文汇报:您提到了大数据时代的“阴暗面”,它的到来会加深数字化鸿沟吗?

迈尔-舍恩伯格:大数据是一个强大的工具。因此,如果我们使用了错误的方式,它就可能会加深数字鸿沟。但是,如果我们用得好,相信大数据就可能会改善我们的生活,尤其是对那些不那么幸运的人而言。在这一点上,你可以把它想像成火、电或是抗生素等等。

文汇报:也就是说,您对大数据的价值认知,是基于一个更长时段的历史发展。

迈尔-舍恩伯格:如果以非常广阔的视角来看人类历史,我认为,人类一直想要理解世界。起初,许多人的“知识”是基于迷信和预感。知识的发展非常慢,人们需要非常深层次的思考,再通过实践进行检验,以确保知识是可用的。

但即使如此,我们的知识仍旧不是百分之百可靠的。例如,19世纪,路易·巴斯德一直在研究狂犬病疫苗,当时有一个被狗严重咬伤而染上狂犬病的小孩,父母担心孩子会死去,恳求巴斯德试试他的试验性疫苗。巴斯德照做了,孩子活了下来。随后的庆祝活动上,巴斯德以一个英雄的身份出现,他挽救了年轻孩子的性命。但是事实的确如此吗?今天,通过更深入的研究,我们知道,在被类似病狗咬到的儿童中,只有25%会感染狂犬病。所以75%的儿童哪怕使用了无效的疫苗,仍旧可以存活下来。这个故事告诉我们,我们以为自己生活在非常科学的世界中,但其实,我们拥有的数据非常少。一种新的治疗方法在被证明安全之前,需要做几十个甚至几百个医学实验来进行测试。但这仍旧太少,人们还是会受到伤害,因为我们依靠的数据太少。在大数据时代,我们可以告别数据匮乏,做出的决策将更理性,更基于事实,当然也更可靠。这是大数据时代带给我们的希望——更好的决策将会代替我们过往那些可疑的迷信和不可靠的人类预感。

文汇报:我们看到,麦肯锡公司2011年就发布报告推测,如果把大数据用于美国的医疗保健,一年可产生潜在价值3000亿美元,用于欧洲的公共管理可获得年度潜在价值2500亿欧元;服务提供商利用个人位置数据可获得潜在的消费者年度盈余6000亿美元;利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。“数据创造价值”的预测已经非常振奋人心。在您看来,大数据是否只是一门价值不菲的生意?

迈尔-舍恩伯格:不,大数据可以做更多。医疗方面,我们前面已经提过,只是分析一些重要的征兆,早产婴儿的感染出现明显症状的数小时前,医生就可以预见其生病。

同样,通过大数据分析,我们也可以找出学校教科书中的哪一部分对学生而言效果最好,也可以找出效果不好的部分。到现在为止,我们只能按照人类的预感,即教师自己判断学生在理解特定课程时是否会有疑问;但在大数据时代,我们有实际的数据可以参考,例如数据显示,电子书籍的某些页面被看过许多遍,因为它让学生感觉费解,据此可以调整我们的教材。这将从根本上改变教育。

或者举公共政策为例:Inrix是为智能手机提供导航软件的公司,它还提供实时的交通数据。之所以能做到这一点,是因为每个用户本身都成为了交通流量状况的传感器,把位置和速度信息都发回Inrix公司。这样一来,就可以给行进在交通堵塞路段周围的客户提供良好服务。Inrix公司有一大堆人们的活动数据,这还将有助于城市规划者了解大家的通勤模式,人们从哪里出发去工作,然后返回,并建设基础设施,如道路和铁路。这是最有效的应用。节省钱的同时,也有利于整个社会的管理。

文汇报:大数据对于商业决策、学术研究乃至国家治理的作用是显而易见的;但是对日常生活中的普通人而言,他们一定会从中受益吗?为什么在大数据时代,还是有不少人主张远离过载的信息和数据、返璞归真回到传统的社群生活之中呢?个人生活空间一定得从“简单平面”转变到“多维存在”才有意义吗?

迈尔-舍恩伯格:千百年来,人类已经经历的世界,都是在少量数据的基础上产生很多想法的世界。海员们结束长途航行后回来,地图才会在这一次经验的基础上进行重新绘制。这显然不会很精确。经过试验和犯错的周而复始,人类发展得非常缓慢。但是,当我们只有非常少的数据时,这是理所当然的结果。今天,我们有这么多的数据,难怪人类会不堪重负。但是,现在大数据可以提供帮助。如果人类不太善于消化这些过多的信息,大数据分析可以帮助我们将信息进行过滤,并进一步可视化,使我们能够轻松地加以使用。

人们尚未普遍具备与大数据时代相匹配的思维和技能

文汇报:有专家认为,大数据的未来是数据的APP(加速并行处理)而非基础构架;也就是说,仅仅有数据平台和基础构架是无法创造长期价值的。对此您怎么看?

迈尔-舍恩伯格:我们认为,大数据时代将至少需要和过去时代一样多的人的独创性。同时,巨大的资源才是未来时代的金矿,那些拥有这些数据资源的人将获得的回报是不可想像的。

文汇报:大数据时代,数据都是透明的,我们如何在保护个人隐私、商业机密和国家安全之间取得平衡?您所谓的“互联网遗忘运动”会是最佳药方吗?

迈尔-舍恩伯格:大数据时代所面临的挑战是,我们发现了隐藏在数据背后的价值,所以,保留这些数据,然后一遍遍地重复使用数据,往往成为一种明智的选择。同时,现行的保护个人隐私的法律,特别在西方,针对的是一个传统数据的世界,而不是一个大数据世界。这就需要我们在保护隐私的规则方面作出调整。我们建议,可以通过调整相关保护规则来实现这一目标,正像你所提到的,我们可以在一定时间以后,选择遗忘这些数据。

文汇报:大数据时代是一个海量数据有待处理的时代,同时又是一个海量无用信息需要删除的时代。这是否就是您在《删除》一书中强调我们要有所取舍的原因所在?

迈尔-舍恩伯格:是。在某种程度上,大数据本身也可以加强隐私的保护。因为如果有一百万个数据点,一个单独的数据点就不再那么重要了,这和传统数据时代非常不一样。随着时间的推移,忘记其中一些数据,并不会破坏整个大数据的运行和使用。

文汇报:大数据现在在全球究竟发展到了什么阶段?处理大数据的技术是否已经在全世界范围内普及?

迈尔-舍恩伯格:管理和处理大数据的技术都已经存在了,而且并不是非常昂贵。但是,有一样东西目前仍旧非常缺乏,那就是我们的思维——以理解数据背后所隐藏的巨大价值,以及提取这种价值的专门技能。今天,全球范围内,人们还没有普遍具备这种思维和技能,但是我相信,在未来,这种情况会发生改变。我们预计,世界各地的许多大学将提供针对大数据分析的课程,来培训大数据时代所需要的技能。

文汇报:历次产业技术革命,中国似乎都是学习者和模仿者;和上几轮产业技术革命不同的是,大数据时代,中国几乎和欧美发达国家同时开始技术研发,中国人口又居世界首位,将会成为产生数据量最多的国家。您看好中国在新时代的发展前景吗?中国在大数据时代是否有创新和领先的可能?

迈尔-舍恩伯格:是的,我们对此非常乐观。中国很可能成为大数据这一领域的先驱。在大数据时代,中国有很多优势:中国人都受过良好的教育,特别是在数学和统计方面(这是非常重要的)。中国是一个巨大的多元化社会,这会创造大量机会来创造大数据这一资源,并建立大数据应用。同样的道理,对于大数据的蓬勃发展,我们还需要相匹配的思维方式,有尝试新事物和持续创新的愿望,以实证事实来作为我们决策的依据。因此,和许多其他社会一样,大数据时代的确也会给中国带来非常大的变化。

以上是小编为大家分享的关于大数据时代带来更理性、更可靠的决策的相关内容,更多信息可以关注环球青藤分享更多干货

⑸ 大数据与教育的结合,体现在哪些方面

可以说自从互联网技术越来越发达之后,大数据分析成为了许多行业的独门秘籍版。
如果说问权大数据与教育的结合,那么更多的就是体现在数据分析方面。
像我们机构在用的什么书,什么云,染什么的,还是染书什么的。
专属的MA系统,大数据实时监测,高性能实时计算引擎,让数据分析更实时,更灵活和高效;简单高效的数据分析工具,不懂技术也能玩转数据;为网站的精细化运营决策提供数据支持,进而有效提高企业的投资回报率。
在数据化学员管理方面,学员数据报表分类汇总,精细化学员档案管理;招生专属CRM,将学员线索掌握在企业手里,有效提高转化,减少客户流失;报班选课,结课批量操作、一键完成,让教学运营管理形式形成,完成闭环。
可以说,大数据的应用,方便的教育管理,更是便捷了教育工作。

⑹ 大数据在教育方面的应用

大数据成为了这两年非常重要的一项技术,使用的地方也越来越多,在教育方面现在也有了很多的应用,下面就一起来看看大数据在教育中的使用。

1、个性化教育。通过运用大数据技术,教师可以关注学生个体的多方位的表现,可以通过对学生及时性的行为进行记录,使得数据有效整合,为教师提供真实个性的学生特点数据。

4、更新教育理念,创新教育思维。大数据时代下教育大数据扭转传统落后的教育理念与思维方式。在新时期教育领域到处充满了信息与数据,师生的一言一行以及学校的各类事物都能够转化为信息或数据。

随着智能化设备的广泛普及每位学生都可以运用计算机进行终端学习,有助于提高学生的学习积极性。

⑺ 如何通过抓取教育大数据来深化课堂教学改革

现代信息技术的发展为大数据的收集和分析提供了无限的可能,大数据时代的这一趋势也对教育产生了巨大的影响:一方面,在科技理性的指导下,通过多维度收集学生行为的数据并进行模型建构,可以对学生的学习行为进行预测;另一方面,大数据时代的人文主义转向使人们更关注教学活动的适应性,教育大数据的挖掘和利用可以更好地实现适应个人需求的定制化教学。

国际数据公司(IDC)认为大数据时代数据有4大特点——数据的规模大、价值大、数据流转速度快以及数据类型多。大数据的挖掘和利用对教育——特别是课堂教学——产生着深远的影响。学习科学家索耶认为:越来越多的学习将经过计算机中介发生, 并产生越来越多的数据,我们有必要运用这些数据分析什麼时候有效的学习正在发生。所以数据挖掘可以用於探究行为与学习之间的关系,如学习者的个体差异与学习行为之间有何关系,不同行为又会导致何种不同的学习结果等。2012年美国发布《通过教育数据挖掘和学习分析促进教与学》(Enhancing Teaching and Learning through Ecational Data Miningand Learning Analytics)提出大数据时代教育数据的特点:具有层级性、时序性和情境性,其中数据的层级性指,既收集教师层面的数据也收集学生层面的数据,既收集课堂数据也收集活动数据,为後期模型的建立提供了多维度的资源;数据的时序性是指,数据是实时的、连续的,为材料的前沿性提供了保障;而数据的情境性是指,数据是基於真实情境脉的,保证了模型的信度。

大数据技术能够促进以学生为本的学习,数据不仅仅是科技理性指导下收集数据和拟合成模型,并针对学生的群体行为做出预测判断,还可能在固有模型的基础上,通过诊断学生在课堂中的行为表现,对固有模型进行修改,使课程内容更加适合学生的长尾需求,实现个性化教学。大数据的利用可以支持对教育活动行为的建模预测,还可能支持教育实践中的适应性教学。前者是後者的基础,後者是前者的深化。

建模与预测导向的大数据应用

大数据时代数据促进教育变革的方法之一是收集和分析处理数据,并进行预测。现如今,由於数据记录、存储与运算的便捷性,海量的、多层次的数据可以便捷地加以收集,由随机抽样带来的误差因此减小,建模和预测可以基於全数据和真实数据,因而就更为精确。大数据时代通过探求海量数据的相关关系获得盈利的最成功的案例是亚马逊的市场营销,亚马逊收集读者网上查阅行为和购买行为数据,建立读者偏爱阅读模型,预测读者购买的群体行为,实现书籍的推荐。近几年,教育研究的对象逐渐关注学生的学习行为,其背後是一种学习观的转变,学习被视为一种识知的过程(knowing about),识知是一个活动,而不是将知识作为一个物品加以传递。识知总是境脉化的,而不是抽象的和脱离於具体情境的。识知是在个体与环境的互动中交互建构的,而不是客观准确的,也不是主观创造的。所以,学生的行为活动数据被认为是可以反映学生在学习过程这一情境化的动态变化进程中的情况。海量、多层次、连续的行为数据在收集後被拟合成模型,实现预测,如学习管理系统(LMS)的运用。然而,由於建模和预测依赖的基本原理为数理统计,其预判对象主要是学生的群体行为。

1.案例分析

学习管理系统(Learning Manage System)简称LMS,是基於网络的管理系统平台,用於监控学生学习活动行为,识别和预测学困生(student at-risk),并为其提供相应的帮助。大多数LMS包括5个部分:有和课程相关的学习资料、用於确保学生提交作业与完成测试的评价工具、用於沟通的交流工具(如邮件、聊天室等)、用於确保教师记录和存储学生的学习活动并发布活动截止日期的课程管理工具、用於帮助学生学习回顾和跟踪学习进程的学习管理工具。在高校大量使用的BB(Blackboard)平台就是一个常见的学习管理系统。系统记录了学生参与选修的网上课程的种类、在线时长、阅读和浏览的文章数量,反映学习者的学习行为。2008年,Leah P.Macfadyen和Shane Dawson教授在加拿大不列颠哥伦比亚大学通过分析5个本科班级使用BB平台选修生物课的数据,建立了预测模型。平台记录了学生课程材料的使用情况、参与学业交流情况和完成作业提交和考试情况。大数据时代教育数据记录的层级性在这裏充分显现,课程材料的使用包括记录在线时长、邮件的阅读时间、邮件的发送时间、讨论信息的阅读时间等。参与学业交流记录了发布新讨论的时间、回复讨论的时间、使用搜索工具所花的时间、访问个人信息的时间、文件的浏览时间、浏览谁同时在线的时间、浏览网页连结的时间等等。评价模块记录了评价的阅读时长和提交评价的时间等。通过应用统计工具描述散点图,发现了在LMS记录下学生在线时长和学业表现呈相关关系。在进行多元回归时,研究者发现,学业成就处在後四分之一的学生在线时间略长於平均时间,而学业成就处於前四分之一的学生的在线学习时间低於平均水平。紧接着,研究人员为了作出预测,利用逻辑斯特回归生成了一个预测模型,通过收集学生的新的行为数据,预测学生是否处於真正参与了学习活动,并得出如下结论:讨论举行的次数、邮件信息发送量和测评的完成情况这三个维度构成的模型可以预测学生的学业水平情况。

大数据时代,通过探求学生行为与学业水平之间的相关关系,建立模型,实现预测,能够对课堂教学产生重要影响。然而,数据建模过程中,为了保证模型的效度与信度,极端个别数据被处理,使模型只能实现群体行为的预测,不能针对学习者个体实现定制化和个性化。

2.建模与预测的不足

数据建模与预测的背後充分体现了实证主义的思想和方法。19世纪上半叶,以孔德为代表的社会学家提出了实证主义的基本信条:利用观察、分类,探求彼此的关系,得到科学定律。实证主义的哲学思潮到20世纪60年代,演变成一种科技理性,实践知识逐渐染上了工具性的色彩,专业活动存在於工具性的解决问题之中,所有的专业活动都被视为厘定目标、套用已知的方法解决问题的过程。这一期间,大量的学科被系统地整合发展,甚至包括教育学和社会学这样的「软科学」。用证据解决未知的问题,用数据预测未来一时成为潮流。

学生活动行为数据的建模尤其侧重体验实证主义的思想,模型注重成功教学行为的共性,忽视教师与学生群体的独特性需求时,科技理性的主导有可能使课堂教学被视为独立於真实境脉的模块,只要教学行为取得成功,就会被数据抽象化,形成模型,对学生群体行为产生预测。科技理性有赖於人们认同的共有目标,教学实践目标的厘定极其复杂,包含巨大的不确定性和独特性,甚至,由於社会角色的不同,还会带来价值冲突。一个稳定的、为所有人所认同的目标不复存在,依据科技理性精神和方法推理预测的行为模式并不可能满足每一个人的需求,教育变革在大数据时代下出现新的取向。

从数据模型到支持适应性学习

在数据建模的基础上实现教学的适应性是大数据时代促进教育变革的另一成果。数据建模及行为预测依旧属於科技理性指导下的行为模式,可能会造成忽视学生个性需求的现象,而个性化需求正是知识社会的重要特徵,个性化的教育也受到教育研究者、政策制定者和教育实践者越来越多的关注。教育系统设计专家赖格卢斯认为,教育投入没有达到效果的一个很重要的原因是忽视了社会的转型。「社会已经从工业社会步入了资讯时代,劳动力市场对人才的要求不再是工业时代在流水线上操作的工人,而是具有创新性思维、决断力强的知识性人才。」教学面临从产生清一色的劳工转向产生有判断力和适应性能力的人群。2010年,OECD的报告《The Nature Of Learning》中指出,适应性能力(adaptive competence)是21世纪核心竞争力,包括在真实的境脉中灵活并有创造力地使用有意义的知识和技能。吴刚在《大数据时代的个性化教育:策略与实践》中提出了个性化教育的必要性和必然性,指出「只有利用信息技术所提供的强大支持,才有可能真正实现个性化学习」。大数据时代的来临,正是个性化教育发展的一个良好契机。2012年,美国颁布了《通过教育数据挖掘和学习分析促进教与学》,提出大数据时代,通过收集在线学习数据,对数据进行分类和探寻数据之间关联的方式挖掘数据,形成数据模型。通过学生行为和模型的互动,形成适应性学习系统。概言之,我们可以以对行为数据的充分利用为基础,改变教学的内容和进度,构建适应性评价和教学系统,充分实现教育的定制化,满足学生的长尾需求。

1.案例分析:
适应性教学系统又称适应性学习系统,(Adaptive Learning Support System),简称ALSS系统,强调基於资源的主动学习,认为学习不是知识的传递,而是学习者的自我建构。自上世纪90年代以来,研究者开发了不少适应性学习系统,如1998年De Bra开发的AHA系统,2003年,Brandsford和Smith开发的针对任务型学习的MLtutor系统,以及近几年颇受关注的翻转课堂(Flipped Classroom Model)简称FCM系统。

学习者学习相关学科内容时,学习行为被记录跟踪下来,学生的学习行为数据被传送到後台,记录在学习者数据库内,作用於预测模块。预测模块通过改变内容传递模块,再次作用於学习者。在整个过程中,教师、教学管理者起干涉作用。

适应性学习系统是一个交互的动态系统,系统往往会提供给学生一些学习行为建议。奥地利针对学生的问题解决的过程设计了一个适应性学习系统。适应性学习系统的第一步是教育数据挖掘(ecational data mining),简称EDM。数据挖掘的过程包括数据收集、数据预处理、应用数据的挖掘和诠释评价发展结果。Moodle提出了CMS数据挖掘系统(Course Management System)。研究者先使用原始数据进行建模,第一步是原始数据的收集,原始数据大约包含2007年73名用户产生的28000活动例子,2008年97名用户产生的265000份解决问题的案例和2009年45名用户产生的115000个活动案例。除了记录学生解答问题时产生的数据,原始数据还收集了学生的信息、问题的信息和解决问题的步骤;在对数据进行分类後,归纳出问题解决的类型,利用很擅长拟合连续数据的Markvo Models(MMs)的一个子模型DMMs拟合了如上的连续性数据,通过添加判断学生学习行为的结果模型和一系列监控和调节模块,构成了整个面向问题解决的适应性系统。当学生使用这个模型时,模型会根据学生的行为数据为学生提供他们所偏爱的解决问题的过程与方法。

除了适应性教学系统,还有适应性评测系统。LON-CAPA(Learning Online Network with Computer-Assisted Personalized Approach)是一个计算机辅助的个性化网络学习测评平台,平台不提供课程设计和课程目标,而是一个教学工具。CAPA通过後台记录学生的基本资料,学生参与的互动交流、学业情况,针对学业课程中的疑难点,提供个性化的考试资源。

2.适应性转向的意义

在大数据时代,科技理性指导下的模型预判在面对结构不良的问题时显得应对能力不足。科技理性指导下的数据建模忽视学习的真实境脉,只能支持群体行为的预判,模型的推广可能会使人们忽视其实践成功背後的个体经验与具体情境,从而导致科技理性与哲学思辨对抗。然而,完全依靠哲学思辨和经验进行教学不仅不利於教育学科系统理论性的发展,也不利於课堂实践的管理与教师的培训。唐纳德·A.舍恩提出了一种适应性思维模式。他指出:「如果科技理性的模式在面对『多样』的情境时,是无法胜任、不完整的,甚至更遭的话,那麼,让我们重新寻找替代的、较符合实践的、富有艺术性及直觉性的实践认识。」适应性学习是在系统理论知识的指导下,针对个体差异,使学习内容和活动高度个性化的学习方式。

适应性平衡了理性与经验的两难,英国学者Hargreaves(1996)首次提出基於证据的教育研究向医疗诊断学靠拢。临床诊断学和教育的相似之处在於,他们都要面对变动不居、极其复杂的环境,在这样一个结构不良的系统中,充分意识到客体(患者或者学生)的独特性与共性,利用系统的专业知识解决问题。

Ralf St. Clair教授在参考医学临床实践研究的三要素後提出基於证据的教育研究的三要素——研究的证据、教育工作者的经验、学习者的环境与特点。其中,行为预测关注的是研究的证据,而适应性学习系统的建设则关注的是教育工作者的经验和学习者的环境与特点。

从预测行为到支持适应性教学的转向,是一种人文主义的转向,教育研究的重点从关注研究的证据走向关注教育工作者的经验与学习环境特点,关注以证据支持个性化学习的实践变革。证据不再是其在科技理性时代所处的指导决策的角色,而是被视作一种资源,教育工作者在大量的基於证据的课堂教学决策中找寻最适合自己特点和学生特点的方式,推进课堂教学流程。也就是说,大数据的更重要价值在於支持适应性学习,满足个性化学习和个性化发展的时代需要。数据的预测功能依赖於大数据收集数据的全面性与处理数据的便捷性,根据统计学原理对群体行为做出预测,一定程度上弱化了个体特徵和具体情境。其主要指向行为预判。而适应性是在模型与客体的交互作用上改变模型,如图3所示,数据的适应性运转模型比预测模型多了一个循环(loop until)系统,使其更加契合个人需求,其主要指向实践改进。预测是支持个性化学习的基础,而支持个性化学习是预测功能的深化和转化——从整体人群到个体学习者、从理论模型到实践策略的转化。

分析与启示

大数据时代由於数据量大,数据收集与携带便捷,使海量学生行为数据被挖掘、收集,通过数据建模对学习者行为的分析变得比前大数据时代更为全面和可靠。数据时代在数据的挖掘和预测上固然潜力十足,但是大数据时代更多的价值是满足学习者的适应性长尾需求,在预测行为的基础上,修改教学模式,使之个性化与定制化。从数据建模走向支持适应性教学,支持对象从群体转向了个人,对教育活动的影响从对行为的认识转向了教育活动的实践,从科技理性指导下的去境脉转向了基於真实情境的教学活动。

走向适应性,不仅改变人类行为方式,更重要的是改变了认知方式。前大数据时代人们在科技理性的指导下完全被数据证据左右(driven by the data),教师和学生、教育决策者和学校形成传统社会契约关系,当事人把自己百分之百地交给专业工作人员,而专业工作人员遵守契约,对当事人全心全意地负责,从而使专业工作人员享受至高无上的垄断性地位。大数据时代,教师不再是知识的控制者,他通过参与学生的学习活动,根据学生的先拥知识和认知特点、个性需求,不断地调整教学步骤、教学进度和难度。学生不用完全将自己有如病人交付给医生一般完全托付给教师。在学习的过程中,通过与教师的互动交流,在教师的协助下,成为自己学习的主体,控制并对自己的学习负责。由於教师精力有限,大数据时代下网络计算机辅助学习系统可以为教师和学生提供辅助指导的机会。

尽管如此,一方面,我们要拥抱大数据给我们带来的便捷的生活和高质量的教育,另一方面,我们需要保持警惕和防止因果关系和相关关系的误用,并且维护数据安全。

在推理方面,教育工作者需要警惕将相关关系和因果关系误用,以Leah P.Macfadyen教授的前述案例为例,BB平台在线时间的长短和学生的学业成就有相关关系,而非因果关系,成绩优异的学生在线时间低於平均在线时间,但不能说低於平均在线时间的学习导致学生成绩优异而要求学生减少在线学习时间。

此外,在信息安全方面,学生和教师的大量信息被收集和使用,在使用的过程中,必须制定相关私隐保护法,保证信息的安全,警惕数据滥用。学生的行为数据也不可以作为教师教学评优的依据,让大数据真正成为支持教学变革、提升教学效能、促进学生发展的手段,而不是控制教师和学生的工具。

⑻ 利用大数据教师在课前可以做什么

利用大数据教师在课前可以精准定位教学目标和重难点;采集学生预习数据;进行学情分析。

教育大数据的本质是对教竖兆师教学过程中产生的信息进行的数据量化,它的产生让教学从量的扩张转到质的变革。在传统教学时代,教师教学决策通常依据理论指导的演绎法和经验总结的归纳法。

根据教学过程的不同阶段,教学决策可分为教学前的计划决策、教学中的互动决策、教学后的评价决策。教师依据学情,对课前、课中及课后依据技术手段搜集到的数据信息进行研判和加工并决定接下来的教学决策,在此基础上引导学生行为。

在教育大数据的驱动下,对不同阶段采集到的数据信息进行分析研究可以探究教师教学的过程,实现课堂教学与教育大数据的融合,让教师在课堂教学中的决策具有科学性和有效性。

⑼ .谈谈在大数据时代背景下教育的特点

在大数据时代背景下,教育的特点和发展趋势主要体现在以下几个方面:

大数据技术的应用为教育带来了更多的机会和挑战,未来教育的发展需要在大数据时代的背景下,不断推进教学的数字化、智能化和个性化,同时加强跨界合作和资源共享,实现教育的高质量和可持续发展。

⑽ 大数据时代背景下的教育该如何走

“大数据”是当今最热的概念之一,有人宣称掌握大数据的人可以像上帝一样俯瞰整个世界。进入2012年,大数据一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。

大数据(big data),指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的创新沿着从数据到大数据,再到分析和挖掘,最后是发现和预测的方向发展。随着云时代的来临,大数据也吸引了越来越多的人关注。各行各业更加意识到,谁能率先实现大数据,谁对大数据的挖掘更为深刻,谁就将抢占未来先机。

                                

教育行业也不例外,2013年对于教育来说是传统育研究走向科学实证的重大机遇。值得我们思考的是,大数据将给教育带来什么?如何通过大数据更好的教育学生?大数据对于教育是福还是祸?

翻转课堂、MOOC和微课程是大数据变革教育的第一波浪潮

翻转课堂、MOOC和微课程的出现,改变了传统教育模式,从课堂老师滔滔不绝的讲解,到现在“视频再教育”。学生可以根据个人情况自主制定学习进度,老师可以根据学生在网上做题的情况,有针对性的了解学生学习上遇到的问题。传统课堂不再讲解新课,而成为学生当堂做作业、讲解问题或做实验的场所。

如果说翻转课堂只是一个触角的话,那MOOC的出现就是升华的翻转课堂。“视频再教育”得到进一步的提升,MOOC大规模开放在线课程,面对全球性的MOOC浪潮,中国的大学也开始行动。2013年,上海市率先引入中国式MOOC,推出了“上海高校课程源共享平台”。

MOOC的兴起,使“用视频再造教育”的学习模式迅速推广到高等教育,而且进展到可以通过选修MOOC获得学分、进入正轨教育的程度。清华大学、北京大学也相继开放了在线教育课程。

而微课程是对翻转课堂的回应,是学生自主学习不可或缺的资源。微课程是教学视频浓缩精华的微型课,主要用于学生的前期学习,目前,微课程已开始影响我国中小学信息化教学实践。微课程实践的积累,将导致微课程群的形成,微课程群的应用又会形成新的应用数据,将有利于大数据分析与挖掘、发现与预测的创新应用。可以说,教育领域的改革,首当其冲的就是大数据变革信息化教学。

大数据时代对于教育是福还是祸?

人们还没有来得及搞清楚信息时代是什么,数据时代己悄然来临。在大数据理念面前,大家各抒所见,有些人认为,大数据时代可以让教育者真正读懂学生。

相对于传统数据宏观的教育情况,大数据主要体现在微观层面。大数据使“经验式”教学模式变为“数据服务”教育模式。老师可以根据数据关注每个个体学生的微观表现,通过学生相关数据的分析,有针对性的调整教育方案,从而实现个性化教育。

一些支持大数据教育的人认为,大数据时代的教育将推动传统以“教师为中心”的教学方式向“学生为中心”教学方法的转变,推动“演员型”教师向“导演型”教师转型,从宏观群体走向微观个体,对于教育研究者来说,利用数据可以发现真正的学生。

而另一群人认为大数据是“换汤不换药”,实际上就是用大数据、云计算作为概念来包装以前的东西。虽然在线教育来势汹汹,却有“叫好不叫座”之态。以新东方为例,公开数据显示2012年底新东方在线网站于个人注册用户已逾1000万,而据新东方在线副总裁潘欣介绍,用户愿意付费的额度不高,在2012年新东方付费用户为20万,占比仅为2%。

目前主流的在线教育产品只是将线下的课程录制好搬到线上,这种模式实际上只是线下学习方式的简单复制,这样的学习方法还衍生了一些教育上的新问题:如何保证学习过程不会被中断、怎样确定是学生本人登录学习等。对于在线教育,只有学习主动性和控制力比较好的学生才能利用在线学习取得好的学习效果,而这些方面较弱的人将难以长期坚持,学习效果也可想而知。

阅读全文

与大数据时代的教育决策相关的资料

热点内容
java读取文件指定路径 浏览:754
linux系统ghost 浏览:538
大数据跟编程哪个难 浏览:693
电脑文件内容怎么多选 浏览:589
机顶盒共享文件夹 浏览:286
网络语我什么 浏览:672
生死狙击金币修改器视频教程 浏览:154
汉字编程语言有哪些 浏览:49
access合并多个文件 浏览:562
为什么微信的文件要用第三方打开 浏览:591
华为手机有什么可以编程的软件 浏览:169
北京通app能放什么 浏览:796
在职网站有哪些 浏览:934
nodejs怎么跑起来 浏览:945
jsp中显示当前时间 浏览:236
红米note4设备代码 浏览:460
iPad已越狱忘记密码 浏览:723
如何用sql语句关闭数据库 浏览:27
mac如何卸载程序 浏览:526
原版安装镜像文件路径 浏览:602

友情链接