① 大数据人脸分析案例
大数据人脸分析案例
大数据人脸分析案例,随着社会科技的不断发展,人工技能,人脸识别技术也不断普及到各个领域。人脸识别技术可以在大数据的环境下,极大发挥其强大的作用。下文分享有关大数据人脸分析的内容。
基于特征的方法和基于图像的方法
1、基于特征的方法
技术:基于特征的方法试图找到人脸的不变特征进行检测。其基本思想是基于人类视觉可以毫不费力地检测不同姿势和光照条件下的人脸的观察,因此必须有尽管存在这些变化的属性或特征是一致的。当前已经提出了广泛的方法来检测面部特征,然后推断面部的存在。
示例:边缘检测器通常会提取人脸特征,例如眼睛、鼻子、嘴巴、眉毛、肤色和发际线。基于提取的特征,建立统计模型来描述它们之间的关系并验证人脸在图像中的存在。
优点:易于实施,传统方法
缺点:基于特征的算法的一个主要问题是图像特征可能会由于光照、噪声和遮挡而严重损坏。此外,人脸的特征边界会被弱化,阴影会导致强边缘,这使得感知分组算法无用。
2、基于图像的方法
技术:基于图像的方法尝试从图像中的示例中学习模板。因此,基于外观的方法依靠机器学习和统计分析技术来找到“人脸”和“非人脸”图像的相关特征。学习的特征是以分布模型或判别函数的形式应用于人脸检测任务。
示例:基于图像的方法包括神经网络 (CNN)、支持向量机 (SVMi) 或 Adaboost。
优点:性能好,效率更高
缺点:难以实施。 为了计算效率和检测效率,通常需要降维。这意味着通过获得一组主要特征来考虑降低特征空间的维数,保留原始数据的有意义的属性。
人脸检测方法
已经引入了多种人脸检测技术。
1、开始阶段:人脸检测自 90 年代出现以来一直是一个具有挑战性的研究领域。
2000 年之前,尽管有很多研究,但直到 Viola 和 Jones 提出里程碑式的工作,人脸识别的实际性能还远不能令人满意。 从 Viola—Jones 的开创性工作(Viola and Jones 2004)开始,人脸检测取得了长足的进步。
Viola and Jones 开创性地使用 Haar 特征和 AdaBoost 来训练一个有希望的准确度和效率的人脸检测器(Viola and Jones 2004),这启发了之后有几种不同的方法。 然而,它有几个严重的缺点。首先,它的特征尺寸比较大。另外,它不能有效地处理非正面人脸和框外人脸。
2、早期阶段——机器学习:早期的方法主要集中在与计算机视觉领域的专家一起提取不同类型的手工特征,并训练有效的分类器以使用传统的机器学习算法进行检测。
这些方法的局限性在于它们通常需要计算机视觉专家来制作有效的特征,并且每个单独的组件都单独优化,使得整个检测流程往往不是最佳的。
为了解决第一个问题,人们付出了很多努力来提出更复杂的特征,如 HOG(定向梯度直方图)、SIFT(尺度不变特征变换)、sURF(加速鲁棒特征)和 ACF(聚合通道特征)。检测的鲁棒性,已经开发了针对不同视图或姿势分别训练的多个检测器的组合。然而,此类模型的训练和测试通常更耗时,并且检测性能的提升相对有限。3
3、最新技术 — 深度学习:近年来,使用深度学习方法,尤其是深度卷积神经网络 (CNN) 的人脸识别取得了显着进展,在各种计算机视觉任务中取得了显显著的成功。
与传统的计算机视觉方法相比,深度学习方法避免了手工设计的不足,并主导了许多著名的基准评估,例如 lmageNet大规模视觉识别挑战 (ILSVRC)。
最近,研究人员应用了 Faster R—CNN,这是最先进的通用对象检测器之一,并取得了可喜的成果。此外,CNN 级联、区域提议网络(RPN)和 Faster R—CNN 联合训练实现了端到端的优化,以及人脸检测基准,如 FDDB(人脸数据库)等。
主要挑战
人脸检测面临的困难是降低人脸识别准确率和检测率的原因。
这些挑战是复杂的背景、图像中的人脸过多、奇怪的表情、光照、分辨率较低、人脸遮挡、肤色、距离和方向等。
不寻常的面部表情:图像中的人脸可能会显示出意外或奇怪的面部表情。
照明度:某些图像部分可能具有非常高或非常低的照明度或阴影。
皮肤类型:检测不同人脸颜色的人脸检测具有挑战性,需要更广泛的训练图像多样性。
距离:如果到相机的距离太远,物体尺寸(人脸尺寸)可能太小。
朝向:人脸方向和相机的角度会影响人脸检测率。
复杂的背景: 场景中的大量对象会降低检测的准确性和速度。
一张图像中有很多人脸:一张包含大量人脸的图像对于准确检测率来说非常具有挑战性。
人脸遮挡:人脸可能会被眼镜、围巾、手、头发、帽子等物体部分遮挡,影响检测率。
低分辨率:低分辨率图像或图像噪声会对检测率产生负面影响。
人脸检测应用场景
人群监控:人脸检测用于检测经常光顾的公共或私人区域的人群。
人机交互: 多个基于人机交互的系统使用面部识别来检测人类的存在。
摄影:最近的一些数码相机使用面部检测进行自动对焦等等。
面部特征提取:可以从图像中提取鼻子、眼睛、嘴巴、肤色等面部特征。 、
性别分类: 通过人脸检测方法检测性别信息。
人脸识别:从数字图像或视频帧中识别和验证一个人。
营销:人脸检测对于营销、分析客户行为或定向广告变得越来越重要。
出勤:面部识别用于检测人类的出勤情况, 它通常与生物识别检测结合用于访问管理,如智能门禁。
2014年前后,随着大数据和深度学习的发展,神经网络备受瞩目,深度学习的出现使人脸识别技术取得了突破性进展。深度学习是机器学习的一种,其概念源于人工神经网络的研究,通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
区别于传统的浅层学习,深度学习的不同在于一方面通常有5层以上的'多层隐层节点,模型结构深度大;另一方面利用大数据来学习特征,明确了特征学习的重要性。
随着深度卷积神经网络和大规模数据集的最新发展,深度人脸识别取得了显著进展,基于深度学习的人脸识别技术可以通过网络自动学习人脸面部特征,从而提高人脸检测效率。
从人脸表达模型来看,可细分为2D人脸识别和3D人脸识别。基于2D的人脸识别通过2D摄像头拍摄平面成像,研究时间相对较长,在多个领域都有使用,但由于2D信息存在深度数据丢失的局限性,收集的信息有限,安全级别不够高,在实际应用中存在不足。
早在2019年,就有小学生手举照片“攻破”了快递柜的人脸识别系统。基于3D的人脸识别系统通过3D摄像头立体成像,由两个摄像头、一个红外线补光探头和一个可见光探头相互配合形成3D图像,能够准确分辨出照片、视频、面具等逼真的攻击手段。
根据使用摄像头成像原理,目前3D人脸识别主要有三种主流方案,分别是3D结构光方案(Structured Light)、时差测距技术3D方案(Time Of Flight,TOF)和双目立体成像方案(Stereo System)。基于3D结构光的人脸识别已在一些智能手机上实际应用,比如HUAWEI Mate 20 Pro、iPhone X。
2009年微软推出的Kinect(Xbox 360体感周边外设)则采用了TOF方式获取3D数据,颠覆了游戏的单一操作,为人机体感交互提供了有益探索。双目立体成像方案基于视差原理,通过多幅图像恢复物体的三维信息,由于对相机焦距、两个摄像头平面位置等要求较高,应用范围相对于3D结构光和TOF方案较窄。
除了能够准确识人,精准判断捕捉到的人脸是真实的也至关重要。活体检测技术能够在系统摄像头正确识别人脸的同时,验证用户是本人而不是照片、视频等常见攻击手段。目前活体检测分为三种,分别是配合式活体检测、静默活体检测和双目活体防伪检测。
其中,配合式活体检测最为常见,比如在银行“刷脸”办理业务、在手机端完成身份认证等应用场景,通常需要根据文字提示完成左看右看、点头、眨眨眼等动作,通过人脸关键点定位和人脸追踪等技术,验证用户是否为真实活体本人。
人脸与人体的其他生物特征(如指纹、虹膜等)一样与生俱来,它的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提。随着大数据和深度学习的不断发展,人脸识别效率显著提升,为远程办理业务的身份认证环节提供了可靠保障。
但与此同时,人脸信息保护、隐私安全等问题也应引起重视。随着《个人信息保护法》《数据安全法》及相关司法解释的出台,国家相关部门以及各种机构对个人信息安全问题的重视,有利于引导人脸识别技术的发展方向,为促进行业高质量发展、创造高品质数字生活提供有力支撑。
人脸识别的应用场景在大范围扩展:
金融领域:远程银行开户、身份核验、保险理赔和刷脸支付等。人脸识别技术的接入,能有效提高资金交易安全的保障,也提高了金融业务中的便捷性。
智慧安防领域则是为了视频结构化、人物检索、人脸布控、人群统计等软硬件一体形态产品提供基础支撑,重点应用于犯罪人员的识别追踪、失踪儿童寻找、反恐行动助力等场景。实现重点人员的识别及跟踪,在公安应用场景中达到事前预警、事中跟踪、事后快速处置的目的。
交通领域主要包括1:1人脸验证和1:N人脸辨识,目前利用人脸核验验证技术的刷脸安检已进入普遍应用阶段,在高铁站、普通火车站和机场皆已大面积推广。
而应用1:N人脸比对技术的刷脸支付主要落地在地铁公交等市内交通,这种技术能够极大提高通勤人员的出行效率,释放大量的人力资源,提升出行体验。同时,人脸识别可以对交通站点进行人流监测,根据人员出行规律预测人流高峰,提前做好疏导预案。
民生政务方面,人脸识别在政务系统的落地,提升了民众的办事效率,公民可以不用窗口排队,实现自助办事,节省了因人工效率低下产生的耗时。部分政务还可以通过在线人脸识别验证,在移动端线上办理,减轻了“办事来回跑、办事地点远、办事点分散”的困扰。
智能家居方面,主要应用在安全解锁和个性化家居服务两个场景。
在线教育领域则是通过人脸识别查验学员身份,避免一账号多个人使用,给网校造成损失,另一用途是帮助在线课堂老师了解学生学习状态,弥补网络授课相较于传统授课在师生交流环节上的不足。
商业领域,利用人脸识别功能实现各种极具创意的互动营销活动。
凡事都有两面。即便拥有以上优势,因人脸暴露度较高,相比对其他生物特征数据更容易实现被动采集,这也意味着人脸信息的数据更容易被窃取,不仅可能侵犯个人隐私,还会带来财产损失。大规模的数据库泄露还会对一个族群或国家带来安全风险。
在南方都市报个人信息保护研究中心发布的《人脸识别应用公众调研报告(2020)》中,其对两万份调研报告进行统计,问卷中就“便捷性”与“安全性”设置了量表题,请受访者分别依据前述10大类场景中的使用感受进行打分。
1分为最低分,5分为最高分。结果显示,在安全性感受方面,受访者给出的分数则明显偏低,体现出他们对安全风险的忧虑态度。
② 大数据应用案例有哪些
1:在09年流感爆发的时候,google通过对人们输入词条的分析,挖掘出了有效及时的指示标,比通过层层收集的官方数据惊人很多。
2.Farecast通过对于机票数据的趋势变化情况,提供票价预测的服务,目前公布准确度高达75%,现在被微软收购,整合在了bing的搜索中。
3.Xoom是从事跨境汇款业务的公司,处理过的一个案例是,单独看一笔交易是合法的,但是重新检查了所有的数据之后,发现犯罪集团正在进行咋骗。
③ 企业大数据实战案例
企业大数据实战案例
一、家电行业
以某家电公司为例,它除了做大家熟知的空调、冰箱、电饭煲外,还做智能家居,产品有成百上千种。在其集团架构中,IT部门与HR、财务等部门并列以事业部形式运作。
目前家电及消费电子行业正值“内忧外患”,产能过剩,价格战和同质化现象严重;互联网企业涉足,颠覆竞争模式,小米的“粉丝经济”,乐视的“平台+内容+终端+应用”,核心都是经营“用户”而不是生产。该公司希望打造极致产品和个性化的服务,将合适的产品通过合适的渠道推荐给合适的客户,但在CPC模型中当前只具备CP匹配(产品渠道),缺乏用户全景视图支持,无法打通“CP(客户产品)”以及“CC(客户渠道)”的匹配。
基于上述内外环境及业务驱动,该公司希望将大数据做成所有业务解决方案的枢纽。以大数据DMP作为企业数据核心,充分利用内部数据源、外部数据源,按照不同域组织企业数据,形成一个完整的企业数据资产。然后,利用此系统服务整个企业价值链中的各种应用。
那么问题来了,该公司的数据分散在不同的系统中,更多的互联网电商数据分散在各大电商平台,无法有效利用,怎么解决?该公司的应对策略是:1)先从外部互联网数据入手,引入大数据处理技术,一方面解决外部互联网电商数据利用短板,另一方面可以试水大数据技术,由于互联网数据不存在大量需要内部协调的问题,更容易快速出效果;2)建设DMP作为企业统一数据管理平台,整合内外部数据,进行用户画像构建用户全景视图。
一期建设内容:技术实现上通过定制Spark爬虫每天抓取互联网数据(主要是天猫、京东、国美、苏宁、淘宝上的用户评论等数据),利用Hadoop平台进行存储和语义分析处理,最后实现“行业分析”、“竞品分析”、“单品分析” 三大模块。
该家电公司大数据系统一期建设效果,迅速在市场洞察、品牌诊断、产品分析、用户反馈等方面得到体现。
二期建设目标:建设统一数据管理平台,整合公司内部系统数据、外部互联网数据(如电商数据)、第三方数据(如外部合作、塔布提供的第三方消费者数据等)。
该公司大数据项目对企业的最大价值是将沉淀的数据资产转化成生产力。IT部门,通过建设企业统一的数据管理平台,融合企业内外部数据,对于新应用快速支持,起到敏捷IT的作用;业务部门,通过产品、品牌、行业的洞察,辅助企业在产品设计、广告营销、服务优化等方面进行优化改进,帮助企业进行精细化运营,基于用户画像的精准营销和个性化推荐,帮助企业给用户打造极致服务体验,提升客户粘性和满意度;战略部门,通过市场和行业分析,帮助企业进行产品布局和战略部署。
二、快消行业
以宝洁为例,在与宝洁中国市场部的合作中发现,并不是一定要先整合内外部数据才能做用户画像和客户洞察。宝洁抓取了主流网站上所有与宝洁评价相关的数据,利用语义分析和建模,掌握不同消费群体的购物喜好和习惯,仅仅利用外部公开数据,快速实现了客户洞察。
此外,宝洁还在渠道管理上进行创新。利用互联网用户评论数据进行社群聆听,监控与宝洁合作的50个零售商店相关的用户评论,通过线上数据进行渠道/购物者研究并指导渠道管理优化。
实现过程:
1、锁定微博、大众点评等互联网数据源,采集百万级别消费者谈及的与宝洁购物相关内容;
2、利用自然语言处理技术,对用户评论进行多维建模,包括购物环境、服务、价值等10多个一级维度和50个二级维度,实现对用户评论的量化;
3、对沃尔玛、屈臣氏、京东等50个零售渠道进行持续监控,结果通过DashBoard和周期性分析报告呈现。
因此,宝洁能够关联企业内部数据,更有效掌握KA渠道整体情况,甚至进一步掌握KA渠道的关键细节、优势与劣势,指导渠道评级体系调整,帮助制定产品促销规划。
三、金融行业
对于消费金融来说,家电、快消的案例也是适用的,尤其是精准营销、产品推荐等方面。这里主要分享征信风控方面的应用。显然,互联网金融如果对小额贷款都像银行一样做实地考察,并投入大量人力进行分析评判的话,成本是很高的,所以就有了基于大数据的批量的信用评分模型。最终目的也是实现企业画像和企业中的关键人物画像,再利用数据挖掘、数据建模的方法建立授信模型。宜信的宜人贷、芝麻信用等本质上就是这个架构。
在与金融客户的接触中发现,不论银行还是金融公司,对外部数据的需求都越发迫切,尤其是外部强特征数据,比如失信记录、第三方授权后的记录、网络行为等。
以上是小编为大家分享的关于企业大数据实战案例的相关内容,更多信息可以关注环球青藤分享更多干货
④ 有哪些大数据分析案例
三个领域大数据应用案例分析
1、无人驾驶汽车。汽车非常昂贵,然而在欧洲,人们只有4%的时间在使用汽车,96%的时间把车停在停车场,这是非常不高效的系统。如果未来普及了无人驾驶的汽车,我们就可以过上另一种生活。
我们将只需要在手机上点一个按键,车就会自己开过来,把我们带去目的地。这种车就像没有驾驶员的出租车,可以被反复使用,效率和可持续性都得到了提升,也避免了资源浪费。
有研究发现,如果自动机动车得到普及,可以减少25%的交通拥堵,减少30%的城市停车场面积。如果北京减少30%的停车场需求,城市生活将大不一样。
2、医疗行业。我们的寿命现在都比较长了,但仍然希望能够更长。现在,我们的医疗水平并不是很好,由于我们忽视了每一个人的个体差异,医生会用通常的方法治疗每一个人。然而,基于大数据,我们可以做精确医疗,通过大数据分析每个人的差异,进行精确的治疗、剂量、用量,让患者更快恢复健康。
3、教育行业。我们要让下一代有能力了解这个世界。然而,因为没有数据,我们难以做到因材施教,所有孩子获得同样的教学,学习同样的书本。低效率的教学就是在浪费脑力、知识和我们解决问题的能力。
如果我们用大数据去分析孩子在发展学习能力时遇到的问题,就可以进行个性化的学习,就可以释放知识和理解力的力量,让每一个孩子充分开发潜能。
-
⑤ 什么是大数据,大数据的典型案例有哪些
随着大数据时代的到来,大数据早已被逐步的运用在我们生活中的方方面面,那么除了之前众所周知的大数据杀熟事件,对于大数据你还了解多少呢?科学运用案例你又知道多少?今天就跟随千锋小编一起来看看。
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
……
种种的案例实在是太多,或许我们永远说不完一样,所以我们就来看一看大数据被科学运用的一个经典案例:
“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
其实大数据,其影响除了以上列举的方面外,它同时也能在经济、政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。
⑥ 关于大数据应用有什么例子
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。
有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
⑦ 大数据应用案例有哪些
案例如下:
1、交通大数据畅通出行
交通作为人类行为的重要组成和重要条件之一,对于大数据的感知也是最急迫的。近年来,我国的智能交通已实现了快速发展,许多技术手段都达到了国际领先水平。交通的大数据应用主要在两个方面,一方面可以利用大数据传感器数据来了解车辆通行密度,合理进行道路规划包括单行线路规划。另一方面可以利用大活数据来实现即时信号灯调度,提高已有线路运行能力。
2、教育大数据因材施教
在课堂上,数据不仅可以帮助改善教育教学,在重大教育决策制定和教育改革方面,大数据更有用武之地。利用数据来诊断处在辍学危险期的学生、探索教育开支与学生学习成绩提升的关系、探索学生缺课与成绩的关系。
3、环保大数据对抗PM2.5
在美国NOAA(国家海洋暨大气总署)其实早就在使用大数据业务。每天通过卫星、船只、飞机、浮标、传感器等收集超过35亿份观察数据。收集完毕后,NOAA会汇总大气数据,海洋数据,以及地质数据,进行直接测定,绘制出复杂的高保真预测模型,将其提供给NWS(国家气象局)做出气象预报的参考数据。
大数据特点
1、大容量
例如,IDC最近的报告预测到2020年,世界数据量将扩大50倍.目前,大数据的规模仍然是不断变化的指标,单一数据集的规模范围从数十TB到数PB不同.简单来说,存储1PB数据需要2万台配备50GB硬盘的PC.此外,各种意想不到的来源可以产生数据。
2、多样性
数据多样性的增加主要是由于网络日志、社交媒体、网络检索、手机通话记录、传感器网络等数据类型。
3、高速
高速描述的是数据创建和移动的速度.在高速网络时代,通过实现软件性能优化的高速计算机处理器和服务器,创建实时数据流已成为流行趋势.企业不仅要知道如何快速创建数据,还要知道如何快速处理、分析和返回用户,以满足他们的实时需求。
⑧ 大数据有哪些具体的应用案例
大数据有具体的应用案例还是很多的,比如 :
1、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
2. Tipp24 AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。
3. 沃尔玛的搜索。自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。
4. 快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。
5. Morton牛排店的品牌认知。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。
6. PredPol Inc.。PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。
7. Tesco PLC(特易购)和运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。
8. American Express(美国运通,AmEx)和商业智能。以往,AmEx只能实现事后诸葛式的报告和滞后的预测。“传统的BI已经无法满足业务发展的需要。”Laney认为。于是,AmEx开始构建真正能够预测忠诚度的模型,基于历史交易数据,用115个变量来进行分析预测。该公司表示,对于澳大利亚将于之后四个月中流失的客户,已经能够识别出其中的24%。
⑨ 生活中的大数据有哪些例子
一、在金融行业的应用
金融行业应该是运用大数据技术最频繁的一个行业,证券和银行经常会运用大数据技术进行数据分析,通过对数据的监控和分析,有效规避风险。
金融行业面临的行业挑战有很多,证券欺诈预警,超高金融分析,信用卡欺诈和企业信用风险等一系列数据数据风险挑战,行业内面临的种种问题,都需要大数据发挥其预测的核心功能,有效规避风险。
二、在娱乐媒体的运用
大数据行业在各个行业都有涉足,举一个简单的例子,通过社交媒体明星粉丝数量分析和行业内新闻动态,可以预测影视视频的播放量和受喜爱程度;通过智能产品的点击数量和浏览量,可以推测用户的个性偏好,并且推荐其喜爱的产品。
前段时间大火的美剧《纸牌屋》,通过大数据分析,选取适合网友的视频偏好和明星选择,造成轰动的播放量。大数据在社交媒体和娱乐行业的大数据分析,一部分也在引导观众和粉丝,让其为娱乐产业消费。
三、在医疗行业的运用
iPhone用户手机上都有这个功能,通过健康APP里的健康步数统计和锻炼情况,为你记录你的健康状况,并且预测可能发生的疾病,这就是在运用大数据技术,通过一系列的记录分析,预测可能要发生的事情并且及时解决。
医疗行业可以通过用户的身体情况和大量病例数据,分析提高医疗行业的监控力度,并且进行有效检测,降低用户的患病率。
四、提高体育成绩
现在很多运动员在训练的时候应用大数据技术来分析。很多精英运动队还追踪比赛环境外运动员的活动-通过使用智能技术来追踪其营养状况以及睡眠,以及社交对话来监控其情感状况。
五、医疗保健
大数据可以更好的去理解和预测疾病。人们戴上智能手表等可以产生的数据一样,大数据同样可以帮助病人对于病情进行更好的治疗。大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
大数据技术目前已经在医院应用监视早产婴儿和患病婴儿的情况,通过记录和分析婴儿的心跳,医生针对婴儿的身体可能会出现不适症状做出预测。
⑩ 有哪些大数据分析案例
如下:
1. 大数据应用案例之:医疗行业
1)Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
2)大数据配合乔布斯癌症治疗
乔布斯是世界上第一个对自身所有DNA和肿瘤DNA进行排序的人。为此,他支付了高达几十万美元的费用。他得到的不是样本,而是包括整个基因的数据文档。医生按照所有基因按需下药,最终这种方式帮助乔布斯延长了好几年的生命。
2. 大数据应用案例之:能源行业
1)智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。
通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。
因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
2)丹麦的维斯塔斯风能系统(Vestas Wind Systems)运用大数据,系统依靠的是BigInsights软件和IBM超级计算机,分析出应该在哪里设置涡轮发电机,事实上这是风能领域的重大挑战。在一个风电场20多年的运营过程中,准确的定位能帮助工厂实现能源产出的最大化。
为了锁定最理想的位置,Vestas分析了来自各方面的信息:风力和天气数据、湍流度、地形图、公司遍及全球的2.5万多个受控涡轮机组发回的传感器数据。这样一套信息处理体系赋予了公司独特的竞争优势,帮助其客户实现投资回报的最大化。
3. 大数据应用案例之:通信行业—通过大数据分析挽回核心客户
法国电信-Orange集团旗下的波兰电信公司Telekomunikacja Polska是波兰最大的语音和宽带固网供应商,希望有效的途径来准确预测并解决客户流失问题。
他们决定进行客户细分,方法是构建一张“社交图谱”- 分析客户数百万个电话的数据记录,特别关注 “谁给谁打了电话”以及“打电话的频率”两个方面。“社交图谱”把公司用户分成几大类,如:“联网型”、“桥梁型”、“领导型”以及“跟随型”。
这样的关系数据有助电信服务供应商深入洞悉一系列问题,如:哪些人会对可能“弃用”公司服务的客户产生较大的影响?挽留最有价值客户的难度有多大?运用这一方法,公司客户流失预测模型的准确率提升了47%。
4、大数据应用案例之:零售业—大数据帮零售企业制定促销策略
北美零售商百思买在北美的销售活动非常活跃,产品总数达到3万多种,产品的价格也随地区和市场条件而异。由于产品种类繁多,成本变化比较频繁,一年之中,变化可达四次之多。
结果,每年的调价次数高达12万次。最让高管头疼的是定价促销策略。公司组成了一个11人的团队,希望透过分析消费者的购买记录和相关信息,提高定价的准确度和响应速度。
定价团队的分析围绕着三个关键维度:
1)数量:团队需要分析海量信息。他们收集了上千万的消费者的购买记录,从客户不同维度分析,了解客户对每种产品种类的最高接受能力,从而为产品定出最佳价位。
2)多样性:团队除了分析了购买记录这种结构化的数据外,他们也利用社交媒体发帖这种新型的非结构化数据。由于消费者需要在零售商专页上点赞或留言以获得优惠券,团队利用情感分析公式来分析专页上消费者的情绪,从而判断他们对于公司的促销活动是否满意,并微调促销策略。
3)速度:为了实现价值最大化,团队对数据进行实时或近似实时的处理。他们成功地根据一个消费者既往的麦片购买记录,为身处超市麦片专柜的他/她即时发送优惠券,为客户带来便利性和惊喜。
透过这一系列的活动,团队提高了定价的准确度和响应速度,为零售商新增销售额和利润数千万美元。
5、大数据应用案例之:网络营销行业(SEM)
很多企业在做SEM的过程中,都有这样的感触:每年都会花费大量的预算在SEM推广中,但是因为关键词投入产出无法可视化,常常花了很多钱却不见具体的回报。
在竞争如此激烈的SEM市场中,企业需要一个高效的数据分析工具来尽可能地帮企业优化SEM推广,例如BDP,来帮企业节省不必要的支出,提升整体的经营绩效。
企业可借助数据平台提供的网络营销整合解决方案,打通各个搜索引擎营销(SEM)、在线客服系统和CRM系统,营销竞价人员无需掌握复杂的编程技术,简单拖拽即可生成报表,观察每一个关键词的投入和产出,分析每一个页面的转化,有效降低投放成本。
通过BDP实况分析数据,可以快速洞悉对手关键词的投放时段、地域及排名,并对其进行可视化的分析,实时监控自己和竞争对手的投放情况,了解对手的投放策略,支持自定义设置数据更新的时间点、监控频次和时段,及时调整策略。知已知彼,才能百战不殆。
6、大数据应用案例之:电商行业
意料之外:胸部最大的是新疆妹子。曾经淘宝平台显示,中国女性购买最多的文胸尺码为B罩杯。B罩杯占比达41.45%,其中又以75B的销量最好,其次是A罩杯,购买占比达25.26%,C罩杯只有8.96%。
虽然淘宝数据平台不能代表一切,但是结合现实来看,这个也具有普遍的代表性,只能感慨中国女性普遍size。在文胸颜色中,黑色最为畅销,黑色绝对是百搭,每个女性必备。
从省市排名,胸部最大的是新疆妹子。这些数据都对于文胸店铺而言是很好的参考,为店铺的库存、定价、款式选择等策略都有奠定数据基础。
7、大数据应用案例之:娱乐行业
微软大数据成功预测奥斯卡21项大奖。2013年,微软纽约研究院的经济学家大卫•罗斯柴尔德(David Rothschild)利用大数据成功预测24个奥斯卡奖项中的19个,成为人们津津乐道的话题。
今年罗斯柴尔德再接再厉,成功预测第86届奥斯卡金像奖颁奖典礼24个奖项中的21个,继续向人们展示现代科技的神奇魔力。
总的来说,大数据的终极目标并不仅仅是改变竞争环境,而是彻底扭转整个竞争环境,带来新机遇,企业需要应势而变。企业只有认识到这一点,使用合适的数据分析产品、聪明地使用和管理数据,才能在长期竞争中成为终极赢家。