导航:首页 > 网络数据 > 大数据背景下是否需要统计调查问卷

大数据背景下是否需要统计调查问卷

发布时间:2023-04-08 16:47:07

大数据时代背景下,企业还需要问卷调查吗

大数据是大企业的玩儿法,需要有庞大的用户群体产生的大规模数据版。
随着数据清洗、权数据分析技术的完善,拥有海量数据的大型互联网公司基本可以抛弃问卷了。题主所说的企业应该是包含了所有的企业,说到这里您应该明白了,没有海量数据积累和流量的公司和大数据是基本没有关系的。
当然了,非要让自己大数据一下的话也不是没有办法,去买啊!要是有技术的话,可以买来数据自己分析;要是没有技术的话,可以直接买别人分析得出的结论。这个问卷调查之后统计分析得出结论并没有什么区别,只是样本容量不在一个数量级而已;若是去买别人家分析好的结论,那与传统的请咨询公司是差不多的啊。
太阳底下没有新鲜事......

② 大数据与统计学的关系

大数据与统计学的关系:统计学是大数据的三大基础学科之一,所以统计学与大数据之间的关系还是非常密切的,但是这也导致一部分人产生了一定的误解,认为大数据就是统计学,统计学就是大数据。

实际上,虽然在大数据时代背景下,统计学的知识体系产生了一定程度的调整,但是统计学本身的理念与大数据还是具有一定区别的,统计学注重的是方式方法,而大数据则更关注于整个数据价值化的过程,大数据不仅需要统计学知识,还需要具备数学知识和计算机知识。从另一个角度来说,统计学为大数据进行数据价值化奠定了一定的基础。

其实对于很多职场人来说,平时大部分的数据分析任务都是基于统计学理论进行的,包括采用的数据分析工具也都属于统计学领域的范畴。

从未来的发展趋势来看,一方面统计学会进一步向大数据倾斜,包括目前不少统计学专业的研究生课题,都逐渐开始向大数据方向拓展,另一方面大数据会在发展的初期大量采用统计学相关理论和技术,这也能够提升大数据相关技术的落地应用能力。

③ 如何利用大数据思维来进行用户调研

如何利用大数据思维来进行用户调研

传统的产品调研,通常需要先行选定用户样本,之后耗费大量人力物力采用不同的调研方法,进行用户调研。如果把大数据应用到用户调研当中,凭借着海量的历史数据样本,对于调研问题,可以借助大数据进行预分析处理,之后再进行人工选择性介入处理,不仅可以提高用户调研的效率,以最快的速度响应用户需求,而且可以极大的降低用户调研的成本。基于此,本文试图利用大数据思维,来解读大数据时代下用户调研的新变化。

说明:本文提供的仅仅是大数据时代下,用户调研的思路。如果有具体的用户调研需求,欢迎向笔者提出,笔者将在下篇推文中,进行具体案例的探讨。

大数据作为一种生产资料,正在越来越深入的影响着人类社会。现在,大数据在电商领域,通过根据相似消费者的商品偏好,向顾客推荐更符合其个人喜好的商品,这一推荐方式不仅仅省去了消费者寻找商品的时间,更是提高了电商平台的收入。

同理,在音乐、电视剧、电影,广告投放、用户调研等领域,大数据的可用武之地也越来越广。那么,大数据时代给用户调研方式带来了哪些改变呢?

大数据被广泛应用以前,传统的用户调研方式,通常需要经过界定调研问题、制定调研计划、综合调研方法、设计调研问卷、总结调研结果这5个步骤。

但是,大数据被广泛应用以后,凭借着海量的历史数据样本,对于调研问题,可以借助多种公开的大数据工具进行预分析处理,之后再进行人工选择性介入处理,将二者进行比对,进行多轮TEST,帮助产品人员发现问题的真相。

一、设置出优秀的调研问题,调研便成功了一半

设置调研问题,处于整个调研的第一个环节,其重要性自然不言而喻。比如某些产品经理可能会提出“用户为什么不接受视频付费”,或者“是否有足够的用户愿意支付15元/月来观看正版高清视频,如果是更低或者更高的价格呢?”前一个调研问题过于宽泛,而后一个调研问题却又界定的过于单一。

如果将调研问题界定为:

哪一类用户最有可能使用视频网站的付费服务?视频网站不同档位的价格,分别会有多少用户愿意支付?所有视频网站中,会有多少用户会因为这项服务而选择该视频网站?相对于视频付费,如广告主赞助,这一方式的价值何在?

当然,并非所有调研的调研内容都能如此具体明了:

有些属于探索性研究,这类调研的目的在于找出问题的真相,提出可能的答案,或新的创意;

有些属于描述性研究,这类调研重在描述项目内容的某些数量特征;

还有一些是因果性研究,这种调研的目的是检测现象之间是否存在因果关系。

二、根据调研问题,进行大数据预分析处理

大数据的魅力在于采集的不是样本数据,而是全部数据。例如滴滴推出滴滴外卖服务、美团推出美团打车业务,得益于现代社交网络的发达程度,滴滴和美团几乎可以对微博、微信等社交媒体上的对于新推出服务的议论进行统计分析,从而提供更好的服务。

例如,可以通过网络指数了解网友对于此项服务的搜索行为,同时进行跟踪分析:

当然并不是所有的网友都会使用网络搜索,他们也有可能使用360搜索,这时就要借助360指数:

又或者用户采取其他方式来表达情绪和想法,比如社交媒体微博、微信,可能就会用到微博指数,第三方舆情监测和口碑分析工具,借助新浪微舆情进行口碑分析和文本挖掘:

说明:以上的大数据工具,仅列举了常用的3种。在实际操作中,大数据工具的选择,还需要根据用户具体的调研问题来确定。

三、人工介入,对调研问题进行针对性处理

可以根据大数据分析结果,人工介入到调研问题上来,进行有针对性的调研处理,这时候可以采用传统的调研方法。但是与以往不同的是,在采用这些调研方法时,不需再耗费大量成本进行种种调研。选择人工介入的目的,是为了更真实的感受调研过程,参与调研问题的处理上来。

传统的调研方法,通常有以下4种方式:

1.观察法

这种方法是采取不引人注目的方式,来观察消费者使用产品的情形,以收集最新数据资料。某些战略咨询公司在做调研时,十分信奉观察法。

下面是国内知名的营销咨询公司,华与华在《超级符号就是超级创意》里关于这一方法运用的片段,了解一下:

“比如你在超市里观察牙膏的消费,观察走到牙膏货架前的人,你会看到这样的一个过程:一个顾客推着购物车走过来,一边走一边浏览货架上的牙膏;停下来,注目于一盒牙膏片刻,继续往前走;停下来,拿起一盒牙膏,看后放下;又拿起一盒看看,再翻过来,仔细看包装,背后的文案放回货架;往前走两步,掉头回到最开始注目的那盒牙膏,仔细看看,包装背后的文案,放回货架;快步走回,第四步看的那盒牙膏仍进购物车里,选择结束。”

“不,没结束,他可能过一会儿会折回来,把刚才放进购物车里的牙膏放回货架,换成第二步注目的那盒,也可能两盒都要。这样你就观察到他买牙膏的整个过程,竟然有七个动作。”

2.焦点小组访谈法

这是一种基于人口统计特征、心理统计特征和其他因素的考虑,仔细的招募六到十个人,然后将他们召集在一起,在规定时间内与这些参与者进行讨论的一种调研方式,参与者通常可以得到一些报酬。

调研人员通常坐在座谈是隔壁的,装有单面镜的房间内,对座谈会的讨论过程进行观察。必须要注意的是:实时焦点小组访谈时,必须让参与者尽可能的感受到气氛轻松,力求让他们说真话。

3.行为资料分析法

用户在使用产品时所产生的种种行为都可以用来观察用户的心理,调研人员通过分析这些数据,可以了解用户的许多情况。

用户的浏览时长和浏览内容可以反映用户的实际偏好,它比用户口头提供给调研人员的一些陈述更为可靠。

4.实验法

通过排除所有可能影响观测结果的因素,来获得现象间真正的因果关系。

比如视频网站,向用户提供高清视频服务,第一季度只收费25元每月,第二季度收费15元每月。如果两次不同价格的收费,使用该服务的用户没有差异,那么视频网站就得不出如下结论:较高的服务费用会显著影响用户观看收费视频的意愿。

四、调研方法确定以后,就可以着手调研问卷的设计了

设置调查问卷,是为了收集一手资料。不过,由于问卷中问句的格式、次序和问句的顺序都影响问卷的填答效果,所以对问卷中的问句进行测试和调整是非常必要的。

问卷设计的注意事项:

五、总结调研结果

将大数据统计预分析得到的结果,同产品调研人员实际调研得出的结果,进行比对,从而将数据和信息转换成发现和建议。

最后,大功告成,根据市场调研所得的结果,就可以制定具体的营销决策。

说明:由于在这个过程中,运用传统调研方式,无需耗费大量人力物力,对于可疑结果,可以通过控制变量的方式,进行多轮TEST,帮助产品人员真正发现调研问题的真相。

④ 问卷调查法和大数据方法的区别和联系

问卷调查法和大数据方法是两种不同的数据采集和分析方法,它们的区别和联系如下。
1、区别是亏燃数据来源,问卷调查法是通过人工设计问卷,针对特定人群进行调查,获得的数据是定性或定量数据,而大数据方法是通过互联网,传感器等自动化手段,收集大量的结构化和非结构化数据
2、数据量,问卷调查法获得的数据量相对较小,适用于小样本量的研究,而大数据方法获得的数据量非常大,涵盖全国甚至全球的数据,适用于大样本量的研究。
3、数据分析,问卷调查法需要对获得的数据进行清旅销洗,分类和统计分析等,需要人工干预,而大数据方法利用机器学习等拆空游技术,自动化地对数据进行处理和分析,减少人工干预。
4、联系是数据分析,问卷调查法和大数据方法都需要对获得的数据进行分析和处理,从而获得有用的信息和结论。
5、数据应用,问卷调查法和大数据方法都可以应用于市场调研,社会调查,医学研究等领域,为决策提供参考和支持。

⑤ 大数据时代,问卷调查是否有存在的必要

还是需要吧,问卷调查是一种信息收集的方式,而不论抽样调查还是普查(回大数据),只是答范围的问题。比如针对一个产品的满意度,什么大数据时代,也不会所有人都主动写一份满意度调查给你,即使你针对所有用户都发放了问卷,也不可能所有人都回答,总有抽样的存在!

⑥ 大数据时代传统社会调查过时了吗

进入大数据时代,现代网络信息技术与智能设备的普及与运用,给传统社会调查方法带来挑战。有学者提出,与通过数据挖掘技术获得海量信息相比,传统社会调查所获取的信息不过是“小数据”。由此引发学界争议:大数据时代是否还需要传统社会调查?在大数据技术与方法广泛应用的时代,传统社会调查方法如何彰显其独特价值?近日,中国社会科学报记者就此采访了相关学者。
大数据技术方便数据采集分析
“移动互联网使得社会行动者的态度、行为被迅速信息化,并被互联网设备记录下来,为科研人员的相关研究提供了以往的信息收集手段无法采集的大量信息。同时也大大提高了人类记录和采集相关信息的能力,极大降低了获取某些信息的成本。”中国人民大学社会与人口学院副教授李丁说。
大数据技术改变了数据的获取、处理和理解方式。据西安交通大学公共政策与管理学院执行院长杜海峰分析,数据获取方式从收集问卷或访谈变成了网络、多媒体等多技术手段的综合运用,更重要的是对象的变化,传统的方法需要科学地从母体中抽样,大数据的数据获取对象可能直接就是母体;数据处理方式从传统的属性数据分析方法,过渡到基于结构的、以智能信息处理为主的综合集成分析;数据理解方式,由传统的统计因果发展到以“相关”特别是不同信息之间关系“凸显”规律的解析。
在哈尔滨工业大学社会学系教授唐魁玉看来,大数据技术不仅在收集数据、整理数据和分析数据上具备优势,而且其带来的巨量交互性数据能够为社会问题的整体性分析提供有效证据。这些变革正在为社会学重新整体性回归“社会事实”奠定新方法论基础,同时也无疑给传统的问卷和深度访谈调查方法带来挑战。
社会调查方法具有特殊优势
既然大数据技术在信息获取与分析领域具有如此凸显的优势,是否意味着传统社会调查将被取代呢?受访学者并不赞同此类观点。
一方面与传统信息采集方式相比,大数据技术目前仍有其局限性;另一方面传统信息采集方式仍具有独特价值。唐魁玉分析说,以抽样调查为例,在一些案例中,抽样调查更加适用于那些有“遗失”的数据和代表性样本。在面对复杂性、人际性社会问题的分析时,大数据方法还不够细致入微。
“大数据一个非常重要的特征是‘价值密度低’,数据内容可能并不是特定研究者所关心的,因此不一定都能满足特定问题研究的需要。”杜海峰提出,对于大数据获得的信息,传统社会调查不但是其必要的补充,也是专项研究更为必要的基础资料。
大数据技术所获取的信息相当于普查和非概率样本,尽管如此,大数据也并非没有边界,如果不能认识或约定其界限,数据虽大,却不能用于科学研究。如李丁所分析,被互联网、智能设备感知和记录的社会行动者并不能覆盖全部的行动者。如果认识不到大数据的覆盖率或者代表怎样的群体,即便样本规模再大,得出来的知识和规律也有可能是误导性的。
此外,大数据的边界还在于变量意义上。“不同企业和研究单位根据其自身需要所采集的数据虽有很大的样本量,但每个样本的变量信息很少。如果不能将这些不同类型的数据库信息串并起来,增加变量即各个研究对象的有效信息量,那么研究价值也非常有限。”李丁说。
李丁认为,传统社会调查获得的信息密度非常高,其目的直接性、设计性、标准化程度更强,效率非常高。“如果不使用传统的社会调查方法,即便今天世界上能力最强的互联网公司可能也无法从现有互联网痕迹数据中获得一个和中国综合社会调查具有同等代表性、信度、效度、信息密度和相同变量的数据集。”
实现两种方法优势互补
正如李丁所说,一方面,在大数据时代背景下,从大数据中提取出有价值的信息和知识,有可能获得有关行动者的新知识、社会运行的新规律;另一方面,研究人员应该认识到大数据的局限性,以及传统研究方式的优势,避免盲目崇拜。传统的调查方式在获得某些高密度的、具有统计代表性的数据上仍具有成本优势和科学性优势。
对于学界出现的将两种方法非此即彼对立起来的争议,唐魁玉认为,我们在对不同类型、不同复杂程度的社会事实和社会问题进行分析时,要恰当地选择和使用传统的社会调查或大数据方法。
未来的社会科学研究或可实现大数据与传统社会调查方法的优势互补。受访学者提出一些设想。李丁认为,传统的质性研究方法和抽样调查方法能够补充大数据的不足,帮助我们理解大数据的社会含义。大数据也能为传统调查研究提供重要的信息补充,质性研究如果能够在既有的访谈、观察的基础上,还能获得受访对象在互联网的痕迹数据、社会交往数据、行动轨迹数据等,就能对研究对象有更全面的了解和把握。

⑦ 调查问卷统计而成的大数据会存在什么问题

仅供参考

对象错误

⑧ 大数据的统计分析方法有哪些

您好朋友,上海献峰科技指出:常用数据分析方法有,
1.
聚类分析、
2.因子分析、
3.相关分析、
4.对应分析、
5.回归分析、
6.方差分析;
问卷调查常用数据分析方法:描述性统计分析、探索性因素分析、cronbach’a信度系数分析、结构方程模型分析(structural
equations
modeling)

数据分析常用的图表方法:柏拉图(排列图)、直方图(histogram)、散点图(scatter
diagram)、鱼骨图(ishikawa)、fmea、点图、柱状图、雷达图、趋势图。




采纳不足可追问

阅读全文

与大数据背景下是否需要统计调查问卷相关的资料

热点内容
java应用程序已被阻止 浏览:650
69版本乌鸦视频 浏览:588
4g为什么网络很好却很卡 浏览:723
有什么签到的app 浏览:239
ios13第三方软件无描述文件 浏览:494
如何写一个编程输出九九乘法表 浏览:617
文件存到d盘就找不到了 浏览:861
漏洞验证工具 浏览:999
手机网易邮箱怎么看文件名 浏览:607
ipa版本是什么意思 浏览:124
gcc找不到库文件 浏览:312
状态栏网络图标插件 浏览:536
java的文件夹 浏览:811
电脑版微信聊天视频在哪个文件夹 浏览:125
joomla文件管理插件 浏览:724
如何设置工作组网络连接 浏览:331
cnc编程半桶水什么意思 浏览:44
jsp开发详解 浏览:319
360设置记住密码 浏览:257
香港有什么团购网站 浏览:623

友情链接