㈠ 我现在在学软件开发,你说数据结构很重要,那到底有多重要,可以跟我说详细些吗
当一样东西很重要时,解释与描述它的重要性的东西是不可数的,只能说它很重要很重要。就好像问你有多爱一个人,若你真的很爱那个人,你是无法描述其困消爱的程度的,除非你爱的不深;而你爱的那个人也可能是数据结构,呵呵。
可以这么说吧,你学软件开发,没有学数据结构的话,此时你就像一台可以运算的计算机,却不懂得如何运算,该怎样运算才能解决问题。再联系具体点,像上面那位老兄说的,即使你掌握了所有计算机编程语言,如果你没有数据结构的思想,我可以断定你没有把各种计算机语言学好,你也用不好各种编程语言槐锋。也许你知道如何使用各种语言的函数库,知道照猫画老虎弄几个可以运行的程序出来。但当你面对工程问题时,你还是会像个无知的傻瓜一样不知所措。
数据结构是你学的所有编程语言的精神领袖,它指导着各种语言该怎么做,才能更好更有效率地达到目的。没有了精神领袖的编程,就如行尸走肉,也能走。
如果面试时,你说你是学软件开发的,没学过数据结构,只要面试官不是傻子,它都不会再瞟你多一眼。
它有多重要?重要到你没学它,你就别出去跟人说你是学软件开发的。
这是我回答另一问题时的说法:怎样学好数据结构和要学到什么程度?
说得绝对点,数据结构很大程度上为了统筹指导编程的,当然也可以帮你挖掘数据,解决一些很实际的问题。要到什么程度?那要看你的专业需求,如果是单单为了考试,你把老师跟你说的一些基本概念都弄懂了、能用个别编程语言最好是做几个小实现就足够了,但为了轻车熟路来驾驭编程,你就必须把课本翻它个四五遍,在脑海里烙上各种数据结构如链表,树,图等的思想模型,最核心的是你学到能体会到它能很好的统筹指导编程和帮你解决一些实际问题(非编程)的内涵时,到了这个层次你就算是学好了,即使你忘了具体的思想模型,但你知道数据结构这东西能帮你做什么,你要怎样用它,这时再去翻翻书就可以。至于与具体语言关联起来的实现思路汪明知,当你有了各种数据模型,再去设计具体语言编程的时候就自然而然的轻巧许多,不用像无头苍蝇一样代码乱糟糟,毫无方向,更不用说清晰的思路了。数据结构是对信息的处理技术,它主要涵盖将数据结构化,再针对结构化了的数据设计算法从而方便处理。个人理解。
㈡ 什么是数据结构什么是算法算法与程序有什么关系
在计算机编程领域,数据结构与算法的应用是无处不在。比如图像视频处理、内数据压缩、数据库容、游戏开发、操作系统、编译器、搜索引擎、AR、VR、人工智能、区块链等领域,都是以数据结构与算法为基石。
数据结构与算法属于开发人员的基本内功,也能训练大脑的思考能力,掌握一次,终生受益。扎实的数据结构与算法功底,能让我们站在更高的角度去思考代码、写出性能更优的程序,能让我们更快速地学习上手各种新技术(比如人工智能、区块链等),也能让我们敲开更高级编程领域的大门。
数据结构与算法更是各大名企面试题中的常客,如果不想被行业抛弃、想进入更大的名企、在IT道路上走得更远,掌握数据结构与算法是非常有必要。
㈢ 编程中数据结构是什么
各种编程语言都是需要算法的,数据结构决定算法。数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。编程语言(programminglanguage),是用来定义计算机程序的形式语言。它是一种被标准化的交流技巧,用来向计算机发出指令。一种计算机语言让程序员能够准确地定义计算机所需要使用的数据,并精确地定义在不同情况下所应当采取的行动。最早的编程语言是在电脑发明之后产生的,当时是用来控制提花织布机及自动演奏钢琴的动作。在电脑领域已发明了上千不同的编程语言,而且每年仍有新的编程语言诞生。很多编程语言需要用指令方式说明计算的程序,而有些编程语言则属于声明式编程,说明需要的结果,而不说明如何计算。编程语言的描述一般可以分为语法及语义。语法是说明编程语言中,哪些符号或文字的组合方式是正确的,语义则是对于编程的解释。有些语言是用规格文件定义,例如C语言的规格文件也是ISO标准中一部份,2011年后的版本为ISO/IEC9899:2011,而其他语言(像Perl)有一份主要的编程语言实现文件,视为是参考实现。编程语言俗称“计算机语言”,种类非常的多,总的来说可以分成机器语言、汇编语言、高级语言三大类。电脑每做的一次动作,一个步骤,都是按照已经用计算机语言编好的程序来执行的,程序是计算机要执行的指令的集合,而程序全部都是用我们所掌握的语言来编写的。所以人们要控制计算机一定要通过计算机语言向计算机发出命令。目前通用的编程语言有两种形式:汇编语言和高级语言。
㈣ 大数据专业将来就是编程、敲代码吗前景怎么样
学大数据很不错,就业前景广阔!
但是有关大数据的岗位,通常都是有学历要求的,一般是大专/本科起步。
大数据作为一项前沿互联网技术,目前被各互联网大厂的项目部门大量需求,如视频推荐等。随着鸿蒙系统的发布,物联网时代将会催生更多大数据岗位。大数据技术在现在,以及可预见的将来,都是比较吃香的。
我国大数据发展整体上仍处于起步阶段,虽然快速发展的格局基本形成,但是在数据开放共享、以大数据驱动发展等方面都需要大量的大数据专业人才。大数据是一门交叉学科,很多大学没有为大数据单独设置专业,主要有自学和报班学习两种途径。
关于大数据专业大数据专业全称数据科学与大数据技术,是2016年我国高校设置的本科专业。有32所高校成为第二批成功申请“数据科学与大数据技术”本科新专业的高校。加上第一批成功申请该专业的北京大学、对外经济贸易大学及中南大学,目前共有35所大学获批开设大数据专业。
大数据(Bigdata)专业的学生不仅具备计算机编程、统计和数据挖掘等专业技能,还能够将这些技能应用到自己所选领域中解决问题,比如应用到社会科学、自然科学和工程学领域。所以对于这项偏技术类的专业,你学大数据是一个很好的选择。
关于薪资待遇大数据工程师待遇30~50万之间。
你可以看到,在市场需求和人才供应的不均衡下,大数据人才问题日渐严峻。
人才紧缺带来的最直观的现象就是薪酬的提升。
目前,一个大数据工程师的月薪轻松过万,一个有几年工作经验的数据分析师的薪酬在30万~50万元之间,而更顶尖的大数据技术人才则是年薪轻松超百万,成为各大互联网和IT公司争夺的对象。
因而甚至有观点认为,大数据专业正在成为求职者进入大公司的捷径。
综上所述,大专学大数据是不错的选择,如果提升一下学历和实力,今后的就业会很容易。所以,不要因为学校是大专院校就放弃学习,你只有在大学期间更努力,积累深厚的专业功底,才能在这个越来越卷的职场脱颖而出。
对于想进大厂的应届毕业生,建议考一个阿里云大数据ACP证书,市面上大数据相关的认证证书并不多,有含金量、能被市场认可的更少了,而阿里云大数据ACP认证算是其中一个。它不仅能让你的理论知识联系实际应用,更能对你的求职起到助推作用,是你找工作的一个加分项。
想了解的同学可以关注我,免费领取大数据课件。
㈤ 什么是数据结构和算法分析在编程里起到什么作用
编程是为了解决问题,这些问题并表都是数值计算,其所处理的数据并不都是数值,但计算机所能处理的最终是0和1的二进制串,所以需要把问题中的数据用计算机能处理的方式来表示,这就需要数据结构。
简单的说,数据结构是数据在计算机中的表示方式,有逻辑结构和物理结构之分,如逻辑上同样的队列,物理上可以是顺序存储,也可以是链式存储。
通俗的讲,算法就是解决问题的方法,比如同样的排序,可以用冒泡排序、插入排序等,不同的算法可以达到相同的目标,但是效率可能有所不同。
㈥ c语言的数据结构和程序设计
数据结构
数据结构是计算机存储、组织数据的方式。数据结构是指相互之间存在一种或多种特定关系的数据元素的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高效的检索算法和索引技术有关。数据结构在计算机科学界至今没有标准的定义。个人根据各自的理解的不同而有不同的表述方法: Sartaj Sahni 在他的《数据结构、算法与应用》一书中称:“数据结构是数据对象,以及存在于该对象的实例和组成实例的数据元素之间的各种联系。这些联系可以通过定义相关的函数来给出。”他将数据对象(data object)定义为“一个数据对象是实例或值的集合”。 Clifford A.Shaffer 在《数据结构与算法分析》一书中的定义是:“数据结构是 ADT(抽象数据类型 Abstract Data Type) 的物理实现。” Lobert L.Kruse 在《数据结构与程序设计》一书中,将一个数据结构的设计过程分成抽象层、数据结构层和实现层。其中,抽象层是指抽象数据类型层,它讨论数据的逻辑结构及其运算,数据结构层和实现层讨论一个数据结构的表示和在计算机内的存储细节以及运算的实现。
重要意义
一般认为,一个数据结构是由数据元素依据某种逻辑联系组织起来的。对数据元素间逻辑关系的描述称为数据的逻辑结构;数据必须在计算机内存储,数据的存储结构是数据结构的实现形式,是其在计算机内的表示;此外讨论一个数据结构必须同时讨论在该类数据上执行的运算才有意义。 在许多类型的程序的设计中,数据结构的选择是一个基本的设计考虑因素。许多大型系统的构造经验表明,系统实现的困难程度和系统构造的质量都严重的依赖于是否选择了最优的数据结构。许多时候,确定了数据结构后,算法就容易得到了。有些时候事情也会反过来,我们根据特定算法来选择数据结构与之适应。不论哪种情况,选择合适的数据结构都是非常重要的。 选择了数据结构,算法也随之确定,是数据而不是算法是系统构造的关键因素。这种洞见导致了许多种软件设计方法和程序设计语言的出现,面向对象的程序设计语言就是其中之一。
研究内容 在计算机科学中,数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象(数据元素)以及它们之间的关系和运算等的学科,而且确保经过这些运算后所得到的新结构仍然是原来的结构类型。
“数据结构”作为一门独立的课程在国外是从1968年才开始设立的。 1968年美国唐•欧•克努特教授开创了数据结构的最初体系,他所著的《计算机程序设计技巧》第一卷《基本算法》是第一本较系统地阐述数据的逻辑结构和存储结构及其操作的著作。“数据结构”在计算机科学中是一门综合性的专业基础课。数据结构是介于数学、计算机硬件和计算机软件三者之间的一门核心课程。数据结构这一门课的内容不仅是一般程序设计(特别是非数值性程序设计)的基础,而且是设计和实现编译程序、操作系统、数据库系统及其他系统程序的重要基础。
计算机是一门研究用计算机进行信息表示和处理的科学。这里面涉及到两个问题:信息的表示,信息的处理 。
而信息的表示和组织又直接关系到处理信息的程序的效率。随着计算机的普及,信息量的增加,信息范围的拓宽,使许多系统程序和应用程序的规模很大,结构又相当复杂。因此,为了编写出一个“好”的程序,必须分析待处理的对象的特征及各对象之间存在的关系,这就是数据结构这门课所要研究的问题。众所周知,计算机的程序是对信息进行加工处理。在大多数情况下,这些信息并不是没有组织,信息(数据)之间往往具有重要的结构关系,这就是数据结构的内容。数据的结构,直接影响算法的选择和效率。 计算机解决一个具体问题时,大致需要经过下列几个步骤:首先要从具体问题中抽象出一个适当的数学模型,然后设计一个解此数学模型的算法(Algorithm),最后编出程序、进行测试、调整直至得到最终解答。寻求数学模型的实质是分析问题,从中提取操作的对象,并找出这些操作对象之间含有的关系,然后用数学的语言加以描述。计算机算法与数据的结构密切相关,算法无不依附于具体的数据结构,数据结构直接关系到算法的选择和效率。运算是由计算机来完成,这就要设计相应的插入、删除和修改的算法 。也就是说,数据结构还需要给出每种结构类型所定义的各种运算的算法。 数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并由计算机程序处理的符号的总称。
数据元素是数据的基本单位,在计算机程序中通常作为一个整体考虑。一个数据元素由若干个数据项组成。数据项是数据的不可分割的最小单位。有两类数据元素:一类是不可分割的原子型数据元素,如:整数"5",字符 "N" 等;另一类是由多个款项构成的数据元素,其中每个款项被称为一个数据项。例如描述一个学生的信息的数据元素可由下列6个数据项组成。其中的出身日期又可以由三个数据项:"年"、"月"和"日"组成,则称"出身日期"为组合项,而其它不可分割的数据项为原子项。
关键字指的是能识别一个或多个数据元素的数据项。若能起唯一识别作用,则称之为 "主" 关键字,否则称之为 "次" 关键字。
数据对象是性质相同的数据元素的集合,是数据的一个子集。数据对象可以是有限的,也可以是无限的。
数据处理是指对数据进行查找、插入、删除、合并、排序、统计以及简单计算等的操作过程。在早期,计算机主要用于科学和工程计算,进入八十年代以后,计算机主要用于数据处理。据有关统计资料表明,现在计算机用于数据处理的时间比例达到80%以上,随着时间的推移和计算机应用的进一步普及,计算机用于数据处理的时间比例必将进一步增大。
分类
数据结构是指同一数据元素类中各数据元素之间存在的关系。数据结构分别为逻辑结构、存储结构(物理结构)和数据的运算。数据的逻辑结构是对数据之间关系的描述,有时就把逻辑结构简称为数据结构。逻辑结构形式地定义为(K,R)(或(D,S)),其中,K是数据元素的有限集,R是K上的关系的有限集。
数据元素相互之间的关系称为结构。有四类基本结构:集合、线性结构、树形结构、图状结构(网状结构)。树形结构和图形结构全称为非线性结构。集合结构中的数据元素除了同属于一种类型外,别无其它关系。线性结构中元素之间存在一对一关系,树形结构中元素之间存在一对多关系,图形结构中元素之间存在多对多关系。在图形结构中每个结点的前驱结点数和后续结点数可以任意多个。
数据结构在计算机中的表示(映像)称为数据的物理(存储)结构。它包括数据元素的表示和关系的表示。数据元素之间的关系有两种不同的表示方法:顺序映象和非顺序映象,并由此得到两种不同的存储结构:顺序存储结构和链式存储结构。顺序存储方法:它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。链接存储方法:它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现。索引存储方法:除建立存储结点信息外,还建立附加的索引表来标识结点的地址。散列存储方法:就是根据结点的关键字直接计算出该结点的存储地址。
数据结构中,逻辑上(逻辑结构:数据元素之间的逻辑关系)可以把数据结构分成线性结构和非线性结构。线性结构的顺序存储结构是一种随机存取的存储结构,线性表的链式存储结构是一种顺序存取的存储结构。线性表若采用链式存储表示时所有结点之间的存储单元地址可连续可不连续。逻辑结构与数据元素本身的形式、内容、相对位置、所含结点个数都无关。
数据结构与算法
算法的设计取决于数据(逻辑)结构,而算法的实现依赖于采用的存储结构。数据的存储结构实质上是它的逻辑结构在计算机存储器中的实现为了全面的反映一个数据的逻辑结构,他在存储器中的映象包括两方面内容,及数据元素之间的信息和数据元素之间的关系。不同数据结构有其相应的若干运算。数据的运算是在数据的逻辑结构上定义的操作算法,如检索、插入、删除、更新的排序等。
数据的运算是数据结构的一个重要方面,讨论任一种数据结构时都离不开都离不开对该结构上的数据运算及其实现算法的讨论。
数据结构的形式定义为:数据结构是一个二元组:
Data-Structure=(D,S)
其中:D是数据元素的有限集,S是D上关系的有限集。
数据结构不同于数据类型,也不同于数据对象,它不仅要描述数据类型的数据对象,而且要描述数据对象各元素之间的相互关系。
数据类型是一个值的集合和定义在这个值集上的一组操作的总称。数据类型可分为两类:原子类型、结构类型。一方面,在程序设计语言中,每一个数据都属于某种数据类型。类型明显或隐含地规定了数据的取值范围、存储方式以及允许进行的运算。可以认为,数据类型是在程序设计中已经实现了的数据结构。另一方面,在程序设计过程中,当需要引入某种新的数据结构时,总是借助编程语言所提供的数据类型来描述数据的存储结构。
计算机中表示数据的最小单位是二进制数的一位,叫做位。我们用一个由若干位组合起来形成的一个位串表示一个数据元素,通常称这个位串为元素或结点。当数据元素由若干数据项组成时,位串中对应于各个数据项的子位串称为数据域。元素或结点可看成是数据元素在计算机中的映象。 一个软件系统框架应建立在数据之上,而不是建立在操作之上。一个含抽象数据类型的软件模块应包含定义、表示、实现三个部分。 对每一个数据结构而言,必定存在与它密切相关的一组操作。若操作的种类和数目不同,即使逻辑结构相同,数据结构能起的作用也不同。
不同的数据结构其操作集不同,但下列操作必不可缺:1,结构的生成;2.结构的销毁;3,在结构中查找满足规定条件的数据元素;4,在结构中插入新的数据元素; 5,删除结构中已经存在的数据元素; 6,遍历。
抽象数据类型:一个数学模型以及定义在该模型上的一组操作。抽象数据类型实际上就是对该数据结构的定义。因为它定义了一个数据的逻辑结构以及在此结构上的一组算法。抽象数据类型可用以下三元组表示:(D,S,P)。D是数据对象,S是D上的关系集,P是对D的基本操作集。ADT的定义为: ADT 抽象数据类型名{ 数据对象:(数据元素集合) 数据关系:(数据关系二元组结合) 基本操作:(操作函数的罗列) } ADT 抽象数据类型名;
抽象数据类型有两个重要特性: 数据抽象
用ADT描述程序处理的实体时,强调的是其本质的特征、其所能完成的功能以及它和外部用户的接口(即外界使用它的方法)。 数据封装 将实体的外部特性和其内部实现细节分离,并且对外部用户隐藏其内部实现细节。
数据(Data)是信息的载体,它能够被计算机识别、存储和加工处理。它是计算机程序加工的原料,应用程序处理各种各样的数据。计算机科学中,所谓数据就是计算机加工处理的对象,它可以是数值数据,也可以是非数值数据。数值数据是一些整数、实数或复数,主要用于工程计算、科学计算和商务处理等;非数值数据包括字符、文字、图形、图像、语音等。数据元素(Data Element)是数据的基本单位。在不同的条件下,数据元素又可称为元素、结点、顶点、记录等。例如,学生信息检索系统中学生信息表中的一个记录等,都被称为一个数据元素。
有时,一个数据元素可由若干个数据项(Data Item)组成,例如,学籍管理系统中学生信息表的每一个数据元素就是一个学生记录。它包括学生的学号、姓名、性别、籍贯、出生年月、成绩等数据项。这些数据项可以分为两种:一种叫做初等项,如学生的性别、籍贯等,这些数据项是在数据处理时不能再分割的最小单位;另一种叫做组合项,如学生的成绩,它可以再划分为数学、物理、化学等更小的项。通常,在解决实际应用问题时是把每个学生记录当作一个基本单位进行访问和处理的。
数据对象(Data Object)或数据元素类(Data Element Class)是具有相同性质的数据元素的集合。在某个具体问题中,数据元素都具有相同的性质(元素值不一定相等),属于同一数据对象(数据元素类),数据元素是数据元素类的一个实例。例如,在交通咨询系统的交通网中,所有的顶点是一个数据元素类,顶点A和顶点B各自代表一个城市,是该数据元素类中的两个实例,其数据元素的值分别为A和B。 数据结构(Data Structure)是指互相之间存在着一种或多种关系的数据元素的集合。在任何问题中,数据元素之间都不会是孤立的,在它们之间都存在着这样或那样的关系,这种数据元素之间的关系称为结构。根据数据元素间关系的不同特性,通常有下列四类基本的结构:
⑴集合结构。该结构的数据元素间的关系是“属于同一个集合”。
⑵线性结构。该结构的数据元素之间存在着一对一的关系。
⑶树型结构。该结构的数据元素之间存在着一对多的关系。
⑷图形结构。该结构的数据元素之间存在着多对多的关系,也称网状结构。 从上面所介绍的数据结构的概念中可以知道,一个数据结构有两个要素。一个是数据元素的集合,另一个是关系的集合。在形式上,数据结构通常可以采用一个二元组来表示。
数据结构的形式定义为:数据结构是一个二元组
Data_Structure =(D,R)
其中,D是数据元素的有限集,R是D上关系的有限集。 线性结构的特点是数据元素之间是一种线性关系,数据元素“一个接一个的排列”。在一个线性表中数据元素的类型是相同的,或者说线性表是由同一类型的数据元素构成的线性结构。在实际问题中线性表的例子是很多的,如学生情况信息表是一个线性表:表中数据元素的类型为学生类型; 一个字符串也是一个线性表:表中数据元素的类型为字符型,等等。
线性表是最简单、最基本、也是最常用的一种线性结构。 线性表是具有相同数据类型的n(n>=0)个数据元素的有限序
列,通常记为:
(a1,a2,… ai-1,ai,ai+1,…an)
其中n为表长, n=0 时称为空表。 它有两种存储方法:顺序存储和链式存储,它的主要基本操作是插入、删除和检索等。
常用数据结构数组 (Array) 在程序设计中,为了处理方便, 把具有相同类型的若干变量按有序的形式组织起来。这些按序排列的同类数据元素的集合称为数组。在C语言中, 数组属于构造数据类型。一个数组可以分解为多个数组元素,这些数组元素可以是基本数据类型或是构造类型。因此按数组元素的类型不同,数组又可分为数值数组、字符数组、指针数组、结构数组等各种类别。
栈 (Stack) 是只能在某一端插入和删除的特殊线性表。它按照后进先出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后一个数据被第一个读出来)。
队列 (Queue) 一种特殊的线性表,它只允许在表的前端(front)进行删除操作,而在表的后端(rear)进行插入操作。进行插入操作的端称为队尾,进行删除操作的端称为队头。队列中没有元素时,称为空队列。
链表 (Linked List) 是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域。
树 (Tree) 是包含n(n>0)个结点的有穷集合K,且在K中定义了一个关系N,N满足 以下条件: (1)有且仅有一个结点 k0,他对于关系N来说没有前驱,称K0为树的根结点。简称为根(root)。 (2)除K0外,k中的每个结点,对于关系N来说有且仅有一个前驱。
(3)K中各结点,对关系N来说可以有m个后继(m>=0)。
图 (Graph) 图是由结点的有穷集合V和边的集合E组成。其中,为了与树形结构加以区别,在图结构中常常将结点称为顶点,边是顶点的有序偶对,若两个顶点之间存在一条边,就表示这两个顶点具有相邻关系。
堆 (Heap) 在计算机科学中,堆是一种特殊的树形数据结构,每个结点都有一个值。通常我们所说的堆的数据结构,是指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。
散列表 (Hash) 若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上。由此,不需比较便可直接取得所查记录。称这个对应关系f为散列函数(Hash function),按这个思想建立的表为散列表。
㈦ 数据结构对编程重要吗
非常重要,使用好的数茄族据结构可以大大提高程序运行效率,如果不会数据结构则只能使用直接简单粗暴的方式编程颤亮弊,程序的运行速键做度可想而知
㈧ 数结构编程题,求大佬帮忙,C语言的
线性表用数组实现,单链表用带链表指针的结构实现。
这里数据的录入,我用随机数生成两组-99到99的两位数来填充线性表和单链表,利用冒泡排序升序排列,这样负数就都到正数前面了旦余逗。分两个函数:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#define M 10//最大数据个数
typedef struct llist
{
int n;
struct llist *next;
}LLT;
void doByST();//用顺序表做
void doByLLT();//用单链表做
int main()
{
srand(time(NULL));//利用随机数(正负两位数-99~99)填充顺序表及单链表
doByST();
doByLLT();
}
void doByST()//用顺序表做
{
int i,j,st[M];
printf("顺序表中的数据: ");
for(i=0;i<M;i++) st[i]=((rand()%2)?1:-1)*(rand()%90+10),printf("%d ",st[i]);
printf(" 将所有负值放到所有正值前面: ");
for(i=0;i<M;i++)
for(j=i+1;j<M;j++)
if(st[i]>st[j])
st[i]^=st[j],st[j]^=st[i],st[i]^=st[j];
for(i=0;i<M;i++) printf("%d ",st[i]);//打印结果
printf(" ");
}
void doByLLT()//用单链表做
{
int i;
LLT llist[M],*lltp=llist,*lltp2=NULL;
for(i=0;i<M-1;i++) llist[i].next=&llist[i+1];//单链表
llist[i].next=NULL;
printf(" 单链模卖表中的数据: ");
while(lltp!=NULL)
{
lltp->n=((rand()%2)?1:-1)*(rand()%90+10);
printf("%d ",lltp->n);
lltp=lltp->next;
}
printf(" 将所有负值放到所有正值前面 ");
lltp=llist;
while(lltp!=NULL)
{
lltp2=lltp->next;
while(lltp2!=NULL)
{
if(lltp->n>lltp2->n)
lltp->n^=lltp2->n,lltp2->n^=lltp->n,lltp->n^=lltp2->n;
毁核 lltp2=lltp2->next;
}
lltp=lltp->next;
}
lltp=llist;//--打印结果
while(lltp!=NULL) printf("%d ",lltp->n),lltp=lltp->next;
}
㈨ 请问大学学习数据结构与算法(C语言版)需要多强的C语言基础
李明杰老师:每周一道算法题槐消让 通关算法面试课(超清视频)网络网盘
链接: https://pan..com/s/14GZpVf03Mf9E-YnMrrR4Pw
若资源有问题欢迎追问铅局~
㈩ 数据结构
何谓数据结构
?
数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由那些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,而物理上的数据结构反映成分数据在计算机内部的存储安排。数据结构是数据存在的形式。 数据结构是信息的一种组织方式,其目的是为了提高算法的效率,它通常与一组算法的集合相对应,通过这组算法集合可以对数据结构中的数据进行某种操作。
?
数据结构主要研究什么?
?
数据结构作为一门学科主要研究数据的各种逻辑结构和存储结构,以及对数据的各种操作。因此,主要有三个方面的内容:数据的逻辑结构;数据的物理存储结构;对数据的操作(或算法)。通常,算法的
?
设计取决于数据的逻辑结构,算法的实现取决于数据的物理存储结构。
?
什么是数据结构?什么是逻辑结构和物理结构?
?
数据是指由有限的符号(比如,"0"和"1",具有其自己的结构、操作、和相应的语义)组成的元素的集合。结构是元素之间的关系的集合。通常来说,一个数据结构DS 可以表示为一个二元组:
?
DS=(D,S), //i.e., data-structure=(data-part,logic-structure-part) 这里D是数据元素的集合(或者是“结点”,可能还含有“数据项”或“数据域”),S是定义在D(或其他集合)上的关系的集合,S = { R | R : D×D×...},称之为元素的逻辑结构。 逻辑结构有四种基本类型:集合结构、线性结构、树状结构和网络结构。表和树是最常用的两种高效数据结构,许多高效的算法可以用这两种数据结构来设计实现。表是线性结构的(全序关系),树(偏序或层次关系)和图(局部有序(weak/local orders))是非线性结构。
?
数据结构的物理结构是指逻辑结构的存储镜像(image)。数据结构 DS 的物理结构 P对应于从 DS 的数据元素到存储区M(维护着逻辑结构S)的一个映射:
?
(PD,S) -- > M 存储器模型:一个存储器 M 是一系列固定大小的存储单元,每个单元 U 有一个唯一的地址 A(U),该地址被连续地编码。每个单元 U 有一个唯一的后继单元 U'=succ(U)。 P 的四种基本映射模型:顺序(sequential)、链接(linked)、索引(indexed)和散列(hashing)映射。
?
因此,我们至少可以得到4×4种可能的物理数据结构:
?
sequential (sets)
linked lists
indexed trees
hash graphs
?
(并不是所有的可能组合都合理)
?
??? 数据结构DS上的操作:所有的定义在DS上的操作在改变数据元素(节点)或节点的域时必须保持DS的逻辑和物理结构。
?
DS上的基本操作:任何其他对DS的高级操作都可以用这些基本操作来实现。最好将DS和他的所有基本操作看作一个整体——称之为模块。我们可以进一步将该模块抽象为数据类型(其中DS的存储结构被表示为私有成员,基本操作被表示为公共方法),称之为ADT。作为ADT,堆栈和队列都是一种特殊的表,他们拥有表的操作的子集。 对于DATs的高级操作可以被设计为(不封装的)算法,利用基本操作对DS进行处理。
?
好的和坏的DS:如果一个DS可以通过某种“线性规则”被转化为线性的DS(例如线性表),则称它为好的DS。好的DS通常对应于好的(高效的)算法。这是由计算机的计算能力决定的,因为计算机本质上只能存取逻辑连续的内存单元,因此如何没有线性化的结构逻辑上是不可计算的。比如对一个图进行操作,要访问图的所有结点,则必须按照某种顺序来依次访问所有节点(要形成一个偏序),必须通过某种方式将图固有的非线性结构转化为线性结构才能对图进行操作。
?
树是好的DS——它有非常简单而高效的线性化规则,因此可以利用树设计出许多非常高效的算法。树的实现和使用都很简单,但可以解决大量特殊的复杂问题,因此树是实际编程中最重要和最有用的一种数据结构。树的结构本质上有递归的性质——每一个叶节点可以被一棵子树所替代,反之亦然。实际上,每一种递归的结构都可以被转化为(或等价于)树形结构。
?
从机器语言到高级语言的抽象
?
我们知道,算法被定义为一个运算序列。这个运算序列中的所有运算定义在一类特定的数据模型上,并以解决一类特定问题为目标。这个运算序列应该具备下列四个特征。 有限性,即序列的项数有限,且每一运算项都可在有限的时间内完成;确定性,即序列的每一项运算都有明确的定义,无二义性;可以没有输入运算项,但一定要有输出运算项;可行性,即对于任意给定的合法的输入都能得到相应的正确的输出。这些特征可以用来判别一个确定的运算序列是否称得上是一个算法。 但是,我们现在的问题不是要判别一个确定的运算序列是否称得上是一个算法,而是要对一个己经称得上是算法的运算序列,回顾我们曾经如何用程序设计语言去表达它。
?
算法的程序表达,归根到底是算法要素的程序表达,因为一旦算法的每一项要素都用程序清楚地表达,整个算法的程序表达也就不成问题。
?
作为运算序列的算法,有三个要素。 作为运算序列中各种运算的运算对象和运算结果的数据;运算序列中的各种运算;运算序列中的控制转移。这三种要素依序分别简称为数据、运算和控制。 由于算法层出不穷,变化万千,其中的运算所作用的对象数据和所得到的结果数据名目繁多,不胜枚举。最简单最基本的有布尔值数据、字符数据、整数和实数数据等;稍复杂的有向量、矩阵、记录等数据;更复杂的有集合、树和图,还有声音、图形、图像等数据。 同样由于算法层出不穷,变化万千,其中运算的种类五花八门、多姿多彩。最基本最初等的有赋值运算、算术运算、逻辑运算和关系运算等;稍复杂的有算术表达式和逻辑表达式等;更复杂的有函数值计算、向量运算、矩阵运算、集合运算,以及表、栈、队列、树和图上的运算等:此外,还可能有以上列举的运算的复合和嵌套。 关于控制转移,相对单纯。在串行计算中,它只有顺序、分支、循环、递归和无条件转移等几种。
?
我们来回顾一下,自从计算机问世以来,算法的上述三要素的程序表达,经历过一个怎样的过程。
?
最早的程序设计语言是机器语言,即具体的计算机上的一个指令集。当时,要在计算机上运行的所有算法都必须直接用机器语言来表达,计算机才能接受。算法的运算序列包括运算对象和运算结果都必须转换为指令序列。其中的每一条指令都以编码(指令码和地址码)的形式出现。与算法语言表达的算法,相差十万八千里。对于没受过程序设计专门训练的人来说,一份程序恰似一份"天书",让人看了不知所云,可读性
?
极差。
?
用机器语言表达算法的运算、数据和控制十分繁杂琐碎,因为机器语言所提供的指令太初等、原始。机器语言只接受算术运算、按位逻辑运算和数的大小比较运算等。对于稍复杂的运算,都必须一一分解,直到到达最初等的运算才能用相应的指令替代之。机器语言能直接表达的数据只有最原始的位、字节、和字三种。算法中即使是最简单的数据如布尔值、字符、整数、和实数,也必须一一地映射到位、字节和字
中,还得一一分配它们的存储单元。对于算法中有结构的数据的表达则要麻烦得多。机器语言所提供的控制转移指令也只有无条件转移、条件转移、进入子程序和从子程序返回等最基本的几种。用它们来构造循环、形成分支、调用函数和过程得事先做许多的准备,还得靠许多的技巧。 直接用机器语言表达算法有许多缺点。
?
大量繁杂琐碎的细节牵制着程序员,使他们不可能有更多的时间和精力去从事创造性的劳动,执行对他们来说更为重要的任务。如确保程序的正确性、高效性。程序员既要驾驭程序设计的全局又要深入每一个局部直到实现的细节,即使智力超群的程序员也常常会顾此失彼,屡出差错,因而所编出的程序可靠性差,且开发周期长。 由于用机器语言进行程序设计的思维和表达方式与人们的习惯大相径庭,只有经过
较长时间职业训练的程序员才能胜任,使得程序设计曲高和寡。因为它的书面形式全是"密"码,所以可读性差,不便于交流与合作。因为它严重地依赖于具体的计算机,所以可移植性差,重用性差。这些弊端造成当时的计算机应用未能迅速得到推广。
?
克服上述缺点的出路在于程序设计语言的抽象,让它尽可能地接近于算法语言。 为此,人们首先注意到的是可读性和可移植性,因为它们相对地容易通过抽象而得到改善。于是,很快就出现汇编语言。这种语言对机器语言的抽象,首先表现在将机器语言的每一条指令符号化:指令码代之以记忆符号,地址码代之以符号地址,使得其含义显现在符号上而不再隐藏在编码中,可让人望"文"生义。其次表现在这种语言摆脱了具体计算机的限制,可在不同指令集的计算机上运行,只要该计算机配上汇编语言的一个汇编程序。这无疑是机器语言朝算法语言靠拢迈出的一步。但是,它离算法语言还太远,以致程序员还不能从分解算法的数据、运算和控制到汇编才能直接表达的指令等繁杂琐碎的事务中解脱出来。 到了50年代中期,出现程序设计的高级语言如Fortran,Algol60,以及后来的PL/l, Pascal等,算法的程序表达才产生一次大的飞跃。
?
诚然,算法最终要表达为具体计算机上的机器语言才能在该计算机上运行,得到所需要的结果。但汇编语言的实践启发人们,表达成机器语言不必一步到位,可以分两步走或者可以筑桥过河。即先表达成一种中介语言,然后转成机器语言。汇编语言作为一种中介语言,并没有获得很大成功,原因是它离算法语
?
言还太远。这便指引人们去设计一种尽量接近算法语言的规范语言,即所谓的高级语言,让程序员可以用它方便地表达算法,然后借助于规范的高级语言到规范的机器语言的"翻译",最终将算法表达为机器语言。而且,由于高级语言和机器语言都具有规范性,这里的"翻译"完全可以机械化地由计算机来完成,就像汇编语言被翻译成机器语言一样,只要计算机配上一个编译程序。 上述两步,前一步由程序员去完成,后一步可以由编译程序去完成。在规定清楚它们各自该做什么之后,这两步是完全独立的。它们各自该如何做互不相干。前一步要做的只是用高级语言正确地表达给定的算法,产生一个高级语言程序;后一步要做的只是将第一步得到的高级语言程序翻译成机器语言程序。至于程序员如何用高级语言表达算法和编译程序如何将高级语言表达的算法翻译成机器语言表达的算法,显然毫不相干。
?
处理从算法语言最终表达成机器语言这一复杂过程的上述思想方法就是一种抽象。汇编语言和高级语言的出现都是这种抽象的范例。 与汇编语言相比,高级语言的巨大成功在于它在数据、运算和控制三方
?
面的表达中引入许多接近算法语言的概念和工具,大大地提高抽象地表达算法的能力。 在运算方面,高级语言如Pascal,除允许原封不动地运用算法语言的四则运算、逻辑运算、关系运算、算术表达式、逻辑表达式外,还引入强有力的函数与过程的工具,并让用户自定义。这一工具的重要性不仅在于它精简了重复的程序文本段,而且在于它反映出程序的两级抽象。
?
在函数与过程调用级,人们只关心它能做什么,不必关心它如何做。只是到函数与过程的定义时,人们才给出如何做的细节。用过高级语言的读者都知道,一旦函数与过程的名称、参数和功能被规定清楚,那么,在程序中调用它们便与在程序的头部说明它们完全分开。你可以修改甚至更换函数体与过程体,而不影响它们的被调用。如果把函数与过程名看成是运算名,把参数看成是运算的对象或运算的结果,那么
?
,函数与过程的调用和初等运算的引用没有两样。利用函数和过程以及它们的复合或嵌套可以很自然地表达算法语言中任何复杂的运算。
?
在数据方面,高级语言如Pascal引人了数据类型的概念,即把所有的数据加以分类。每一个数据(包括表达式)或每一个数据变量都属于其中确定的一类。称这一类数据为一个数据类型。 因此,数据类型是数据或数据变量类属的说明,它指示该数据或数据变量可能取的值的全体。对于无结构的数据,高级语言如Pascal,除提供标准的基本数据类型--布尔型、字符型、整型和实型外,还提供用户可自定义的枚举类、子界类型和指针类型。这些类型(除指针外),其使用方式都顺应人们在算法语言中使用的习惯。对于有结构的数据,高级语言如Pascal,提供了数组、记录、有限制的集合和文件等四种标准的结构数据类型。其中,数组是科学计算中的向量、矩阵的抽象;记录是商业和管理中的记录的抽象;有限制的集合是数学中足够小的集合的势集的抽象;文件是诸如磁盘等外存储数据的抽象。
?
人们可以利用所提供的基本数据类型(包括标准的和自定义的),按数组、记录、有限制的集合和文件的构造规则构造有结构的数据。 此外,还允许用户利用标准的结构数据类型,通过复合或嵌套构造更复杂更高层的结构数据。这使得高级语言中的数据类型呈明显的分层。 高级语言中数据类型的分层是没有穷尽的,因而用它们可以表达算法语言中任何复杂层次的数据。 在控制方面,高级语言如Pascal,提供了表达算法控制转移的六种方式。
?
(1)缺省的顺序控制";"。
?
(2)条件(分支)控制:"if表达式(为真)then S1 else S2;" 。
?
(3)选择(情况)控制:
?
"Case 表达式 of
?
值1: S1
值2: S2
...
值n: Sn
end"
?
(4)循环控制:
?
"while 表达式(为真) do S;" 或
"repeat S until 表达式(为真);" 或
"for变量名:=初值 to/downto 终值do S;"
?
(5)函数和过程的调用,包括递归函数和递归过程的调用。
?
(6)无条件转移goto。
这六种表达方式不仅覆盖了算法语言中所有控制表达的要求,而且不再像机器语言或汇编语言那样原始、那样繁琐、那样隐晦,而是如上面所看到的,与自然语言的表达相差无几。 程序设计语言从机器语言到高级语言的抽象,带来的主要好处是: 高级语言接近算法语言,易学、易掌握,一般工程技术人员只要几周时间的培训就可以胜任程序员的工作;高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;高级语言远离机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好,重用率高; 由于把繁杂琐碎的事务交给了编译程序去做,所以自动化程度高,开发周期短,且程、序员得到解脱,可以集中时间和精力去从事对于他们来说更为重要的创造性劳动,以提高、程序的质量。
?
数据结构、数据类型和抽象数据类型
?
数据结构、数据类型和抽象数据类型,这三个术语在字面上既不同又相近,反映出它们在含义上既有区别又有联系。
?
数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由哪些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,物理上的数据结构反映成分数据在计算机内的存储安排。数据结构是数据存在的形式。
?
数据是按照数据结构分类的,具有相同数据结构的数据属同一类。同一类数据的全体称为一个数据类型。在程序设计高级语言中,数据类型用来说明一个数据在数据分类中的归属。它是数据的一种属性。这个属性限定了该数据的变化范围。为了解题的需要,根据数据结构的种类,高级语言定义了一系列的数据类型。不同的高级语言所定义的数据类型不尽相同。Pascal语言所定义的数据类型的种类。
?
其中,简单数据类型对应于简单的数据结构;构造数据类型对应于复杂的数据结构;在复杂的数据结构里,允许成分数据本身具有复杂的数据结构,因而,构造数据类型允许复合嵌套;指针类型对应于数据结构中成分数据之间的关系,表面上属简单数据类型,实际上都指向复杂的成分数据即构造数据类型中的数据,因此这里没有把它划入简单数据类型,也没有划入构造数据类型,而单独划出一类。
?
数据结构反映数据内部的构成方式,它常常用一个结构图来描述:数据中的每一项成分数据被看作一个结点,并用方框或圆圈表示,成分数据之间的关系用相应的结点之间带箭号的连线表示。如果成分数据本身又有它自身的结构,则结构出现嵌套。这里嵌套还允许是递归的嵌套。
?
由于指针数据的引入,使构造各种复杂的数据结构成为可能。按数据结构中的成分数据之间的关系,数据结构有线性与非线性之分。在非线性数据结构中又有层次与网状之分。 由于数据类型是按照数据结构划分的,因此,一类数据结构对应着一种数据类型。数据类型按照该类型中的数据所呈现的结构也有线性与非线性之分,层次与网状之分。一个数据变量,在高级语言中的类型说明必须是读变量所具有的数据结构所对应的数据类型。最常用的数据结构是数组结构和记录结构。数组结构的特点是:
?
成分数据的个数固定,它们之间的逻辑关系由成分数据的序号(或叫数组的下标)来体现。这些成分数据按照序号的先后顺序一个挨一个地排列起来。每一个成分数据具有相同的结构(可以是简单结构,也可以是复杂结构),因而属于同一个数据类型(相应地是简单数据类型或构造数据类型)。这种同一的数据类型称为基类型。所有的成分数据被依序安排在一片连续的存储单元中。 概括起来,数组结构是一个线性的、均匀的、其成分数据可随机访问的结构。
?
由于这、种结构有这些良好的特性,所以最常被人们所采用。在高级语言中,与数组结构相对应的、数据类型是数组类型,即数组结构的数据变量必须说明为array [i] of T0 ,其中i是数组、结构的下标类型,而T0是数组结构的基类型。 记录结构是另一种常用的数据结构。它的特点是:与数组结构一样,成分数据的个数固定。但成分数据之间没有自然序,它们处于平等地位。每一个成分数据被称为一个域并赋予域名。不同的域有不同的域名。不同的域允许有不同的结构,因而允许属于不同的数据类型。与数组结构一样,它们可以随机访问,但访问的途径靠的是域名。在高级语言中记录结构对应的数据类型是记录类型。记录结构的数据的变量必须说明为记录类型。
?
抽象数据类型的含义在上一段已作了专门叙述。它可理解为数据类型的进一步抽象。即把数据类型和数据类型上的运算捆在一起,进行封装。引入抽象数据类型的目的是把数据类型的表示和数据类型上运算的实现与这些数据类型和运算在程序中的引用隔开,使它们相互独立。对于抽象数据类型的描述,除了必须描述它的数据结构外,还必须描述定义在它上面的运算(过程或函数)。抽象数据类型上定义的过程和函
数以该抽象数据类型的数据所应具有的数据结构为基础。
?
泛型设计和数据结构与算法
?
下面我想再说说关于泛型程序设计模型对于数据结构和算法方面的最新推动,泛型思想已经把数据结
?
构和算法方面的基本思想抽象到了一个前所未有的高度,现在有多种程序设计语言支持泛型设计,比如
ADA,C++,而且据说在JAVA的下一版本和C#中也将对泛型设计进行全面的支持。
?
先说说泛型设计的基本思想:泛型编程(generic programming,以下直接以GP称呼)是一种全新的程序设计思想,和OO,OB,PO这些为人所熟知的程序设计想法不同的是GP抽象度更高,基于GP设计的组件之间偶合度底,没有继承关系,所以其组件间的互交性和扩展性都非常高。我们都知道,任何算法都是作用在一种特定的数据结构上的,最简单的例子就是快速排序算法最根本的实现条件就是所排序的对象是存
贮在数组里面,因为快速排序就是因为要用到数组的随机存储特性,即可以在单位时间内交换远距离的对象,而不只是相临的两个对象,而如果用联表去存储对象,由于在联表中取得对象的时间是线性的既O[n],这样将使快速排序失去其快速的特点。也就是说,我们在设计一种算法的时候,我们总是先要考虑其应用的数据结构,比如数组查找,联表查找,树查找,图查找其核心都是查找,但因为作用的数据结构不同
?
将有多种不同的表现形式。数据结构和算法之间这样密切的关系一直是我们以前的认识。泛型设计的根本思想就是想把算法和其作用的数据结构分离,也就是说,我们设计算法的时候并不去考虑我们设计的算法将作用于何种数据结构之上。泛型设计的理想状态是一个查找算法将可以作用于数组,联表,树,图等各种数据结构之上,变成一个通用的,泛型的算法。这样的理想是不是很诱惑人?
?
泛型编程带来的是前所未有的弹性以及不会损失效率的抽象性,GP和OO不同,它不要求你通过额外的间接层来调用函数:它让你撰写完全一般化并可重复使用的算法,其效率与针对特定数据结构而设计的算法旗鼓相当。我们大家都知道数据结构在C++中可以用用户定义类型来表示,而C++中的模板技术就是以类型作为参数,那么我可以想象利用模板技术可以实现我们开始的GP思想,即一个模板函数可以对于各种传递进来的类型起作用,而这些类型就可以是我们定义的各种数据结构。
?
泛型算法抽离于特定类型和特定数据结构之外,使得其适应与尽可能的一般化类型,算法本身只是为了实现算法其需要表达的逻辑本质而不去被为各种数据结构的实现细节所干扰。这意味着一个泛型算法实际具有两部分。1,用来描叙算法本质逻辑的实际指令;2,正确指定其参数类型必须满足的性质的一组需求条件。到此,相信有不少人已经开始糊涂了,呵呵,不要紧。毕竟GP是一种抽象度非常高的程序设计思想,里面的核心就是抽象条件成为成为程序设计过程中的核心,从而取代了类型这在OO里面的核心地位,正是因为类型不在是我们考虑的重点,类型成为了抽象条件的外衣,所以我们称这样的程序思想为泛型思想------把类型泛化。
这样可以么?