A. 【《大数据时代》读书笔记2】大数据视角下,一切皆可“量化”
“大数据”视角,并非近年来的新事物,回顾历史,早已有之。只是当时,“大数据”这个词,尚未产生。
19世纪,“量化”之于航海。 19世纪还是航海经验靠口口相传、有些甚至被证明是错误的年代,航海家莫里通过量化分析制作的导航图,是大数据的最早实践之一。在因为马车事故造成腿部残疾后,年轻的海军军官莫里离开了海上工作,来到了图表和仪器厂。在这个后来被证明是他福地的地方,在翻阅、整理库房里存放的航海书籍、地图、图表、航海日志后,莫里将这些记录进行数据整合,把整个大西洋按经纬度分成五块,并按月份标出温度、风速和风向,为找到更有效的航海路线提供参考。之后,为了提高精确度,莫里创建了一个标准的表格来记录航海数据,并在所有海军舰艇及部分商船上使用,通过分析这些数据,一些利于航行的天然航线被找到,为海军及商船减少了三分之一的航海路程。远在信息数字化之前,人工的数据运用已经充分展示了其实效。随着数据存储和处理能力的不断提高,“大数据”技术的运用领域也不断扩展。
20世纪,“量化”之于投资。 在金融领域,“量化”这个词经常以“量化投资”等词组形式出现,指的是通过数量化方式及计算机程序化发出买卖指令,以获取稳定收益为目的的交易方式,其实质在于替代传统的定性分析,以数据为支撑作出投资决策。“量化投资”在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大,得到了越来越多投资者认可。金融领域是数据相对集中和易感知的领域,但量化的舞台,远不止于此。
21世纪,“量化”之于坐姿研究。 日本先进工业技术研究所的越水重臣教授将量化用于坐姿研究,通过对人坐着时的身形、姿势和重量分布等的数据化,产生独属于每个乘坐者的精确数据资料,并根据人体对座位的压力差异识别出乘坐者身份,准确率达到98%。这项技术可作为汽车防盗系统,通过这个系统,汽车可以识别驾驶者是否为车主并设置相应安全措施。数据的提取,只有你想不到,没有提取不到,关键在于如何提取、如何利用。
数据化,不是数字化。 前者,是指把现象转变为可制表分析的量化形式的过程;后者,指的是把模拟数据转换成用0和1表示的二进制码。在数字化时代来临之时,在脑海中对这两个概念有清晰概念十分重要。数据化的关注重点是在“I(信息)”上,而数字化则关注“T(技术)”。数字化的发展,提高了数据化的可行性。
“数据化”文字。 谷歌的数字图书馆,是文字数据化的典范。通过文字的数据化,人可以用之阅读,机器也可以用之分析。谷歌运用这些数据化了的文本来改进它的机器翻译服务,从几年前相当于高中水平的翻译水准,到如今的令人惊叹,着实超越了英语水平不断退化的某笔者(容某笔者先找个地儿蹲着哭一会儿)。
“数据化”方位。 手机的广泛运用,让人的实时位置信息也可以被数据化,位置信息的数据化,催生了许多新价值。比如无线数据科技公司Jana的创始人伊格尔,他使用了来100多个国家的超过200个无线运营商的手机数据,既关注家庭主妇平均每周去几次洗衣店,也试图回答关于疾病如何传播等问题。新的用途不断产生,既可以用于商业,也可以用于社会研究。
“数据化”沟通。 个人化是数据化的前沿,facebook将关系数据化,twitter将情绪数据化,linkedin将个人经历数据化,这些社交网络平台,以各种方式将个人及其沟通数据化,并存储了海量的用户数据。初步的运用,例如Derwent Capital对冲基金对微博数据文本的分析,获得了股市投资的信号,虽然由于隐私问题,数据的使用还远未成熟,但我们不难想象,当数据被充分运用,世间万物是否已不再是世间万物,而是海量的数据呢?
当看到一切皆可量化这句话,还是持一定的保留态度。因为,太过绝对。但似乎,这只是一种理念的传递,为了表达数据化的重要性而已。大数据视角,提供了看世界的另外一个角度,但绝不是唯一视角。
B. 读书笔记:大数据时代
随着网络的普及、计算机运算和存储能力的提高,我们获取信息越来越容易,越来越多。绝大多数信息对我们来说可能都是噪音,或者用过一次后就被丢弃;而对有大数据思维的公司或个人来说,这些则是零散的金粉,他们可以从中挖掘出许多小数据无法得到的意想不到的结果。比如人们所用的搜索词在搜索完成之时就失去用处,Google偏偏将它们重新利用,用以改善结果的排序,用来预测流感感染情况。word语法检查,小数据下表现最好的算法在大数据下准确率却最差。谁曾想坐姿可以转化成数据,并开发成汽车防盗系统?进而扩展到盗贼识别?
大数据时代真的只有想不到,没有做不到。它深刻的变革着我们的工作、生活、甚至思维方式。
1.不是样本而是全部:得到全部数据并不那么难,而且结果更全面可靠,我们不再依赖小数据时代的随机取样、假设-实验-结论模式,取而代之的是直接对全部数据进行分析挖掘;
2.不是精确性而是混杂性:大数据时代我们不再执着于精确,而是允许一点瑕疵。我们要做的不是以高昂的代价消除所有的不确定性,而是接受这些纷繁的数据并从中获益。以谷歌翻译为例,它搜罗了所有可以利用的数据,虽然搜集的有错误翻译,但巨大的语料库优势完全压倒了缺点,使其好于布朗、微软的班科和布里尔、IBM的Candide。又如word语法检查,小数据下表现最好的算法在大数据下准确率却最差。混杂的大数据能创造比精确的小数据更好的结果!
小数据模式下,小的错误会导致极大的偏差,因此要求精确。值得注意的是,大数据的混杂性只是现实,而不是其固有特性,随着技术的发展将会被改善。
3.不是因果关系而是相互关系:千百年来,我们一直在寻找事件背后的原因。事实上,如果凡事皆有因果的话,我们就没有决定任何事的自由了。
基于大数据分析事物间的相互关系,使我们从因果串联思维变为相互并联思维。相互关系能提醒我们某些事正在发生,这些提醒非常有用。基于相关关系的预测是大数据的核心。通过找出一个关联物并监控它,我们就能预测未来。如塔吉特怀孕预测,美国折扣零售商塔吉特通过对女性消费记录分析,可以发现她是否怀孕,从而在相应阶段寄送相应的折扣券。
戏中主角分别是大数据拥有者、大数据技术公司、大数据思维的公司或个人。第一个吃螃蟹的人早已斩获良多,更多的人也开始去尝试;随着技术的发展,拥有大数据技术的公司的领先优势也越来越弱;而数据本身的价值则与日俱增。试想,一个拥有思维和技术的新公司,如何去跟一个拥有海量数据且知道什么更好的公司去竞争?
随着行业发展,数据中间商也将粉墨登场。因为有些数据的价值只能通过中间人来挖掘。航空公司不到最后一刻不会发布航班晚点,也不会告诉你何时买票最便宜,但只要有数据,你就能知道这些。还有一些公司愿意把数据给非营利机构。
大数据确实给我们带来诸多便利,使我们的生活更便利、更美好。但我们也变得越来越透明,通过你的检索词、购物、评论等就能轻易定位到精确的个人!想想就让人不寒而栗!
亚马逊监视着我们的购物习惯
谷歌监视着我们的网页浏览习惯
微博窃听到了我们心中的TA
而facebook似乎什么都知道,包括我们的社交关系网
我们时刻暴露在第三只眼下(政府除外)。
鉴于此,维克托也建议完善相关司法,制定更完整的隐私保护政策、反垄断。
值得注意的是,大数据给我们提供的不是最终答案,而是参考答案,我们不要过分信任、依赖数据给出的结果。假如一切都可以被预测,而且很精确,而我们想当然的去相信,放弃选择的权利,也会不为结果承担责任,那我们离变成机器人就不远了,人工智能控制人类也并非臆想!
而乐观的人们则会认为一个更美好的未来在像我们招手:
以下为收集内容 。
http://www.ximalaya.com/1000577/sound/412418?from_platform=weixin
【构建一个机器的你】模拟你的知识体系、行为习惯:通过拟合你在社交网络的发言、及其它信息。模拟声音:整合微信里的语音。模拟外貌:通过你发的照片等。将这些东西“导入”到一个机器,你在另一个地方被重生。它知道你所有的所有,宛如镜像孪生。
可以看电影黑镜2。
汽车若能交流 车祸或可避免
http://v.youku.com/v_show/id_XNTcyODU4NjQw.html
实现汽车对话以避免车祸,实际也是大数据的利用:通过数据化位置速度(通过摄像头传感器电脑系统)等信息,然后分析并做出预测。信息与机器结合会使人分为自然人、半自然人、机器人吧。现在的美瞳等改变人的外形,以及研究火热的脑机接口以实现通过意念控制机械,人正在与机器越来越多的整合在一起。
谷歌无人驾驶汽车
http://mp.weixin.qq.com/s?__biz=MjM5NzM5ODU2MA==&mid=200295774&idx=4&sn=&scene=1#rd
什么时候无人驾驶汽车成片的出现在杭州就好了[偷笑][偷笑]或者不用成片,就是有些地方会放着(比如某个山洞某个工厂),嗯,某些方式(某个app,某个电话或者直接与微信集合,或者快的打车,打的车都变成无人驾驶车)可以把他叫过来,然后用完之后他自己回到原来的地方。[傲慢][傲慢]这样社会多美好呀!还可以叫个车,让他把东西/人送到某个地方,就不是为自己叫车而是为他人叫……
如果视野更开阔点, 数据或许是实现人与机器交流的语言 ,,数据能挖掘我们不知道的一面,但也不要全迷信数据,将活生生的、复杂的人等同于毫无生命的一堆数据或机器就不好玩了。。
量化自我,一场二十年前无法想象的运动
http://www.36kr.com/p/204479.html#wechat_redirect
C. 大数据治理平台应用建设方案精选「PPT」
【前言】大数据时代到来,我们已被海量数据信息包围
电信:持有大量用户数据,对数据资产的售出,将成为行业的新增长点;
金融:各行业的金融信息流可结合第三方数据,更深入分析客户情况;
制造:从传统制造到互联网+的转型,大数据是核心动力;
政府:大数据已经成为国家战略,政府机构大数据将能够更好的治理 社会 ;
【目录】
大数据治理平台背景
大数据治理平台应用场景分析
大数据治理平台建设方案
【内容】
来源公众号:售前之家
D. 读书 | 大数据时代资本主义的重塑(No.22)
听书笔记
《大数据时代资本主义的重塑》的作者是维克托·舍恩伯格和托马斯·拉姆什。第一作者维克托·舍恩伯格是大数据领域的重量级人物。他在2012年出版的一本书《大数据时代》至今依然畅销,也是国内外研究大数据的人的必读书目。《大数据时代资本主义的重塑》是2018年2月刚出的一本新书,它从一个很独特的角度,为我们揭示了大数据会给人类社会带来怎样颠覆性的变化,甚至将彻底终结我们今天使用的金钱。
一、市场转向——从一个以价格为核心的市场转变为以数据为中心的市场
价格的三大作用
价格给市场提供了一套标准语言。
价格可以传递信息。
价格可以记录某个商品价值的波动情况。
以价格为核心的市场存在巨大缺陷
信息的损耗:信息压缩在价格这个唯一标尺里,造成信息传递的不全面。
“唯价格论”价值观:一切都向钱看,产品的质量性能反而退居第二位。
以数据为中心的市场是未来社会不可逆的转向。
但是,这个以数据为核心的市场交易需要一套完备的数据分析方法,我们概括为三个关键词就是:分类、偏好、配对。
分类:我们需要有一套分析、比较个人偏好的标准化的分类语言。
偏好:我们现在需要一种能有效地抓取、收集、记录人们的偏好数据。
配对:我们需要有更优化的、更精准的配对能力,以便让我们精确地找到合适的合作伙伴/卖家/买家。
二、资本转向——金融资本将被数据资本所取代
数据——大数据时代的黄金石油
在大数据的时代,资本、财富将不再以金钱为主要形式,而是体现为数据。此外,相比于自然资源,数据资源可以反复利用,取之不尽,用之不竭。
未来数据的关注点:应从收集层转向使用层。如何使用数据?
数据将发挥今天金钱才有的支付功能
用数据交税
当前数据资本的现状:被少数公司垄断
危害:
会有听命于商业老大哥的独裁统治的风险
容易造成系统性风险:一旦有居心不良的人在其中动手脚,整个数据市场都会陷入瘫痪
对策:
数据双向分享机制
数据税
目的:
让政府可以据此提供更好的公共服务
打破少数公司对数据市场的垄断,不至于出现一家独大的局面
三、公司、企业面临转型
公司、企业的定义及特点
公司、企业是拥有共同目标的一群人聚合起来的一个实体,是一个控制严密、权利集中、垂直整合的组织,特点是中心化。
在大数据时代,公司如何利用数据等手段来辅助自己做出更好的决策?
方式一,建立决策辅助机制——“机器+公司”模式
对于公司的未来,一种转型思路是“机器+公司”模式,让机器辅助公司进行决策。
当前,人们被期待拥有的技能,舍恩伯格教授称之为“T”形技能(T-shaped skill)。未来机器在公司内部普及后,“T”的一竖也就是某个专业领域的技能已经可以被机器完全取代,而人自己只需做“T”的一横上的事。
“T”形技能定义:
“T”的一横是和其他多个部门沟通、交流、协作的能力,这是一种宏观层面上的能力;
“T”的一竖是对某个领域深入的、专业的知识,属于比较微观的能力。
让机器辅助公司进行决策结果:
大程度地削弱人在做决策时的偏见。
“T”形技能也许会向“一”型技能转变。也就是说,大数据时代更看中人的沟通、交流能力。
方式二,建立高效的人才市场——“公司+市场”模式
运作方式:人才共享
管理者们不再持有人才,人才成了这个市场上的商品。人才不再是某个公司静态的附属品,可以自由在各个公司流通。
这是一种公司与市场相结合的运作模式,“公司+市场”是未来公司发展的前景之一。
作者的创见性预测:
随着机器能干的事情越来越多,再往后,许多大型的公司会变成只是法律名义上的法人实体,但不再大量雇佣员工,活生生变成一个空壳。
四、人的因素
在大数据时代这一去金钱化的资本主义社会中的人:
工作岗位的锐减,失业率的上升
人的智慧、想象力,以及沟通能力是机械化的事物无法取代。
E. 【《大数据时代》读书笔记3】数据是可再生的可再生资源
本科毕业论文写的是风力发电,作为一种安全清洁的可再生能源,虽然并网会给电网带来较大压力,但随着智能电网的普及,风力发电前景喜人。与风力资源类似,数据也是可再生的,而且与对风力资源的利用暂时只局限在发电领域不同,数据可以被称作是可再生的可再生资源。两个可再生并非笔误,而是源自其价值的多样化,对数据利用方式的创新,带来的,是源源不断的数据价值。
数据冰山,更需要仔细勘探,太远,会看不清,太近,会迷失方向,如果不小心撞上,那恐怕只能在数据之海里沉没了。所幸,在大数据思维的指引下,在数据的首要价值被挖掘后,潜在价值也持续不断被释放。
三种创新让我们得以初探冰山全貌。
数据创新1:数据的再利用
数据再利用的前提是收集或控制数据集尤其是大型数据集。有些机构如谷歌、如亚马逊,早早地开启了他们的数据再利用之旅,谷歌基于关键词搜索整理了一个版本的搜索词分析,并公开供人们查询,如实时经济指标以及旅游部门的业务预报服务;而亚马逊则一直致力于让数据的价值再大一点,通过早期为AOL电子商务网站提供后台技术服务的合作,让亚马逊掌握了用户的数据,包括他们在看什么、买什么,进一步帮助亚马逊提高推荐引擎性能。
与这些线上企业对数据利用的敏感度不同,一些线下运作的传统企业,也许还在信息喷泉上安睡。有些数据被收集、被保存,但也把数据带入了坟墓,暂不能见天日。但当他们嗅到了数据所带来的机会后,如一家知名的物流企业,针对其掌握的全球出货信息,成立专门部门,以商业和经济预测的形式出售汇总数据,创造了谷歌搜索查询业务的一个线下版本。
数据创新2:重组数据
还记得那个将某个地区的交通事故发生情况与犯罪发生情况映射到一张地图上的例子么,这就是数据重组,很多时候,1+1>2的效果一次又一次地在证明其强大魔力。其实,两个或者更多个大数据的相加,是更大的大数据,关键在于怎么相加。丹麦癌症协会曾就手机是否增加致癌率这个命题进行研究,通过将1990年至2007年间拥有手机用户的信息和该国所有癌症患者的信息这两个数据集结合后,得出了没有发现使用移动电话和癌症风险增加之间存在任何关系的结论。这就是一个数据与数据相加的实例,虽然未能形成轰动的效果,但至少也能让人们更加放心的使用移动电话了,也为我们提示了大数据运用的更多可能性。
数据创新3:可扩展数据
一个数据集并不会只有一种用途,就如美的发现需要一双发现美的眼睛一样,数据的用途也需要一双发现数据用途的眼睛。零售商店内的监控摄像头,不仅可以用来认出商店扒手,还能跟踪在商店里购物的客户流和他们停留的位置,利用这些信息,零售商可以设计店面的最佳布局并判断营销活动的有效性,正如那句话所说,无心插柳柳成荫。
数据利用的其他可能,还有数据的折旧值、数据废气、开放数据等。其中,开放数据最吸引人眼球,这也是各国政府现在正在努力推进的,其主旨是通过多元主体的参与,唤醒沉睡的数据,虽然真正实施起来,并不是那么容易,但这,必然是大势所趋,方向已经确定,路途的曲折蜿蜒,不过是为了更好地前进。
F. ppt 什么是大数据
大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程回优化能力的海量、高答增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
G. 《大数据时代》读后感
读完这本书并不是一气呵成的,第一次读到大约五分之一的时候就放下了,第二次重新开始读,读到三分之二的时候又想放弃,可是想了想,还是坚持了下来,不为别的,看到三分之二的时候基本明白了书中要讲的主要内容,而这内容并不是我想从书中获知的,或者说,书中内容与我期待相去甚远。而之所以能硬着头皮读完,完全是出于想着事后跟朋友评论这本书的时候更有资格而已,毕竟,没有看完一本书而去评论它总是有失公正的。
大数据时代这本书按我自己的理解主要讲了四个方面的内容,一是讲什么是大数据,举了很多例子说明我们已经进入大数据时代了。二是讲大数据的意义,文中大量举例,论证大数据对人类发展的积极意义。三是讲大数据若是用得不当所产生的消极影响。四是提醒我们如何避免大数据的消极作用,发挥它的优势造福人类。记得高中学政治的时候,有一条回答问题的黄金法则,当要解决一个问题的时候得从三方面回答,那就是:是什么,为什么,怎么样;也就是先解释事务的定义,再说解决问题方法,最后阐明这个事务的积极作用和消极作用。而大数据时代只说明了两个问题,那就是,"是什么”,以及“为什么”。也许这本身就不是一本工具书。大数据时代,这个名字取的是够大气,内容却不敢恭维。这本书在网上炒的也很火,受很多人追捧,不知道看完之后是不是跟我一样,感觉看与不看似乎影响不大。
跟老公谈论过这本书,刚开始我在京东上买它的时候很激动得对老公说,看完这本书我会更了解现在互联网思维,对工作有帮助,而等我读完,一点这样的感觉都没有了。老公也很形象描述了这本书,它就像美食节目《舌尖上的中国》一样,告诉你哪里有好吃的,但是不告诉你怎么做。我觉得这个比喻很形象,真是要人命了,看着一道道美食而不得,只能拿起身边的薯条可乐解解馋的痛苦就是如此。
“除了上帝,任何人都必须用数据来说话。”——这是《大数据》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。
美国是《大数据》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,Web3·0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。
透过全书,一个立体的美国及美国人民的思想呈现在我们面前——美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。
读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。
作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的文化以及能用于教学的鲜活案例。
每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据》就这样在坚持中溶入我的思想……
对于畅销书刊、热点话题、时尚科技,始终不太感兴趣。书刊,喜欢有一定年份的;话题,钟情于务虚的观点;新奇的产品于我无缘,习惯使用成熟的科技产品。既不清高,也非冷漠,就是要与现实保持一定的距离,给自己留一点思考的空间。这一习惯最近破了例。由于工作的原因,耳濡目染,“大数据”这个新兴概念开始频繁步入我的视野。按捺不住内心的好奇,网购《大数据时代》,手不释卷,三天读完,颇有收获。此书有如下特点。
首先,作者站在理论的制高点上,条理清楚地阐述了大数据对人类的工作、生活、思维带来的革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。其次,文中的事例贴近现实生活,贴近时代,令读者既印象深刻,又感同身受。此外,作者没有使用大量的专业术语,没有假装一副专业的面孔。纵观全书,遣词造句,均通俗易懂。
作者认为大数据时代具有三个显著特点。一、人们研究与分析某个现象时,将使用全部数据而非抽样数据;二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。三、了解数据之间的相关性,胜于对因果关系的探索。“是什么”比“为什么”重要。
作者指出,随着技术的发展,数据的存储与处理成本显著降低,人们现在有能力从支离破碎的、看似毫不相干的数据矿渣中抽炼出真知烁见。在大数据时代,三类公司将成为时代的宠儿。一是拥有大数据的公司与组织。如政府、银行、电信公司、全球性互联网公司(阿里巴巴、淘宝网)。二是拥有数据分析与处理技术的专业公司,如亚马逊、谷歌。三是拥有创新思维的公司,他们可能既不掌握大数据,也没有专业技术,但却擅长使用大数据,从大数据中找到自己的理想天地。
面对即将来临的大数据时代,个人将如何应对自如?这是个严肃的问题。
近两周用业余时间读了《大数据时代》这本书,是听培训时杜威老师推荐的,我快速阅读了一遍,觉得受到了一些启发,发现了一些原来没有想到看到的事情。
首先是大数据代表着数据的样本=全体,这是一个与传统统计学的显著区别。大数据有能力获得全体数据并对其进行分析。
第二就是相关性与因果性同样重要。相关性说明了什么事情与什么什么事情有关系,如商场周围车流量的增多与商场销售额的相关性,因果性说明什么是什么的原因,如睡10个小时是有精神的原因。在大数据中,相关性要比因果性容易获得,而且相关性已经能为客户带来较大的收益。
第三就是大数据允许存在不精确性、混杂性,由于数据量巨大,存在少量的异变不会对结果产生任何影响,如收益是1个亿与1亿零1元的差别可能决策者不关心。
第四是大数据中的三个主要因素,思维、数据、技术,思维觉得你在哪些地方使用大数据。在这三个因素之中,会产生数据中间商,来处理加工数据并出售。
读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。
这本书介绍了大数据时代来临后,接踵而至的三项变革——商业变革、管理变革和思维变革。
其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为Farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。
大家应该都知道20xx年出现的H1N1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,Google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!
在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。
在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!
大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。
大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。
大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!
3月11日下午两节课后,我校全体教师和受邀而来的金南学区各友好学校的领导及教师汇聚于多媒体教室,共同分享、交流《大数据》读后感。
老师们从:何谓大数据;立足国情对大数据进行探讨;大数据在教育教学中的主要应用等几个方面畅谈了自己的感悟。
张萌老师说:大数据体量庞大、结构复杂、是产生巨大价值的数据集合。大数据这种方法在中国的国情下需要以更加科学、合适的方式进行实践,不可生搬硬套。
董译雯老师说:在你我感叹《大数据》里深植于美国民众血液中的自由、民主、严谨的价值观的同时,可否想过中国教育体制下的孩子们身上还残留多少独立与自我意识?作为典型的八零后,我们这一代人身上最缺失的便是独立思考能力。但愿,我的学生哪怕是因为我所做的一点点努力而开始思考“我”这个字的含义,足矣!
张红杰老师说:很感谢校长给我们推荐了《大数据》这本书。在教学工作中,应该有大数据意识,创新意识。学习一些专业的教学统计法、数据分析法,从中发现一些教育现象,并采取相应的策略。让我们的教育教学工作少一些随意和盲目,多一份严谨与科学。
白媛媛老师通过文中的三个事例,结合教学实际,谈了自己教学中对数据使用的价值;结合自己的工作,谈了如何实现工作的最高境界。
交流活动尾声,身为阅读《大数据》的倡议者、发起者、以及忠实的读者韩校长幽默风趣的同大家分享了他读后的感悟:我们心中要装着学校,因为我们个人的'命运依赖群体的命运;工作要追求精细化,不能做胡适书中的“差不多”先生;尊重数据,拥有数据意识,建立数据团队!
此次活动从寒假期间倡导读《大数据》一书,到开学伊始的分组沙龙,再到今日的阅读共享,现已圆满告一段落。相信此次活动定会增强我校全体教师的数据意识,掌握大数据,运用大智慧助推我校的教育教学上一个新的台阶!
去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的CIO也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。
不过话又还得说回来,《大数据时代》是本好书。
当然,很多IT知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的BI,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧---巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时BI的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。看完此书,我心中的一些问题:
1.什么是大数据?
查了查网络,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity--这个好像是IBM的定义吧。
以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。
2.大数据适合什么样的企业?
诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。同样,在公共事业类的政府机构,大数据的作用也许也能很好的发挥。反而感觉在大多数中小型企业应用大数据,似乎有点大题小作。书中说:大数据是企业竞争力。诚然,数据是一个企业的核心无形资源(利用得好的话),但是否所有的数据,或都换则方式说:所有的企业都以大数据为竞争力,是否真的合适么?是否在中小企业中,会显示得小题大做呢?
3.大数据带来的影响
当一波又一波的IT技术热潮源源不断地向我们铺面而来的时候,你甚至都没有做好准备,你都要开始迎接它所给你带来的影响了。经过物联网,云计算的推波助澜下,大数据开始登场了。但它到底给我们带来了什么呢?
1)预测未来书中以Google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。
2)变革商业大数据所带来的商机,同时会衍生出一系列与大数据相关的商业机遇与商业模式,数据的潜在价值会源源不断地发挥作用可以容易想到的是未来有专门的数据收集,数据分析,数据生成的一条数据产业链产生。影响的,当然是IT公司。
3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。
在看《大数据》之前,我只知道社会越来越数字化了,看完之后,才觉悟到:人类将迎来一个新的时代。
数字化已经把我们带入一个信息时代,大数据却把我们卷进了一场科技风暴之中,这本书中,作者为我们开启了一个更包容更广阔的新时代,大数据把社会的方方面面融合在了一起,曾经看似因果联系紧密的事物,可能变得不再那么重要;毫无关联的事物,可能隐藏着重要的信息,从科技、商业,到医疗、政治、教育、文化,大数据一概席卷囊括,它改变着我们的传统思维,为这个时代注入了新鲜的血液,就像作者书中所说:“这项技术终将改变我们所居住的星球上的许多东西。”
大数据最显著的影响是对于电子商务,通过大数据,最先洞察出潜在市场的,也必然最先占领市场。而电子商务对实业的冲击又是势不可挡,可见,掌握了大数据就主导了市场,拥有了先进的科技才能拥有坚实的竞争力。在医疗方面,曾经的非典时期,就是一个很好的例证,正是有大数据的预测功能,才使疫情得到了控制。在更小的方面,他也同样改变着我们的生活,书中提到美国著名计算机专家奥伦·埃齐奥尼发明了飞机机票价格预测软件,就是利用大数据造福我们生活的很好例子。
大数据不仅节省了时间,提高了效率,更将人类带入一个新的文明阶段。从分析因果总结经验,转变为搜集数据预测未来;由原来的滞后性变为现在的预见性——大大提高了人类认识世界、改造世界的能力,变被动为主动。大数据为我们掀开了历史新纪元,不敢想象它将会为我们带来什么,或许会出现新奇的生活方式,从未有过的职业,闻所未闻的商业模式,百家争鸣的文化高峰;也或许会解开更多未解之谜,探索到宇宙之外的秘密。总之,毫无疑问的是,大数据为我们带来的未来是超乎想象的。
这本书中作者提到最多的是:改变我们的传统思维,摒弃精确性转向宏观。从总结因果转向预测。这个世界正以惊人的速度向前发展,数据大爆炸的波及范围远超乎我们的想象,单纯靠人类的主观判断力是多么的有限,大数据早晚会取而代之这一现象,这必将影响我们的生活和工作,我们也只有认清这种趋势,改变思维,调整步伐,紧跟时代才行。即使不能与时代同步,也尽量做到避免固步自封,认识大数据、利用大数据趋利避害,为我们的生活造福!
知道"是什么"就够了,没必要知道"为什么"。在大数据时代,我们不必非得知道现象背后的原因,而是让数据自己"发声"。这个命题是我读这本书最大的感触。
对于大多数人来说,这的确是一场思维变革。对于理科学生来说,会认为这是一个错误的观点,因为这无异于否定了他们对世界客观物理化学规律探索的重要性;对于一名工科学生,其实这并不是一个多么新颖的观点,因为工科是讲求时用性的,如何能更好地利用基本自然科学规律创造社会财富比探索自然科学知识显得更重要。
这些天来,在读大数据这本书的同时,也稍微重温了一下自动控制原理,认识到控制系统中存在明显的大数据时代思维方式,借读书交流会之际,与大家分享。
对系统的有效控制需要对系统理解与建模。以一个日常生活中的例子说明。开车的时候一脚油门下去车就飞出去了,但并不知道这一脚油门下去能给多大车速,这就需要驾驶人员的熟练的驾驶技能了,不然超速被开罚单是很正常的。那么,问题就来了:如何能实现速度的自动控制而不用驾驶人员踩油门?这就是控制系统最关键的环节——建立系统数学模型。大白话就是知道车速与燃油量的数学关系式。若是以探索为什么的思维模式,不可避免的要列一大堆能量方程、动量方程等物理化学式子,经过繁杂的计算,还是能得到车速和燃油量的数学关系式的。很明显这是一个繁琐的过程,因为得知道现象背后的原因。这仅是对于这种简单的系统,若是对于航空发动机这种复杂的系统,结构工艺过于复杂,分析各部分的物理化学过程是十分困难的,这时候可以通过实验法得到数学模型。
实验法主要有时域测定法、频域测定法和统计相关法。与大数据时代思维最接近的是统计相关法,主要过程是对被研究对象施加某种随机信号,根据被测对象各参数的变化,采用统计相关法确定被测系统或对象的动态特性。这种方法可以在被测系统或生产过程正常运行状态下进行在线辨识,测试结果精度较高,但要求采集大量测试数据,并需要相关仪和计算机进行数据计算和处理。
若用开车实例来解释,此时的系统为汽车动力系统,施加的随机信号为燃油量,被测对象指车转速,得到的动态特性就是指车速与燃油量函数关系式,从而不用探求背后的物理化学规律就得到了数学模型。
在沈阳黎明航空公司实习时去过试车间,除了发动机点火后震撼的场景动人心魄,控制室屏幕上海量的数据也同样引人注目,我想这么多数据无非就是验证数学模型或直接实验法得到数学模型,结合航空发动机这种复杂的系统,对于搞控制的人来说,得到数学模型就够了,现象背后的原因交给研发的人来探索更好。
H. 干货 | 个人知识体系建立的6个步骤
读了很多书,接收了大量碎片知识,可是无法灵活运用?问题可能在于,没有进行知识管理以及形成个人的知识体系。
在上一篇文章 《30分钟读完一本书,拼的是快速阅读能力》 ,我们讲述了如何在30分钟里快速阅读一本书。在这篇文章里,我们继续透过洋葱阅读法,了解如何进行知识管理以及个人知识体系的建立。
建立个人知识体系的第一步是,学会提问。
你要建立什么样的知识体系?你想达到什么样的目的和效果?你关注兆扮了哪些领域?你对哪些方面比较感兴趣呢?比如时间管理,阅读,写作,手绘,美食,健身,心理学……
你要明白自己的兴趣爱好点在哪,正如我们阅读时强调的,必须带有目的性,选择自己感兴趣的进行阅读,才能最大程度调动大脑的精力参与阅读,进行知识管理尤其如此。
从吸引力法则上来说,你关注什么,吸引什么,就能看到什么。 比如说,我在app上搜索读书方法的文章,在一段时间里首页就推荐很多关于读书方法的文章,大数据时代,后台可以基于用户浏览给出相应信息。现实生活中也是这样,关注什么,就能经常看到什么,对于知识尤其如此!
在明白了自己迟咐要学习什么、管理哪方面的知识,是要用来做什么之后,就是如何收集和获取知识的问题了。
一是碎片化阅读。在生活中零碎的时间里阅读的碎片化信息,比如读一篇公众号文章、微信群文字、朋友圈图片、微博热点、知乎问答、喜马拉雅FM、一本书的某一章节片段……生活中的碎片信息几乎无处不在,不必带有太强的逻辑要求。
二是系统化阅读。也即有计划有目标的系统码猜纯学习,比如系统课程、主题阅读等。
如何获取和收集知识呢? 印象笔记app
印象笔记可在手机、平板、电脑等多方登录。
碎片学习的核心是概念学习,收集知识也即收集概念。 比如时间管理可以细分多个概念:吃青蛙、番茄钟、GTD、精力管理、时间感知度、晨间日记、碎片时间、拖延、重要紧急四象限……
在印象笔记里,创建不同领域来源的目录,比如微信、微博、得到等等的分类,再把这个领域相关的碎片化信息收集过来。很多app,比如得到、微信、微博,都支持一键点击同步保存到印象笔记里,我们可以随时查看自己收集过的信息。
获取和收集大量的知识,接下来就是整理的阶段,也即对知识进行分类管理和保存。
比如参加一个课程后,对课程的内容进行提炼,找出对自己来说最精华的部分。在阅读公众号文章时,也可以用这种方法,找出自己觉得写得比较好的部分,也许只是一个段落,也许只是一句话,都可以提炼出来并分类保存。
对书籍知识的整理,可以通过读书卡片、视觉化读书笔记、读书PPT等方式。
①读书卡片。 把很多文字浓缩到一张卡片上,把从书本中提炼出的碎片化重点变成系统的知识内容。比如九宫格读书表格,把核心的观点用一张图呈现出来,帮助我们去理解和消化。
②视觉化读书笔记。 用简报或者思维导图的方式,能帮助我们在短时间里学习理解更多的内容,越简洁清晰的图像,大脑处理起来就越快。
③读书PPT 。利用PPT展示一本书内容,既结合了视觉化内容,又融合文字,整个画面简洁,能提高大脑理解能力。
为了给别人讲清楚,我们首先得做到自己对知识有综合的理解和认识。其次,“教”是一个强化记忆和认识的过程,在教别人之后,别人提出疑问、质疑和新想法,会增强我们的认识,从而让我们对问题的认识更全面。
分享是一个反复学习的过程,教授别人是一种最好的学习方式。
比如,参加读书活动分享阅读心得,在撰写读书笔记文章,在朋友圈、微博等社交平台发表阅读感受……都是一个反复学习的过程。分享得越多,学习的次数也就越多。
当我们阅读文章并提炼出自己想要的概念和素材之后,最重要的是和我们自身产生关联,思考如何应用到自身实践之中,这也是我们收集知识的目的。
我们需要进行多场景的应用,尝试在不同的场景下运用该理论。
比如,利用RIA便签读书法就是这样,描述自己的相关经验,思考以后如何应用。
再比如, 大脑更喜欢视觉化的信息,而不是抽象的信息。
这句话联系生活经验,我们可以得出这样的结论:如果夸女生漂亮,不能直接讲“你今天很漂亮”,要把这句话视觉化:你的发型和你身材很搭、穿着颜色很搭……这就是视觉化的描述,会让女生觉得是真挚的夸赞。
知识的管理,实际就是收集内容后,进行拆解、提炼出核心内容和知识体系,再经过加工、组合、创新变成我们自己的过程。
如何让知识和知识之间产生链接?
寻找联系也即当看到某句话或某个概念时,下意识分析该内容是否能够通过其他的现象解释。
比如早起阅读与精力管理联系起来,我们可以得出这样的结论:要在精力充沛的状态下进行阅读,疲劳的时候阅读效果会很差,此时最好不要进行阅读。
再比如阅读和二八法则联系起来,可以得出这样的结论,一本书最重要的内容可能只占20%的篇幅,因此我们读书时不必全部读完,而是要明确自己阅读的目的,想解决什么问题,找出书籍中对自己来说,是重点的部分进行阅读。
如果想了解背后的体系,就要学会追根溯源。从表面的知识逐渐地往上溯源,寻找第一手的知识,一手的知识往往是体系化的学术知识,通过实验科学论证过,寻求概念背后的底层规律。
通过找寻知识背后的规律,认识真实的因果关系,能够让我们看清事物的本质。
比如我们经常可以看到大咖的付费课程有很多专业名词,系统思考、思维模式、心智模式、复利效应、临界知识……其源头可以追溯到《穷查理宝典》中查理·芒格的多元思维模型普世智慧,以及《第五项修炼》的学习模式等经典书籍。
从源头上来说,事物都是相通的,世界总是以极其简单的规律运行着。
建立个人知识体系分为6大阶段。
第一步,从为什么开始,问问自己想管理哪些领域的知识。
第二步,收集阶段。利用印象笔记app收集日常生活的碎片信息。
第三步,整理阶段。提炼知识的精华部分,并做相关输出。
第四步,分享阶段。分享是反复学习的过程,教授是最好的学习。
第五步,应用阶段。将知识和自身生活建立联系,思考如何实践。
第六步,创造阶段。让知识和知识之间产生链接,创造新的内容。