导航:首页 > 网络数据 > 大数据思维导图

大数据思维导图

发布时间:2023-04-05 19:29:35

大数据开发这么学习

第一阶段:Hadoop生态架构技术
1、语言基础
java:多理解和实践在Java虚拟机的内存管理、以及多线程、线程池、设计模式、并行化就可以,不需要深入掌握。
Linux:系统安装、基本命令、网络配置、Vim编辑器、进程管理、Shell脚本、虚拟机的菜单熟悉等等。
Python:基础语法,数据结构,函数,条件判断,循环等基础知识。
2、环境准备
这里介绍在windows电脑搭建完全分布式,1主2从。
VMware虚拟机、Linux系统(Centos6.5)、Hadoop安装包,这里准备好Hadoop完全分布式集群环境。
3、MapRece
MapRece分布式离线计算框架,是Hadoop核心编程模型。
4、HDFS1.0/2.0
HDFS能提供高吞吐量的数据访问,适合大规模数据集上的应用。
5、Yarn(Hadoop2.0)
Yarn是一个资源调度平台,主要负责给任务分配资源。
6、Hive
Hive是一个数据仓库,所有的数据都是存储在HDFS上的。使用Hive主要是写Hql。
7、Spark
Spark 是专为大规模数据处理而设计的快速通用的计算引擎。
8、SparkStreaming
Spark Streaming是实时处理框架,数据是一批一批的处理。
9、SparkHive
Spark作为Hive的计算引擎,将Hive的查询作为Spark的任务提交到Spark集群上进行计算,可以提高Hive查询的性能。
10、Storm
Storm是一个实时计算框架,Storm是对实时新增的每一条数据进行处理,是一条一条的处理,可以保证数据处理的时效性。
11、Zookeeper
Zookeeper是很多大数据框架的基础,是集群的管理者。
12、Hbase
Hbase是一个Nosql数据库,是高可靠、面向列的、可伸缩的、分布式的数据库。
13、Kafka
kafka是一个消息中间件,作为一个中间缓冲层。
14、Flume
Flume常见的就是采集应用产生的日志文件中的数据,一般有两个流程。
一个是Flume采集数据存储到Kafka中,方便Storm或者SparkStreaming进行实时处理。
另一个流程是Flume采集的数据存储到HDFS上,为了后期使用hadoop或者spark进行离线处理。
第二阶段:数据挖掘算法
1、中文分词
开源分词库的离线和在线应用
2、自然语言处理
文本相关性算法
3、推荐算法
基于CB、CF,归一法,Mahout应用。
4、分类算法
NB、SVM
5、回归算法
LR、DecisionTree
6、聚类算法
层次聚类、Kmeans
7、神经网络与深度学习
NN、Tensorflow

❷ 大数据专业需要用到什么软件啊

1,分步阅读
数据分析报告类:Microsoft Office软件等,如果连excel表格基本的处理操作都不会,连PPT报告都不会做,那我只好说离数据分析的岗位还差的很远。现在的数据呈现不再单单只是表格的形式,而是更多需要以可视化图表去展示你的数据结果,因此数据可视化软件就不能少,BDP个人版、ECharts等这些必备的,就看你自己怎么选了。
2,专业数据分析软件:Office并不是全部,要从在数据分析方面做的比较好,你必须会用(至少要了解)一些比较常用的专业数据分析软件工具,比如SPSS、SAS、Matlab等等,这些软件可以很好地帮助我们完成专业性的算法或模型分析,还有高级的python、R等。
3,数据库:hive、hadoop、impala等数据库相关的知识可以学习;
4,辅助工具:比如思维导图软件(如MindManager、MindNode Pro等)也可以很好地帮助我们整理分析思路。

❸ 大数据专业主要学习什么语言

大数据是近五年兴起的行业,发展迅速,很多技术经过这些年的迭代也变得比较成熟了,同时新的东西也不断涌现,想要保持自己竞争力的唯一办法就是不断学习。但是,大数据需要学习什么?1 思维导图下面的是我之前整理的一张思维导图,内容分成几大块,包括了分布式计算与查询,分布式调度与管理,持久化存储,大数据常用的编程语言等等内容,每个大类下有很多的开源工具。2大数据需要的语言Javajava可以说是大数据最基础的编程语言,据我这些年的经验,我接触的很大一部分的大数据开发都是从Jave Web开发转岗过来的(当然也不是绝对我甚至见过产品转岗大数据开发的,逆了个天)。一是因为大数据的本质无非就是海量数据的计算,查询与存储,后台开发很容易接触到大数据量存取的应用场景二就是java语言本事了,天然的优势,因为大数据的组件很多都是用java开发的像HDFS,Yarn,Hbase,MR,Zookeeper等等,想要深入学习,填上生产环境中踩到的各种坑,必须得先学会java然后去啃源码。说到啃源码顺便说一句,开始的时候肯定是会很难,需要对组件本身和开发语言都有比较深入的理解,熟能生巧慢慢来,等你过了这个阶段,习惯了看源码解决问题的时候你会发现源码真香。Scalascala和java很相似都是在jvm运行的语言,在开发过程中是可以无缝互相调用的。Scala在大数据领域的影响力大部分都是来自社区中的明星Spark和kafka,这两个东西大家应该都知道(后面我会有文章多维度介绍它们),它们的强势发展直接带动了Scala在这个领域的流行。Python和Shellshell应该不用过多的介绍非常的常用,属于程序猿必备的通用技能。python更多的是用在数据挖掘领域以及写一些复杂的且shell难以实现的日常脚本。3分布式计算什么是分布式计算?分布式计算研究的是如何把一个需要非常巨大的计算能力才能解决的问题分成许多小的部分,然后把这些部分分配给许多服务器进行处理,最后把这些计算结果综合起来得到最终的结果。举个栗子,就像是组长把一个大项目拆分,让组员每个人开发一部分,最后将所有人代码merge,大项目完成。听起来好像很简单,但是真正参与过大项目开发的人一定知道中间涉及的内容可不少。分布式计算目前流行的工具有:离线工具Spark,MapRece等实时工具Spark Streaming,Storm,Flink等这几个东西的区别和各自的应用场景我们之后再聊。4分布式存储传统的网络存储系统采用的是集中的存储服务器存放所有数据,单台存储服务器的io能力是有限的,这成为了系统性能的瓶颈,同时服务器的可靠性和安全性也不能满足需求,尤其是大规模的存储应用。分布式存储系统,是将数据分散存储在多台独立的设备上。采用的是可扩展的系统结构,利用多台存储服务器分担存储负荷,利用位置服务器定位存储信息,它不但提高了系统的可靠性、可用性和存取效率,还易于扩展。上图是hdfs的存储架构图,hdfs作为分布式文件系统,兼备了可靠性和扩展性,数据存储3份在不同机器上(两份存在同一机架,一份存在其他机架)保证数据不丢失。由NameNode统一管理元数据,可以任意扩展集群。主流的分布式数据库有很多hbase,mongoDB,GreenPlum,redis等等等等,没有孰好孰坏之分,只有合不合适,每个数据库的应用场景都不同,其实直接比较是没有意义的,后续我也会有文章一个个讲解它们的应用场景原理架构等。5分布式调度与管理现在人们好像都很热衷于谈"去中心化",也许是区块链带起的这个潮流。但是"中心化"在大数据领域还是很重要的,至少目前来说是的。分布式的集群管理需要有个组件去分配调度资源给各个节点,这个东西叫yarn;需要有个组件来解决在分布式环境下"锁"的问题,这个东西叫zookeeper;需要有个组件来记录任务的依赖关系并定时调度任务,这个东西叫azkaban。当然这些“东西”并不是唯一的,其实都是有很多替代品的,本文只举了几个比较常用的例子。

❹ 大白话谈大数据:数据分析方法之对比分析

对比分析是数据分析中最常用、好用、实用的分析方法,它是将两个或两个以上的数据进行比较,分析其中的差异,从而揭示这些事物代表的发展变化情况以及变化规律。


先看看思维导图:


使用分析方法(和谁比)    


如何使用对比分析法,就要先考虑 和谁比 这个问题。


和自己比较

通过和自己过去的平均值相比,发现问题,围绕问题进行分析,出现的问题是自身问题导致的还是行业问题导致的,如果自己的环比出现了问题,就要从自身上找原因,提高活跃率。

和行业比较

将自己的平均值和行业平均值进行比较,和同行一比,往往会发现很多问题。




使用分析方法(如何比较)      

第二个要考虑的问题就是 如何比较


数据整体的大小 :用某些指标来衡量整体数据的大小,常用的数据指标为:平均值、中位数、某个业务指标


数据整体波动 :用变异系数来衡量整体数据的波动情况

趋势变化 :运用对比分析来分析趋势变化的时候,最主要的是找到合适的对比标准。找到标准,将对比对象的指标与标准进行对比,就能得出有结果了。目前常用标准是时间标准、空间标准、特定标准。


第一类时间标准

动作前后对比 ,可以看到动作前后的效果,如对比某次营销活动前后的对比。

时间趋势对比 ,可以评估指标在一段时间内的变化,可以通过环比,来判断短时间内趋势的变化。

与去年同期对比 ,当数据存在时间周期变化的时候,可以与去年同期对比,剔除时间周期变化因素。通过同比,来判断短时间内趋势的变化。

环比:本月和上个月比较,短时间的比较

同比:本年和上一年比较,长时间的比较

第二类空间标准

A/B测试 ,在同一时间维度,分别让组成成分相同的目标用户,进行不同的操作,最后分析不同组的操作效果,A/Btest我接下去也会讲。

相似空间对比 ,运用两个相似的空间进行比较,找到二者的差距,比如同类型甲APP(贝壳)乙APP(自如)的年留存率情况,明显看出哪个APP的留存率更高,日常生活中相似空间比较常用的就是城市、分公司之间的对比。

先进空间对比 ,是指与行业内领头羊对比,知晓差距多少,再细分原因,从而提高自身水平。如淘宝和京东的对比。

第三类特定标准

与计划值对比 ,目标驱动运营,在营销中会制定年、月、甚至日的目标,通过与目标对比,分析自己是否完成目标,若未完成目标,则深层次分析原因。目标驱动的好处,就是让运营人员一直积极向上努力的去完成目标,从而带动公司盈利。

与平均值对比 ,与平均值对比,主要是为了知晓某部分与总体差距。

与理论值对比 ,这个对比主要是因为无历史数据,所以这个时候只能与理论值对比。理论值是需要经验比较丰富的员工,利用工作经验沉淀,参考相似的数据,得出来的值。



对比分析方法原则   


对比分析需要坚持可比性原则:对比对象相似,对比指标同质


对比对象相似 :进行比较的时候注意,比较规模要一致,对比对象越相似,就越具有可比性,比如说不能用你的工资和思聪的零花钱进行比较,这样不公平。如果要比,就和你出生,教育背景相似的人进行比较。当然这只是个不恰当的例子haha


对比指标同质: 同质可以表现在下面三点:

1.指标口径范围相同 ,比如甲 APP 与乙 APP 的用户年留存率比较,如果用甲 APP 18年的用户留存率,那乙 APP 也需要是18年的,不能拿乙17年的与甲18年的比较。

2.指标计算方法一样 ,也就是计算公式相同,比如一个用除法、一个用加法进行计算。

3.指标计量单位一致 ,不能拿身高和体重进行比较,二者常用单位一个是厘米,一个是千克。


分析方法应用   


举一个例子吧,A/Btest

什么是A/B测试呢?为统一个目标制定两个版本,这两个版本只有某个地方不一样,其他地方保持不变,让一部分用户使用A版本,一部分用户使用B版本,A版本为实验组,B版本为对照组,两个版本运行一段时间后,分别统计两组用户的表现,然后对两组数据进行对比分析,选择效果好的版本,正式发布给全部用户。


当然现实中的A/Btest也远没有这么简单,我接下去会写一篇文章专门讲讲A/Btest的,挖坑+1 hahaha


最后打个小广告,我的公众号(顾先生的数据挖掘)

喜欢的小伙伴可以关注下,你的关注是我最大的动力。

❺ 大数据分析需要哪些知识

数据分析需要掌握的知识:
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
3、分析思维
比如结构化思维、思维导图、或网络脑图、麦肯锡式分析,了解一些smart、5W2H、SWOT等等那就更好了。不一定要掌握多深多全,但一定要了解一些。
4、数据库知识
大数据大数据,就是数据量很多,Excel就解决不了这么大数据量的时候,就得使用数据库。如果是关系型数据库,比如Oracle、mysql、sqlserver等等,你还得要学习使用SQL语句,筛选排序,汇总等等。非关系型数据库也得要学习,比如:Cassandra、Mongodb、CouchDB、Redis、 Riak、Membase、Neo4j 和 HBase等等,起码常用的了解一两个,比如Hbase,Mongodb,redis等。
5、开发工具及环境
比如:Linux OS、Hadoop(存储HDFS,计算Yarn)、Spark、或另外一些中间件。目前用得多的开发工具Java、python等等语言工具。

❻ 大数据架构流程图

大数据管理数据处理过程图

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察力。大数据处理的主要流程包括数据收集、数据存储、数据处理、数据应用等主要环节。随着业务的增长,大量和流程、规则相关的非结构化数据也爆发式增长。

平台数据架构流程图

标准大数据平台架构,标准大数据平台架构,大数据平台架构,数据仓库,数据集市,大数据平台层级结构,数据挖掘,举报,包含该模版的分享。数据架构设计(数据架构组) 概述 总体描述 相对于业务架构和应用架构,数据架构在总体架构中处于基础和核心地位。

产品体验结构流程图

产品的功能结构图,产品功能结构图,产品主要流程图,产品的核心流程,我们继续围绕着得到app的核心流程探究。还原产品,产品结构、核心流程体验、核心页面体验的情况,而不仅仅是界面表层;从产品视角、用户视角来分析,而不是自我感觉,撰写报告,推出报告。产品体验从产品现状、目标用户及场景、关键功能体验

程序流程图

程序流程图又称程序框图,是用统一规定的标准符号描述程序运行具体步骤的图形表示。程序框图的设计是在处理流程图的基础上,通过对输入输出数据和处理过程的详细分析,将计算机的主要运行步骤和内容标识出来。

软件开发周期

软件生命周期(Software Life Cycle,SLC)是软件的产生直到报废或停止使用的生命周期。软件生命周期内有问题定义、可行性分析、总体描述、系统设计、编码、调试和测试、验收与运行、维护升级到废弃等阶段一个软件产品或软件系统也要经历孕育、诞生、成长、成熟、衰亡等阶段

软件测试流程鱼骨图

软件测试流程: 需求分析,制订测试计划,设计测试用例与编写,实施测试,提交缺陷报告,生成测试总结和报告。软件测试按照研发阶段一般分为5个部分:单元测试、集成测试、确认测试、系统测试、验收测试。根据设计用例的方法不同,黑盒测试包括等价划分法、边界值分析法、错误推测法、因果图法等。

云平台整体架构图

云计算的体系结构由5部分组成,分别为应用层,平台层,资源层,用户访问层和管理层,云计算的本质是通过网络提供服务,所以其体系结构以服务为核心。公认的云架构是划分为基础设施层、平台层和软件服务层三个层次的。

项目管理九大体系

项目管理思维导图包括项目采购管理、项目成本核算、时间管理等关于项目管理的九大体系。项目管理十大领域:进度、成本、质量、范围等4个核心领域,风险、沟通、采购、人力资源、干系人等5个辅助领域,1个整体领域。

产品经理项目管理思维导图

思维导图可以帮助产品经理梳理多而乱的产品思路,也可以帮助产品经理进行需求管理、产品分析等。产品经理会使用思维导图来对产品的思路进行一个有效的分析,梳理产品逻辑,然后再画原型图。一个优秀的产品经理,不仅仅是会画原型,写需求文档,更重要的是做出用户满意的产品。

项目规划时间轴流程图

项目规划时间轴流程图,对一个项目从开始到竣工的整个过程进行总结归纳。时间线图,又叫时间轴图,能以历史进程为载体,将过往的重要事项或者里程碑,标注在轴线上,并加以说明。它的作用是能够可视化内容,以图文的形式呈现出来。时间轴是一种表达事物发展进程的可视化图示,被许多商业管理人士所使用。

❼ 大数据专业都需要用到哪些软件去啊

数据分析报告类:Microsoft Office软件等,如果连excel表格基本的处理操作都不会,连PPT报告都不会做,那我只好说离数据分析的岗位还差的很远。现在的数据呈现不再单单只是表格的形式,而是更多需要以可视化图表去展示你的数据结果,因此数据可视化软件就不能少,BDP个人版、ECharts等这些必备的,就看你自己怎么选了。
2,专业数据分析软件:Office并不是全部,要从在数据分析方面做的比较好,你必须会用(至少要了解)一些比较常用的专业数据分析软件工具,比如SPSS、SAS、Matlab等等,这些软件可以很好地帮助我们完成专业性的算法或模型分析,还有高级的python、R等。
3,数据库:hive、hadoop、impala等数据库相关的知识可以学习;
4,辅助工具:比如思维导图软件(如MindManager、MindNode Pro等)也可以很好地帮助我们整理分析思路。

阅读全文

与大数据思维导图相关的资料

热点内容
4g为什么网络很好却很卡 浏览:723
有什么签到的app 浏览:239
ios13第三方软件无描述文件 浏览:494
如何写一个编程输出九九乘法表 浏览:617
文件存到d盘就找不到了 浏览:861
漏洞验证工具 浏览:999
手机网易邮箱怎么看文件名 浏览:607
ipa版本是什么意思 浏览:124
gcc找不到库文件 浏览:312
状态栏网络图标插件 浏览:536
java的文件夹 浏览:811
电脑版微信聊天视频在哪个文件夹 浏览:125
joomla文件管理插件 浏览:724
如何设置工作组网络连接 浏览:331
cnc编程半桶水什么意思 浏览:44
jsp开发详解 浏览:319
360设置记住密码 浏览:257
香港有什么团购网站 浏览:623
康艺点钞机升级工具 浏览:818
现在学习编程去哪个学校好 浏览:506

友情链接