导航:首页 > 网络数据 > 开源和大数据

开源和大数据

发布时间:2023-03-30 20:01:34

大数据技术中软件不再开源

是不再开源。
当初为了突破大数据技术的瓶颈,星环科技决定用自主研发的大数据技术逐步取代开源技术。
但是近年来,随着大数据系统的快速发展,各式各样的开源基准测试集被开发出来,以评测和分析大数据系统并促进其技术改进。

② 大数据的发展趋势

如今,大数据的发展趋势正在迅速转变,但专家预计机器学习、预测分析、物联网、边缘计算将在未来几年对大数据项目产生重大影响.

大数据不再是流行术语.调查机构Forrester公司的研究人员发现,2016年,近40%的企业正在实施和扩大数据技术的应用,30%的企业计划在未槐穗来一年内采用大数据.同样,NewVantagePartners的《2016年大数据执行调查》发现,62.5%的企业现在至少有一个大数据项目投入使用,只有5.4%的企业没有规划或者没有实施大数据项目.

研究人员表示,大数据技术的采用不会立即放缓.根据调查机构IDC公司的预测,大数据和业务分析市场从2018年的1301亿美元增加到2020年的2030亿美元以毕汪上.

数据的可用性、新一代技术和对数据驱动决策的文化转型将继续推动企业对大数据和分手明仔析技术和服务的需求.IDC公司剖析信息管理集团副总裁Dan、Vesset表达,2015年全球性大数据市场收达到1220亿美元,2016年市场收入增长11.3%,预计到2020年大数据市场收入复合年均增长11.7%.

虽然大数据市场会增长,但企业对如何使用大数据并不是很清楚.新的大数据技术进入市场,旧技术的使用也在增加.

大数据发展趋势

真正掌握大数据的趋势,就像每天都在监控风向的变化一样,只要感受到风向,就会发生变化.但是,以下趋势明显推动了大数据的发展.

1.大数据和开源

ApacheHadoop、Spark等开源应用程序已经成为大数据技术空间的主流,这种趋势似乎可能会持续下去.一项调查显示,近60%的企业预计将在今年年底前使用Hadoop集群投入生产.根据调查机构Forrester公司的报告,Hadoop的使用量每年增加32%.

③ 漫谈工业大数据9:开源工业大数据软件简介(上)

今天真是一个美好的时代,有无数的开源系统可以为我们提供服务,现在有许多开发软件可以用到工业大数据中,当然很多系统还不成熟,应用到工业中还需要小心,并且需要开发人员对其进行一定的优化和调整。下面就简单介绍一些开源的大数据工具软件,看看有哪些能够应用到工业大数据领域。

下面这张图是我根据网上流传的一张开源大数据软件分类图整理的:

我们可以把开源大数据软件分成几类,有一些可以逐步应用到工业大数据领域,下面就一一介绍一下这些软件。(以下系统介绍大都来源于网络

1、数据存储类

(1)关系数据库MySQL

这个就不用太多介绍了吧,关系型数据库领域应用最广泛的开源软件,目前属于 Oracle 旗下产品。

(2)文件数据库Hadoop

Hadoop是大数据时代的明星产品,它最大的成就在于实现了一个分布式文件系统(Hadoop Distributed FileSystem),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的硬件上,而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集的应用程序。

Hadoop可以在工业大数据应用中用来作为底层的基础数据库,由于它采用了分布式部署的方式,如果是私有云部署,适用于大型企业集团。如果是公有云的话,可以用来存储文档、视频、图像等资料。

(3)列数据库Hbase

HBase是一个分布式的、面向列的开源数据库,HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。

基于Hbase开发的OpenTSDB,可以存储所有的时序(无须采样)来构建一个分布式、可伸缩的时间序列数据库。它支持秒级数据采集所有metrics,支持永久存储,可以做容量规划,并很容易的接入到现有的报警系统里。

这样的话,它就可以替代在工业领域用得最多的实时数据库。

(4)文档数据库MongoDB

MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能,而且还支持对数据建立索引。

MongoDB适合于存储工业大数据中的各类文档,包括各类图纸、文档等。

(5)图数据库Neo4j/OrientDB

图数据库不是存放图片的,是基于图的形式构建的数据系统。

Neo4j是一个高性能的,NOSQL图形数据库,它将结构化数据存储在网络上而不是表中。它是一个嵌入式的、基于磁盘的、具备完全的事务特性的java持久化引擎,但是它将结构化数据存储在网络(从数学角度叫做图)上而不是表中。Neo4j也可以被看作是一个高性能的图引擎,该引擎具有成熟数据库的所有特性。程序员工作在一个面向对象的、灵活的网络结构下而不是严格、静态的表中——但是他们可以享受到具备完全的事务特性、 企业级 的数据库的所有好处。

OrientDB是兼具文档数据库的灵活性和图形数据库管理 链接 能力的可深层次扩展的文档-图形数据库管理系统。可选无模式、全模式或混合模式下。支持许多高级特性,诸如ACID事务、快速索引,原生和SQL查询功能。可以JSON格式导入、导出文档。若不执行昂贵的JOIN操作的话,如同关系数据库可在几毫秒内可检索数以百记的链接文档图。

这些数据库都可以用来存储非结构化数据。

2、数据分析类

(1)批处理MapRece/Spark

MapRece是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Rece(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Rece(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。

Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。尽管创建 Spark 是为了支持分布式数据集上的迭代作业,但是实际上它是对 Hadoop 的补充,可以在 Hadoop 文件系统中并行运行。

这些大数据的明星产品可以用来做工业大数据的处理。

(2)流处理Storm

Storm是一个开源的分布式实时计算系统,可以简单、可靠的处理大量的数据流。Storm有很多使用场景:如实时分析,在线机器学习,持续计算,分布式RPC,ETL等等。Storm支持水平扩展,具有高容错性,保证每个消息都会得到处理,而且处理速度很快(在一个小集群中,每个结点每秒可以处理数以百万计的消息)。Storm的部署和运维都很便捷,而且更为重要的是可以使用任意编程语言来开发应用。

(3)图处理Giraph

Giraph是什么?Giraph是Apache基金会开源项目之一,被定义为迭代式图处理系统。他架构在Hadoop之上,提供了图处理接口,专门处理大数据的图问题。

Giraph的存在很有必要,现在的大数据的图问题又很多,例如表达人与人之间的关系的有社交网络,搜索引擎需要经常计算网页与网页之间的关系,而map-rece接口不太适合实现图算法。

Giraph主要用于分析用户或者内容之间的联系或重要性。

(4)并行计算MPI/OpenCL

OpenCL(全称Open Computing Language,开放运算语言)是第一个面向 异构系统 通用目的并行编程的开放式、免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算 服务器 、桌面计算系统、手持设备编写高效轻便的代码,而且广泛适用于多核心处理器(CPU)、图形处理器(GPU)、Cell类型架构以及数字信号处理器(DSP)等其他并行处理器,在 游戏 、 娱乐 、科研、医疗等各种领域都有广阔的发展前景。

(5)分析框架Hive

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapRece任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapRece统计,不必开发专门的MapRece应用,十分适合数据仓库的统计分析。

(6)分析框架Pig

Apache Pig 是apache平台下的一个免费开源项目,Pig为大型数据集的处理提供了更高层次的抽象,很多时候数据的处理需要多个MapRece过程才能实现,使得数据处理过程与该模式匹配可能很困难。有了Pig就能够使用更丰富的数据结构。[2]

Pig LatinPig Latin 是一个相对简单的语言,一条语句 就是一个操作,与数据库的表类似,可以在关系数据库中找到它(其中,元组代表行,并且每个元组都由字段组成)。

Pig 拥有大量的数据类型,不仅支持包、元组和映射等高级概念,还支持简单的数据类型,如 int、long、float、double、chararray 和 bytearray。并且,还有一套完整的比较运算符,包括使用正则表达式的丰富匹配模式。

④ 云南java培训学校告诉你开源大数据分析工具

考虑到现有技术解决方案的复杂性与多样化,企业往往很难找到适合自己的大数据收集与分析工具。然而,混乱的时局之下已经有多种方案脱颖而出,证明其能够帮助大家切实完成大数据分析类工作。下面昆明IT培训http://www.kmbdqn.cn/将整理出誉哗激一份包含十款工具的清单,从而有效压缩选择范畴。

OpenRefine


这是一款高人气数据分析工具,适用于各类与分析相关的任务。这意味着即使大家拥有多川不同数据类型及名称,这款工具亦能够利用其强大的聚类算法完成条目分组。在聚类完成后,分析即可开始。


Hadoop


大数据与Hadoop可谓密不可分。这套软件库兼框架能够利用简单的编程模型将大规模数据集分发于计算机集群当中。其尤为擅长处理大规模数据并使其可用于本地设备当中。作为Hadoop的开发方,Apache亦在不断强化这款工具以提升其实际效果。


Storm


同样来自Apache的Storm是另一款伟大的实时计算系统,能够极大强化无限数据流的处理效果。其亦可用于执行多种其它与大数据相关的任务,具体包括分布式RPC、持续处理、在线机器学习以及实时分析等等。使用Storm的另一大优势在于,其整合了大量其它技术,从而进一步降低大数据处理的复杂性。


Plotly


这是一款数据可视化工具,可兼容JaScript、MATLAB、Python以及R等语言。Plotly甚至能够帮助不具备代码编写技能或者时间的用户完成动态可视化处理。这款工具常由新一代数据科学家使用,因为其属于一款业务开发平台且能够快速完成大规模数据的理解与分析。


Rapidminer


作为另一款大数据处理必要工具,Rapidminer属于一套开源数据科学平台,且通过可视化编程机制发挥作用。其功能包括对模型进行修改、分析与创建,且能够快速将结果整合至业务流程当中。Rapidminer目前备受瞩目,且已经成为众多知名数据科学家心目中的可庆袜靠工具。


Cassandra


ApacheCassandra是另一款值得关注的工具,因为其能够有效且高效地对大规模数据加以管理。它属于一套可扩展NoSQL数据库,能够监控多座数据中心内的数据并已经在Netflix及eBay等知名企业当中效力。


HadoopMapRece


这是一套软件框架,允许用户利用其编写出以可靠方式并发处理大规模数据的应用。MapRece应用主要负责完成两项任务,即映射与规约,并由此提供多种数据处理结果。这款工具最初由谷歌公司开发完成。


Bokeh


这套可视化框架的主要目标在于提供精致且简洁的图形处理结果,用以强化大规模数据流的交互能力。其专门供Python语言使用。芦逗


WolframAlpha


这是一套搜索引擎,旨在帮助用户搜索其需要的计算素材或者其它内容。举例来说,如果大家输入“Facebook”,即可获得与Facebook相关的HTML元素结构、输入解释、Web托管信息、网络统计、子域、Alexa预估以及网页信息等大量内容。


⑤ 用于分析大数据的工具有什么

当前用于分析大数据的工具主要有开源与商用两个生态圈。


开源大数据生态圈


1、Hadoop HDFS、HadoopMapRece, Hbase、Hive 渐次诞生,早期Hadoop生态圈逐步形成。


2、. Hypertable是另类。它存在于Hadoop生态圈之外,但也曾经有一些用户。


3、NoSQL,membase、MongoDB


商用大数据生态圈


1、一体机数据库/数据仓库:IBM PureData(Netezza), OracleExadata, SAP Hana等等。


2、数据仓库:TeradataAsterData, EMC GreenPlum, HPVertica 等等。


3、数据集市:QlikView、 Tableau 、 以及国内的Yonghong Data Mart 。

⑥ 为什么一些大数据系统要走开源的路线

。因为大数据涉及大量不同来源、格式的数据采集与导流、自动化处理。
开源能极大的加速这个过程。

⑦ 开源数据什么意思

问题一:开源数据库是什么?? 作用是什么? 做网站的吗?? 开源意思是开放源代码,没有加密
开源数据库,说明这个数据库没有加密的,代码就是开放的
数据库作用都是用于动态语言开发的网站

问题二:四大开源数据库是哪些 开源世界中的那几个免费数据库
发布时间:2011-11-22 09:34:30 来源:CSDN 评论:0 点击:1476 次 【字号:大 中 小】
QQ空间 新浪微博 腾讯微博 人人网 豆瓣网 网络空间 网络搜藏 开心网 复制 更多 0
开源数据库MySQLMySQL是一个开放源码的小型关联式数据库管理系统,开发者为瑞典MySQL AB公司。目前MySQL被广泛地应用在Internet上的中小型网站中。由于其体积小、速度快、总体拥有成本低,尤其是开放源...
开源数据库MySQL
MySQL是一个开放源码的小型关联式数据库管理系统,开发者为瑞典MySQL AB公司。目前MySQL被广泛地应用在Internet上的中小型网站中。由于其体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,许多中小型网站为了降低网站总体拥有成本而选择了MySQL作为网站数据库。

盘点:开源社区那些免费的数据库软件
MySQL为多种编程语言提供了API,包括C、C++、C#、Delphi、Eiffel、Java、Perl、PHP、Python、Ruby和Tcl等。而其自身是采用C和C++编写的,使用了多种编译器进行测试,所以,MySQL能够保证源代码具有很强的可移植性。这样的一款数据库,自然能够支持几乎所有的操作系统,从Unix、Linux到Windows,具体包括AIX、BSDi、FreeBSD、HP-UX、Linux、Mac OS、Novell Netware、NetBSD、OpenBSD、OS/2 Wrap、Solaris、SunOS、Windows等多种操作系统。最重要的是,它是一个可以处理拥有上千万条记录的大型数据库。
与此同时,MySQL也产生了很多分支版本的数据库也非常值得推荐。
首先是MariaDB,它是一个采用Maria存储引擎的MySQL分支版本,是由原来MySQL的作者 Michael Widenius创办的公司所开发的免费开源的数据库服务器。与MySQL相比较,MariaDB更强的地方在于它拥有更多的引擎,包括Maria存储引擎、PBXT存储引擎、XtraDB存储引擎、FederatedX存储引擎,它能够更快的复制查询处理、运行的速度更快、更好的功能测试以及支持对Unicode的排序等。
其次是rcona,它为MySQL数据库服务器进行了改进,在功能和性能上较MySQL有着很显著的提升。该版本提昌源毕升了在高负载情况下的InnoDB的性能,同时,它还为DBA提供一些非常有用的性能诊断工具,并且提供很多参数和命令来控制服务器行为。
第三是Percona Server,它使用了诸如google-mysql-tools、Proven Scaling和 Open Query对MySQL进行改造。并且,它只包含MySQL的服务器版,并没有提供相应对 MySQL的Connector和GUI工具进行改进。
非关系型数据库NoSQL
从NoSQL的字面上理解,NoSQL就是Not Only SQL,被业界认为是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于耐芹目前铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。

盘点:开源社区那些免费的数据库软件
当然,NoSQL也是随着互联网Web2.0网站的兴起才能取得长足的进步。关键裂饥的需求在于,传统的关系数据库在应付Web2.0网站,特......>>

问题三:什么是开源数据库 开源意思是开放源代码,没有加密
开源数据库,说明这个数据库没有加密的,代码就是开放的
数据库作用都是用于动态语言开发的网站

问题四:什么是开源大数据技术? 即数据量极为庞大,数据体结构并不清晰,冗余数据多。
大数据技术利用这些数据,以更快的速度和更好的逻辑清洗分析这些数据。以及通过一些算法,挖掘出这些庞杂数据中有价值的部分,为公司提供关系效益的新的隐蔽参数,并提供科学指导。
开源,就是开放源码,意味着免费和自由的进行二次开发,如当下最为广泛使用的hadoop生态系统。

问题五:该选择哪个开源数据库 关系型mysql
非关系型mongodb

问题六:数据源是什么意思 图表数据源(Data Source)是提供某种所需要数据的器件或原始媒体。信息系统的数据源必需可靠且具备更新能力,目前常用的数据源有:①观测数据,即现场获取的实测数据,它们包括野外实地勘测、量算数据,台站的观测记录数据,遥测数据等。②分析测定数据,即利用物理和化学方法分析测定的数据。③图形数据,各种地形图和专题地图等。④统计调查数据,各种类型的统计报表、社会调查数据等。⑤遥感数据,由地面、航空或航天遥感获得的数据。目前,中国的数据源数量庞大。如:全国范围的土地资源清查及详查数据,航空摄影测量图像和国土普查卫星资料已覆盖全国,定位、半定位观测站网遍布全国,有地面调查、地图测绘等大量数据。
上面提到的数据源例子只是很小一部分,事实上数据源可以是任何数据类型。

问题七:现在的开源图形数据库有哪些 首先是MariaDB,它是一个采用Maria存储引擎的MySQL分支版本,是由原来MySQL的作者 Michael Widenius创办的公司所开发的免费开源的数据库服务器。与MySQL相比较,MariaDB更强的地方在于它拥有更多的引擎,包括Maria存储引擎、PBXT存储引擎、XtraDB存储引擎、FederatedX存储引擎,它能够更快的复制查询处理、运行的速度更快、更好的功能测试以及支持对Unicode的排序等。
其次是rcona,它为MySQL数据库服务器进行了改进,在功能和性能上较MySQL有着很显著的提升。该版本提升了在高负载情况下的InnoDB的性能,同时,它还为DBA提供一些非常有用的性能诊断工具,并且提供很多参数和命令来控制服务器行为。
第三是Percona Server,它使用了诸如google-mysql-tools、Proven Scaling和 Open Query对MySQL进行改造。并且,它只包含MySQL的服务器版,并没有提供相应对 MySQL的Connector和GUI工具进行改进。

问题八:该选择哪个开源数据库?哪一个更好 Access是一种桌面数据库,只适合数据量少的应用,在处理少量数据和单机访问的数据库时是很好的,效率也很高。但是它的同时访问客户端不能多于4个。Microsoft Access数据库有一定的极限,如果数据达到100M左右,很容易造成服务器iis假死,或者消耗掉服务器的内存导致服务器崩溃,表现为英文“Service Unavailable”。
MS SQL Server是基于服务器端的中型的数据库,可以适合大容量数据的应用,在功能上管理上也要比Microsoft Access要强得多。在处理海量数据的效率,后台开发的灵活性,可扩展性等方面强大。因为现在数据库都使用标准的SQL语言对数据库进行管理,所以如果是标准SQL语言,两者基本上都可以通用的。Microsoft SQL Server还有更多的扩展,可以用存储过程,数据库大小无极限限制。
MySql短小精悍,像access一样的文件型数据库,但比access强百倍,是真正多用户多任务的数据库系统,从Linux上移植过来的,安全性非常好,不过大部分操作是在dos下进行,虽然也有第三方开发的图形界面但并不好用。MySQL是跨多平台的数据库管理软件,可运行于LINUX、NT、UNIX等系统,可支持命令和图形化管理,对于一般的数据库足以应付了,占用系统资源较少,速度较快,而且是开源的。
Oracle各方面都比较成熟,但对硬件要求高,用于数据完整性、安全性要求较高的场合,能在所有主流平台上运行,完全支持所有的工业标准,采用完全开放策略。可以使客户选择最适合的解决方案,对开发商全力支持。平行服务器通过使一组结点共享同一簇中的工作来扩展服务器的能力,提供高可用性和高伸缩性的簇的解决方案,获得最高认证级别的iso标准认证,多层次网络计算,支持多种工业标准,可以用odbc,jdbc,oci等网络客户连接,较复杂,同时提供gui和命令行,在windows和unix下操作相同,如果windows不能满足需要,用户可以把数据库移到unix中。其操作和设置比较复杂,适用于有一定操作经验的用户。
db2 能在所有主流平台上运行(包括windows)。最适于海量数据。DB2在企业级的应用最为广泛, 在全球的500家最大的企业中,几乎85%以上用DB2数据库服务器,而国内到97年约占5%。
总之,各个主流数据库各有优势与侧重,对于初学者而言,建议从MS SQL Server 着手学习,众所周知,微软的东西么,简单易懂。

问题九:该选择哪个开源数据库?哪一个更好 如果打算为项目选择一款免费、开源的数据库,那么你可能会在MySQL与PostgreSQL之间犹豫不定。MySQL与PostgreSQL都是免费、开源、强大、且功能丰富的数据库。你主要的问题可能是:哪一个才是最好的开源数据库,MySQL还是PostgreSQL呢?该选择哪一个开源数据库呢?
在选择数据库时,你所做的是个长期的决策,因为后面如果再改变决定将是非常困难且代价高昂的。你希望一开始就选择正确。两个流行的开源数据库MySQL与PostgreSQL常常成为最后要选择的产品。对这两个开源数据库的高层次概览将会有助于你选择最适合自己需要的。
MySQL
MySQL相对来说比较年轻,首度出现在1994年。它声称自己是最流行的开源数据库。MySQL就是LAMP(用于Web开发的软件包,包括Linux、Apache及Perl/PHP/Python)中的M。构建在LAMP栈之上的大多数应用都会使用MySQL,包括那些知名的应用,如WordPress、Drupal、Zend及phpBB等。
一开始,MySQL的设计目标是成为一个快速的Web服务器后端,使用快速的索引序列访问方法(ISAM),不支持ACID。经过早期快速的发展之后,MySQL开始支持更多的存储引擎,并通过InnoDB引擎实现了ACID。MySQL还支持其他存储引擎,提供了临时表的功能(使用MEMORY存储引擎),通过MyISAM引擎实现了高速读的数据库,此外还有其他的核心存储引擎与第三方引擎。
MySQL的文档非常丰富,有很多质量不错的免费参考手册、图书与在线文档,还有来自于Oracle和第三方厂商的培训与支持。
MySQL近几年经历了所有权的变更和一些颇具戏剧性的事件。它最初是由MySQL AB开发的,然后在2008年以10亿美金的价格卖给了Sun公司,Sun公司又在2010年被Oracle收购。Oracle支持MySQL的多个版本:Standard、Enterprise、Classic、Cluster、Embedded与munity。其中有一些是免费下载的,另外一些则是收费的。其核心代码基于GPL许可,对于那些不想使用GPL许可的开发者与厂商来说还有商业许可可供使用。
现在,基于最初的MySQL代码还有更多的数据库可供选择,因为几个核心的MySQL开发者已经发布了MySQL分支。最初的MySQL创建者之一Michael Monty Widenius貌似后悔将MySQL卖给了Sun公司,于是又开发了他自己的MySQL分支MariaDB,它是免费的,基于GPL许可。知名的MySQL开发者Brian Aker所创建的分支Drizzle对其进行了大量的改写,特别针对多CPU、云、网络应用与高并发进行了优化。
PostgreSQL
PostgreSQL标榜自己是世界上最先进的开源数据库。PostgreSQL的一些粉丝说它能与Oracle相媲美,而且没有那么昂贵的价格和傲慢的客服。它拥有很长的历史,最初是1985年在加利福尼亚大学伯克利分校开发的,作为Ingres数据库的后继。
PostgreSQL是完全由社区驱动的开源项目,由全世界超过1000名贡献者所维护。它提供了单个完整功能的版本,而不像MySQL那样提供了多个不同的社区版、商业版与企业版。PostgreSQL基于自由的BSD/MIT许可,组织可以使用、复制、修改和重新分发代码,只需要提供一个版权声明即可。
......>>

问题十:EXCEL作图要带数据源是什么意思 就是你用excel画的图形,这个图是根据什埂数据生成的,这个数据必须附上。
你右键点击excel图的绘图区域,图表选项-数据表选项卡,勾选“显示数据表”前面的方框,就可以在你的绘图区域下显示源数据了。
或者你右键点击excel图的绘图区域,源数据-数据区域选项卡,看数据区域框中的数据地址,找到相应的地址,将里面的内容拷贝出来即可。

⑧ 开源的大数据框架有哪些

文件存储:Hadoop HDFS、Tachyon、KFS离线计算:Hadoop MapRece、Spark流式、实时计算:Storm、Spark Streaming、S4、HeronK-V、NOSQL数据库:HBase、Redis、MongoDB资源管理:YARN、Mesos日志收集:Flume、Scribe、Logstash、Kibana消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid分布式协调服务:Zookeeper集群管理与监控:Ambari、Ganglia、Nagios、Cloudera

⑨ 什么是开源大数据技术

即数据量极为庞抄大,数据体结构并不清晰,冗余数据多。
大数据技术利用这些数据,以更快的速度和更好的逻辑清洗分析这些数据。以及通过一些算法,挖掘出这些庞杂数据中有价值的部分,为公司提供关系效益的新的隐蔽参数,并提供科学指导。
开源,就是开放源码,意味着免费和自由的进行二次开发,如当下最为广泛使用的hadoop生态系统。

⑩ 开源库分享--为物联网(IoT)设计和优化的开源大数据

一个开源的专为物联网、车联网、工业互联网、IT运维等设计和优化的大数据平台。除核心的快10倍以上的时序数据库功能外,还提供缓存、数据订阅、流式计算等功能,最大程度减少研发和运维的工作量

定义了创新的数据存储结构,单核每秒就能处理至少2万次请求,插入数百万个数据点,读出一千万以上数据点,比现有通用数据库快了十倍以上。

由于超强性能,计算资源不到通用大数据方案的1/5;通过列式存储和先进的压缩算法,存储空间不到通用数据库的1/10。

将数据库、消息队列、缓存、流式计算等功能融合一起,应用无需再集成Kafka/Redis/HBase/Spark等软件,大幅降低应用开发和维护成本。

无论是十年前还是一秒钟前的数据,指定时间范围即可查询。数据可在时间轴上或多个设备上进行聚合。即席查询可通过Shell/Python/R/Matlab随时进行。

不用一行代码,即可与Telegraf, Grafana, Matlab, R集成。后续还将支持MQTT, OPC, Hadoop,Spark等, BI工具也将无缝连接。

你知道哪些好用的开源的物联网大数据处理方式,欢迎评论分享,共同探讨学习

阅读全文

与开源和大数据相关的资料

热点内容
存储文件压缩包和文件夹哪个合适 浏览:778
看房子哪个网站比较好 浏览:817
oppoa57用什么数据线 浏览:832
一点停app真垃圾 浏览:53
移出私人空间文件找不到了 浏览:601
微信一视频切换到语音 浏览:190
电脑里我的照片放在哪个文件夹 浏览:288
iphone6s升级到128 浏览:674
移动硬盘视频文件修复 浏览:330
更新win10会不会丢失文件 浏览:21
win10会受病毒感染么 浏览:775
以及cad的存储文件的格式 浏览:45
有哪些招募网站 浏览:864
网站右侧qq客服代码 浏览:283
美国失业数据是什么 浏览:322
苹果中国利润 浏览:386
ff14低级职业快速升级 浏览:459
java应用程序已被阻止 浏览:650
69版本乌鸦视频 浏览:588
4g为什么网络很好却很卡 浏览:723

友情链接