『壹』 新手如何学大数据
要想学好大数据要学会以下知识:
1.会基本的linux操作;
2.至少要精通一门JVM系的语言;
3.掌握一门实时流式处理框架;
4.学好分布式存储框架;
5.深入了解和学习分布式协调框架;
6.新开发的列式存储数据库,也是要学好的;
7.学习Kafka处理消息队列。
大数据分析师或者数据科学家要想学好大数据,需要掌握以下技能:
1.要有扎实的数学功底,不仅要熟练掌握一元微积分的使用,还一定要精通线性代数,尤其是矩阵的运算、向量空间、秩等概念。
2.要基本掌握概率和各种统计学方法。
3.学习分析交互框架,比如Hive。
4.学习机器学习的框架。
『贰』 零基础如何学习大数据
一、兴趣建立
兴趣是可以让一个人持续关注一个事物的核心动力,而且兴趣也是可以培养出来的。如果你把写程序单纯作为赚钱手段,久而久之疲劳感会越来越强。大数据的应用非常广泛,比如:人工智能!找到自己的兴趣点,去发掘大数据在其中起到的神奇作用,这是最简单的兴趣共鸣。当一个人通过自己的努力获得的成就感就是最大的兴趣,在空闲的时候也可以到一些大数据论坛转转(比如:云和数据),你会发现一群程序员在一起除了技术交流外,还有属于程序员的幽默和八卦。
二、脚踏实地、切忌浮躁
俗话说:一口吃不成胖子,但现实的社会中人人都想一口吃成胖子。浮躁成为了当代人的一个符号,尤其是1/2线城市中承受着快节奏、大压力的人们,还有我们这些对大数据行业充满希望的学生。面对诱惑不论是企业、客户、政府、学校、还是培训机构都笼罩在浮躁之气当中,我们要做好自己。
作为学生不忘初心,就是脚踏实地的好好学习。熟练掌握大数据技术才是你学习阶段最该关系的事。不要每天活在幻想中,幻想毕业后的高薪工作、幻想自己变成技术大牛,这一切都是建立在你的大数据技术成熟的前提下。
三、行动非心动
很多想学习或转行大数据的朋友,从2017年大数据开始火爆的时刻开始观望直到现在还未能决定。然而那些和你一起关注大数据并行动学习大数据的学员,已经拿着15-20K的高薪在生活和工作了。心动不如行动,大数据的路上人越来越多。等,只会失去这个时代少有的机会。
四、学操结合,项目跟进
大数据是一项未来社会和企业都无法避开的技术,几乎全行业都需要大数据技术的支持,包括传统企业及人工智能等新兴行业。大数据到底学什么?其实大数据的方向有很多,而当前企业对大数据人才的需求主要集中在大数据开发。说到开发相信大家第一时间想到的就是编程。
到底要如何学习编程才能更快的掌握呢?1、读源码 2、原理剖析 3、抄代码 4、运行 5、默写代码 6、项目跟进。这样学习的好处是什么呢?读源码和原理剖析不用解释,抄代码是为了让你亲手操作一遍加强记忆,运行结果分析可以更快更牢固掌握知识点,然后默写一遍总结自己掌握情况。
最重要的是项目跟进,将教会你所掌握的编程技术在实际应用中如何使用,也就是你在未来工作中的工作如何进行。在面试及工作中项目经验都将直接决定你的薪资和发展,云和数据大数据培训班采用真实企业大数据项目进行对学生实训,以提高学生的竞争力,这是其他培训机构少有的。
五、工具的使用
工欲善其事必先利其器。开发工作包含各种各样的活动,需求收集分析、建立用例模型、建立分析设计模型、编程实现、调试程序、自动化测试、持续集成等等,没有工具帮忙可以说是寸步难行。工具可以提高开发效率,使软件的质量更高BUG更少。
六、为什么要学习大数据
今天大数据技术已经广泛应用于生活、工作及城市规划中,大数据人才需求量不断增长,而大数据人才产出不足造成大数据人才严重短缺,未来的人工智能、云计算、物联网都与大数据息息相关不可分割,大数据人才需求量将爆发式增长。所以,从就业前景,发展方向等多方面来看,学大数据无疑是最佳选择。
『叁』 想要学习大数据,应该怎么入门
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
『肆』 大数据怎么学习
兴趣是第一老师。选择学习一门课程和技能时,个人兴趣是至关重要,对于学习像大专数据这样抽象的技能更是如属此。
学习Java语言和Linux操作系统,这两个是学习大数据的基础。
最关键的是学习Hadoop+spark,掌握大数据的收集、生成、调用工具。
树立大数据思维,创造性开发、使用大数据。
深度了解大数据的意义、价值、市场、开发及运用前景。
到大数据管理中心、运用企业实习实践,掌握开发、运用技能。
『伍』 大数据怎么使用
以下是关于如何成功使用大数据的一些方法。
1.敏捷
敏捷地掌握新兴技术的最新进展。顾客的需求往往在变化,因此,技术必须灵活适应客户的苛刻需求。如果想成功,应该调整收集的数据并处理,以满足客户的需求。
2.实时操作
实时操作业务,以了解客户遇到的各种问题。最好的方法是使用实时数据。因此,要了解业务的缺点,并实施适当的步骤来促进最佳的用户体验和更高的生产力。
3.多种设备
使用不同的设备来收集有关客户的相关信息,包括智能手机,笔记本电脑和平板电脑,因为客户会使用各种设备访问公司的产品。
4.使用所有的数据
全面使用数据来捕获汇总数据中的重要见解。从客户的经验和行为中收集的数据对于提高产品品牌和业务生产力非常重要。
5.捕获所有信息
在数据采集过程中,要掌握所有客户的信息,深入了解客户,避免盲点。还应该收集可能影响到客户的信息,从而提升品牌知名度
『陆』 怎样进行大数据的入门级学习
一、整体了解数据分析——5小时x0dx0a新人们被”大数据“、”人工智能“、”21世纪是数据分析师的时代“等等信息吸引过来,立志成为一名数据分析师,于是问题来了,数据分析到底是干什么的?数据分析都包含什么内容?x0dx0a市面上有很多讲数据分析内容的书籍,在此我推荐《深入浅出数据分析》,此书对有基础人士可称消遣读物, 但对新人们还是有一定的作用。阅读时可不求甚解,重点了解数据分析的流程、应用场景、以及书中提到的若干数据分析工具,无需纠结分析模型的实现。5个小时,足够你对数据分析工作建立初步的印象,消除陌生感。x0dx0a二、了解统计学知识——10小时x0dx0a15个小时只够你了解一下统计学知识,作为入门足够,但你要知道,今后随着工作内容的深入,需要学习更多的统计知识。x0dx0a本阶段推荐书籍有二:《深入浅出统计学》《统计学:从数据到结论》,要了解常用数理统计模型(描述统计指标、聚类、决策树、贝叶斯分类、回归等),重点放在学习模型的工作原理、输入内容和输出内容,至于具体的数学推导,学不会可暂放一边,需要用的时候再回来看。x0dx0a三、学习初级工具——20小时x0dx0a对于非技术类数据分析人员,初级工具只推荐一个:EXCEL。推荐书籍为《谁说菜鸟不会数据分析》,基础篇必须学习,提高篇不一定学(可用其他EXCEL进阶书籍),也可以学习网上的各种公开课。x0dx0a本阶段重点要学习的是EXCEL中级功能使用(数据透视表,函数,各类图表适用场景及如何制作),如有余力可学习VBA。x0dx0a四、提升PPT能力——10小时x0dx0a作为数据分析人员,PPT制作能力是极其重要的一项能力,因此需要花一点时间来了解如何做重点突出,信息明确的PPT,以及如何把各类图表插入到PPT中而又便于更新数据。10个小时并不算多,但已经足够(你从来没做过PPT的话,需要再增加一些时间)。具体书籍和课程就不推荐了,网上一抓一大把,请自行搜索。x0dx0a五、了解数据库和编程语言——10小时x0dx0a这个阶段有两个目标:学习基础的数据库和编程知识以提升你将来的工作效率,以及测试一下你适合学习哪一种高级数据分析工具。对于前者,数据库建议学MySQL(虽然Hadoop很有用但你不是技术职位,初期用不到),编程语言建议学Python(继续安利《深入浅出Python》,我真没收他们钱??)。数据库学到联合查询就好,性能优化、备份那些内容用不到;Python则是能学多少学多少。x0dx0a六、学习高级工具——10小时x0dx0a虽然EXCEL可以解决70%以上的问题,但剩下30%还是需要高级工具来做(不信用EXCEL做个聚类)。高级分析工具有两个选择:SPSS和R。虽然R有各种各样的好处,但我给的建议是根据你在上一步中的学习感觉来定学哪一个工具,要是学编程语言学的很痛苦,就学SPSS,要是学的很快乐,就学R。不管用哪一种工具,都要把你学统计学时候学会的重点模型跑一遍,学会建立模型和小幅优化模型即可。x0dx0a七、了解你想去的行业和职位——10+小时x0dx0a这里我在时间上写了个”+“号,因为这一步并不一定要用整块时间来学习,它是贯穿在你整个学习过程中的。数据分析师最需要不断提升的能力就是行业和业务知识,没有之一。你将来想投入哪个行业和哪个职位的方向,就要去学习相关的知识(比如你想做网站运营,那就要了解互联网背景知识、网站运营指标体系、用户运营知识等内容)。x0dx0a八、做个报告——25小时x0dx0a你学习了那么多内容,但现在出去的话你还是找不到好工作。所有的招聘人员都会问你一句话:你做过哪些实际项目?(即使你是应届生也一样) 如果你有相关的项目经验或者实习经验,当然可以拿出来,但是如果没有,怎么办?答案很简单,做个报告给他们看,告诉招聘者:我已经有了数据分析入门级(甚至进阶级)职位的能力。同时,做报告也会是你将来工作的主要内容,因此也有可能出现另外一种情况:你费尽心血做了一个报告,然后发现这不是你想要的生活,决定去干别的工作了??这也是件好事,有数据分析能力的人做其他工作也算有一项优势。
『柒』 我们如何利用大数据
1.第一点,明确数据分析的目的 首先,您必须知道手中的数据要怎么处理,这意味着您需要清楚需求以及要从数据中获取什么。让我们以产品经理为例。当许多产品经理设计自己的产品时...
2.第二点,必须扩大数据收集方式 关于数据收集,通常有四种方法。它们是从外部行业数据分析报告...
3.第三点,有效消除数据中的干扰数据 具体方法我们可以选择正确的样本量,选择足够大的数量以...
4.第四点,我们需要合理客观地看待数据 应该注意的是,在使用大数据时,您不能忽略沉默用户...
『捌』 如何运用大数据
1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统
计
学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如
果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。
数
据处理: 自然语言处理(NLP,Natural Language
Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理
解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析:
假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、
卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、
因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数
据挖掘: 分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity
grouping or association rules)、聚类(Clustering)、描述和可视化、Description and
Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。
大数据的处理
1. 大数据处理之一:采集
大
数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的
数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除
此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时
有可能会有成千上万的用户
来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间
进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些
海量数据进行有效的分析,还是应该将这
些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使
用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析
统
计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通
的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于
MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘
与
前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数
据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于
统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并
且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
『玖』 怎样学习大数据
学习大数据的方法:
1、关注一些大数据领域的动态,让自己融入大数据这样一个大的环境中。然后找一些编程语言的资料(大数据的基础必备技能)和大数据入门的视频和书籍,基本的技术知识还是要了解的。
2、对于有一定编程基础的同学,相对于零基础的小白来说,情况会略好一些,毕竟深处互联网大环境下很长时间了。唯一欠缺的是对大数据技术知识的匮乏,所以先吃透自己所修的编程语言,然后从Hadoop、spark入手对大数据的技术进行了解。
『拾』 作为个人怎么学习和利用大数据
1/10
【了解自身学习大数据的目的】每个人都有自己的想法,学习大数据的目的是什么,是学会分析,还是学会管理呢。
2/10
【制定学习大数据的计划】,在学习的过程中,没有计划,估计是达不到理想的彼岸的。一个好的计划是详细合理的,是张弛有度的。
3/10
【三人必有我师】向他人学习,在现代社会里,大数据的思维,每个人都会拥有,只有不断向他人学习,才能更好的提高之间,多问为什么,根究5个w原则去做吧。
4/10
【互联网很强大】利用网络资源去学习,网络时代,各种网络视频教学平台都有资料、信息,只有跟上时代节奏,才不会落伍。
5/10
【乐于操作、沉得下来】如果你学习大数据沉不下来,建议你别学,因为这需要很大的耐心,去处理、分析、解决大量的数据,需要不断去思考,沉得下来,才能进步。
6/10
【学好数学及建模】数学来源于生活,数据也是来源于生活,计算机以逻辑说话,数学乃逻辑的先祖,学好数学,懂得原理,学会建立相关模型是非常有必要的。
查看剩余1张图
7/10
【学会计算机编程】学好大数据,没有点儿编程基础怎能行呢,如计算机基础,数据结构,网络基础,数据库等等知识。
8/10
【学习Python R SAS 等软件及算法】大数据时代,需要的不只是网络架构、数据仓的管理维护,最终是需要进行编程与分析的分析,而python 和R SAS 是这方面的先锋者,需要追随他们哦。
查看剩余1张图
9/10
【学会编辑论文】因为大数据需要的不是一堆数字,而是用文章表述出来,编辑好的论文胜过好的数据结果。