导航:首页 > 网络数据 > 大数据炸了

大数据炸了

发布时间:2023-03-28 18:02:08

A. 美国谷歌数据中心发生爆炸,将会造成哪些影响

数据中心发生的爆炸事件,让谷歌服务器的正常运行也受到了巨大影响。部分西方国家表示不光是搜索引擎出现问题,谷歌的地图、邮箱、图片都没有办法正常显示。但谷歌发言人在爆炸事件过后却表示,此次谷歌服务器出现问题与爆炸事件没有任何卖磨关系。这次故障是因为软件处于升级状态的原因,该公司认为现在最重要的是三位技术人员的健康。因为技术人员受了很严重的伤,该公司也会与当地负责部门共同查询此事的真正原因。

所以说数据是这个时代最重要的东西,刷脸支付、指纹录入、网上支付等这些都是数据时代下产物。不仅推动着社会经济的发展,而且也帮着人们走向更加便利的生活。对于谷歌中心此次服务器的故障问题,无论是因为爆炸引起的,还是因为软件问题都不是最重要的。重要的是大家应该知道大数据时代已经来临,想要成为更加强大的国家,中激斗必须拥有更加强劲的技术能力。大家也相信,中国的互联网大户企业一定能脱颖而出。

B. 大数据时代所面临的挑战

大数据时代所面临的挑战

大数据时代临近,企业数据呈现爆炸式增长,如何为了更大的发掘企业数据价值将是很多公司必须要面对的挑战。首当其冲的是大数据的快速发展对我们原有的IT基础设施提供了更高的挑战,原有的IT基础设施以及很难满足大数据时代的需求。发现价值的过程离不开基础平台技术的创新与发展。

基础平台的改变

首先大数据挑战的就是企业的存储系统,大数据爆炸式的增长使得存储系统的容量、扩展能力、传输瓶颈等方面都面临着挑战。与之相连的还有服务器的计算能力,内存的存储能力等等都面临着新的技术攻关。目前闪存技术的发展以及英特尔、IBM等公司在大数据方面都已经投入相当大的资金进行研发,主要也是为了解决大数据对基础平台所带来的挑战。

同样,大数据分析同样面临着软件方面的挑战,同时也引发数据库、数据仓库、数据挖掘、商业智能、人工智能、内容/知识管理等领域的技术变革。Hadoop是近年大家经常提到了一个能够对大量数据进行分布式处理的软件框架,用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序

商业模式的挑战

大数据具有强大的数据价值,当我们可以利用大数据挖掘到需要信息的时候,则需要我们根据得到的信息对企业的商业模型、产品和服务等方面进行创新,这样才能够真正的让大数据的价值得到体现。

如何利用大数据信息来改变商业模式最终实现价值呢,这里我们引用Tesco为案例。Tesco收集了海量的顾客数据,并且通过对每位顾客海量数据的分析,Tesco对每位顾客的信用程度和相关风险都会有一个极为准确的评估。在这个基础上,Tesco推出了自己的信用卡,未来Tesco还有野心推出自己的存款服务。

以上是小编为大家分享的关于大数据时代所面临的挑战的相关内容,更多信息可以关注环球青藤分享更多干货

C. 大数据 正经历成长的烦恼

大数据 正经历成长的烦恼

提起大数据,很多人都感觉略知一二;但大数据到底是什么,又很少有人能解释清楚。今年两会期间,包括小米科技创始人雷军、联想集团董事长杨元庆、科大讯飞董事长刘庆峰在内的多位代表、委员都提出了与大数据相关的建议和提案,他们一方面希望从国家层面推动大数据的发展,另一方面也对它在信息安全方面可能存在的隐患提出了警示。

大数据记录了所有一切

一份调查显示,2013年我国产生的数据总量超过0.8ZB,相当于2009年全球的数据总量;而到2020年,一个普通中国家庭每年产生的数据量,将相当于半个国家图书馆的信息储量。

中国电子学会秘书长徐晓兰委员指出,海量的信息储存和挖掘,既是大数据的价值所在,也是它有别于传统互联网、可能对信息安全带来的新隐患。

“大数据时代,记录了很多以往根本不可能或者不需要记录的数据,比如微博、朋友圈的内容,上网产生的cookie,家庭水电气使用的情况、汽车和大型设备上安装的传感器拿到的数据等。”社交数据分析公司独到科技的CEO张文浩说,“如果这些信息都是‘孤岛’,影响可能不大。但一旦相互关联,影响力会大得惊人。”

中科院信息工程所所长田静委员也表示,以往碎片化的数据只是盲人摸象,但现在这些碎片全都被存贮起来,通过相关性分析拼凑,“就知道象到底长什么样了”。

技术上的差距,也造成了大数据暂时的“不安全”。

“没有自己的分析能力,我们怎么能搞清楚哪些数据是需要保护的?”

对于田静的这个“问题”,国家信息化专家咨询委员会副主任、中国工程院院士邬贺铨提供的一组数据给出了答案——数据中,大约有一半是应该保护的,但我们现在真正保护的“只有一半的一半”,很多数据在有意或无意当中被获取,“如果这些数据整合起来,被某些别有用心的人利用,会对安全造成很大的影响”。

徐晓兰介绍,目前我国很多机构和企业使用大数据分析软件都是国外厂商生产的,特别是近几年视频等多媒体数据爆炸性增长,“这些数据都是异构化的,这部分软件是我们的短板”。

著名军事专家尹卓委员则指出,现在互联网所使用的服务器大都放在美国,“自己没有服务器怎么可能安全”?

另一方面,在田静看来,缺乏大数据环境下的安全理念也是重要原因之一。“过去认为无害的信息,在数据爆炸的今天,已经完全不一样了。观念不改,是没有秘密可保的。”

张文浩也认为,国人缺乏这方面的意识。“在美国,很多人都会要求不公开自己的隐私,或者主动把自己的数据提供给某些特定的机构使用;但在国内几乎没有听到过,大家也不知道什么类型的数据可能会有多大的风险。”

大数据或许也很“危险”

张文浩认为,很多人对于大数据的理解都只注意到数据的体量和统计,“其实,通过深度分析,从纷繁的数据中抽象出规则和原理,并实现对未来的前瞻性预测,才是大数据真正的价值和魅力所在”。

因为大数据,奥巴马在2012年成为过去70年来,第一位在失业率高达7.4%的情况下成功连任的美国总统;因为大数据,Target超市“预测”了18岁少女的怀孕……

任何一项新技术的背后,都可能悬挂着一把达摩克利斯之剑。大数据也是如此,在人们惊叹于它的“神力”之时,“威胁”也正悄悄逼近。

“前两年,国外一家情报搜集机构利用国内某机构人员公开发表的数据和资讯,进行深度挖掘分析,生成了有价值的情报。”徐晓兰告诉记者,后来经过详细调查,确认情报确实不是该人员提供,而生成情报的那些数据本身也是可公开的。“这在以往几乎是不可能的,也给我们敲响了警钟。”

尹卓以战时的交通流量信息举例说,如果不注重数据的安全使用,将可能对国家安全带来隐患。“科索沃战争中,南联盟的油料库虽然隐蔽得很好,但美国军方通过对卫星图中的交通流量进行分析,划定了大量油罐车经常出没的区域,在进行精确搜寻,从而一举炸毁。”

如果您认为这些“危险因素”离自己很远,那就大错特错。

“现在很多智能手机的应用都要求访问通讯录,”邬贺铨说,很多人觉得自己没有什么秘密,就同意了。“但实际上,这不仅会透露自己的大量信息,也会把很多人置于隐私暴露的危险之下 。”

张文浩也指出,现在很多年轻人都有用手机发微博或者“签到”的习惯,“这样其实会泄漏自己的很多信息。比如你白天经常签到的位置就很有可能是你的单位,傍晚以后签的多半是自己家”。

大数据正经历成长的烦恼

“要想征服数据,只有更好地利用它们。”张文浩说,数据是一种资源和财富,积累越多,产生的效力也会越大。

这个观点得到了邬贺铨的认同。他认为,越想规避大数据带来的安全风险,越需要搜集储存海量的数据,并进行深入的挖掘分析。“有统计显示,国内数据搜集量不及日本的60%和北美的7%,大量数据留这样白白流逝。”

“企业掌握的数据毕竟有限,而且是局部的。”网络公司董事长李彦宏委员提出了数据开放的概念,国家应该把那些不涉及安全的数据公开,让有能力的机构进行更好的分析利用。

国家基础地理信息中心原总工程师李莉委员指出,有的公共部门掌握了大量公共信息,这些数据是国家基础信息的重要组成部分。邬贺铨强调,这些数据“不愿与其他部门共享,导致了信息不完整或重复投资”。

共享数据在技术上是否存在很大的难度?在徐晓兰看来,现在需要大力发展的数据挖掘、分析方面的技术,但对于数据共享本身而言,技术不是最大的障碍,关键还是利益协调。她说几年前,国土部和银监会准备摸底国家土地信息,“一开始很多人提出各种各样的困难,几乎认为是不可能完成的任务。但后来引入问责等行政手段,得到地方配合,进行得就很顺利”。

张文浩认为,建立一个公开、透明、规范的数据市场,将会大大增强数据的利用率。但在这个过程中,需要仔细考量什么样的数据可以进入市场。

这就涉及到立法的问题。“界定‘隐私’和为数据进行安全分级,是制定法律法规时要优先考虑的方面。”他指出,“个性化服务和隐私之间是一个博弈。名字、电话、住址……不能什么都说是隐私,因此需要为数据安全分级。简单地说,通过数据分析的经验,我们会知道哪类信息具有更强的指向性和排他性。这类信息的安全级别就应该更高。”

以上是小编为大家分享的关于大数据 正经历成长的烦恼的相关内容,更多信息可以关注环球青藤分享更多干货

D. 大数据巫师般神力 令人悲喜交加

大数据巫师般神力 令人悲喜交加
随着大数据应用的深入,大数据的影响力,已经深入到各个领域,而就在近两年,大数据应用突然爆炸,五彩缤纷的创意都变成现实。即使最谨慎的观察家也承认,大数据的商业应用时代已经来临,正因为它前所未有的能力——准确预测。
《大数据时代》一书中强调,大数据不关心“因果”,只在乎“相关”。这一点也被此书的拥趸们反复强调。因为大数据分析,人们理解世界,不再需要探讨“内在机理”。大数据不是教机器像人一样思考,而是简单的数学算法用在海量数据上,让数据自己说话。
在最难确定因果关系的人体科学领域,大数据分析同样屡有斩获。中英人寿保险公司用几百种生活方式的数据,比如爱好、常浏览的网站、常看的节目以及收入等,找出更可能患高血压、糖尿病和抑郁症的人。
丹麦癌症协会2011年发表文章,利用1985年以来的全部手机用户数据,与同期所有癌症患者数据结合来看,发现癌症跟使用手机并没有关系。
还有美国研究者通过16个不同数据,发现早产儿稳定的生命体征不是病情好转的标志,而是暴风雨前的宁静。研究者并不知道具体原因,只知道数据显示出是如此。
有了大数据,分析不必知其所以然。着名的谷歌翻译小组,竟然不需要语言学家。他们完全是让计算机根据网上的数据,去判断一段英文可能对应于哪一段中文。一开始这种翻译质量不会太好,随着信息量的增加,机器会翻译得越来越让人满意。
有了大数据,分析也不需要太精确,因为批量处理允许瑕疵存在。英国石油公司在美国的一个炼油厂里,安装了很多无线感应器,因为高温和电器干扰,不少感应器读数是错的,但数据一多,这些错误就可以弥补。通过随时监测管道承压,厂方发现某些原油更具腐蚀性,就可以发现和防止。
UPS快递公司在所有卡车上安装传感器,如果发现数据异常,他们就提前更换零件,这样节省了好几百万美元修理费用。他们并不在乎传感器数据是否准确。但这样做的确有效。
俗话说:“量变引起质变”,对于大数据来说,这个道理同样适用,数据量极多时,数据分析就呈现出我们所不熟悉的属性——因果关系淡出;单个数据准确不再重要;而预测几乎必然准确。大数据如同巫师一样的神力,既让我们陌生,又让我们激动。

E. 大数据带来的隐患 数据垄断

大数据带来的隐患:数据垄断
在信息爆炸的社会,受众面对海量信息,往往需要花费大量的时间和精力进行筛选。但借助来自移动互联网和社会化媒体所提供的丰富数据资源(例如用户的地理位置、关系网、兴趣图谱等信息),以及日臻精确的挖掘和分析技术,媒体可以了解受众的心理、 需求以及行为习惯等,并以此为基础提供更符合受众需要的、个性化的内容服务与广告营销。这样的精准传播会加深受众好感,提高用户忠诚度。
以往触不可及的梦想在大数据时代实现了。而最深刻的革命其实不在外界,而在人类的思维领域。
人类思维的转向:人类的态度、情绪、行为等都可以变为数据进行分析和预测
人类内心深处隐秘的欲望、需求、情感是可以洞悉并预测的吗?这是一个长久以来盘亘在心理学家、行为学家、哲学家心中的困惑,而大数据时代的统计学家、数据挖掘专家则做出了肯定而乐观的回答。现在,“情感分析”、“预测模型”的应用已经渐入佳境,企业和媒体已经可以通过“情感分析”来确定社交媒体上用户群的态度,而推特(Twitter)甚至在2012年美国大选时对用户每天推文和评论的关键词进行量化跟踪,计算出“政治指数”来判断民心所向。
大数据技术使得人类的态度、情绪、行为等以往认为难以测量的方面,都可以变为数据来进行分析和预测。日常生活里的可量化维度从未得到如此淋漓尽致的挖掘与利用,而数学模型也在更广泛的领域里得到了重视。以往的统计分析强调的是因果关系,而现在的大数据研究更注重相关关系。因果关系的讨论时常不够全面,而对相关关系的把握更能够产生效用。从对“为什么”的疑问到对“是什么”的追寻,这体现了人类对世界的探索和理解有了更丰富的思路。
也许最极端的结论来自全球复杂网络研究权威艾伯特-拉斯洛·巴拉巴西。在一书中,他宣称人类行为93%是可以预测的:“当我们将生活数字化、公式化以及模型化的时候,我们会发现其实大家都非常相似。我们都具有爆发式,而且非常规律。看上去很随意、很偶然,但却极其容易被预测。”“爆发”即指人们的工作、娱乐及其他种种活动都有间歇性,会在短期内突然爆发,然后又几乎陷入沉寂。人类行为并非随机的小概率事件,而是在意向作用下非常规的突变行为。
不论巴拉巴西的理论是否赢得主流的共识,这些发现至少表明,在技术以外,大数据时代向人类昭示出越来越多富有启发意义的世界观和历史观。
大数据时代的隐忧:数据垄断的困境
首先,数据的可接近性并不就使得其使用合乎伦理。大数据为监测和预示人们的生活提供了极大的方便,然而个人隐私也随之暴露在无形的“第三只眼”之下。无论是电子商务、搜索引擎还是微博等互联网服务商都对用户行为数据进行了挖掘和分析,以获得商业利益,这一过程中不可避免地威胁到普通人的隐私。以往人们认为网络的匿名化可以避免个人信息的泄露,然而大数据时代里,数据的交叉检验会使得匿名化失效。许多数据在收集时并非具有目的性,但随着技术的快速进步,这些数据最终被开发出新的用途,而个人并不知情。不仅如此,运用大数据还可能预测并控制人类的潜在行为,在缺乏有效伦理机制下有可能造成对公平、自由、尊严等人性价值的践踏。
其次,越大的数据并非总是越好的数据。对数据的盲目依赖会导致思维和决策的僵化。当越来越多的事物被量化,人们也更加容易陷入只看重数据的误区里。关于数据在何时何地有意义的争议,已经不再局限于“标准化考试是否能够衡量学生素质”之类的讨论,而是拓展到更加广阔的领域。另一方面,如果企业甚至政府在决策过程中滥用数据资料或者出现分析失误,将会严重损害民众的安全和利益。如何避免成为数据的奴隶,已经成为迫在眉睫的问题。
第三,大数据的有限接入产生新的垄断和数码沟。面对大数据,谁能接入?为何目的?在何种情境下?受到怎样的限制?数据大量积累的同时,却也出现了数据垄断的困境。一些企业或国家为了维护自己的利益而拒绝信息的流动,这不仅浪费了数据资源,而且会阻碍创新的实现。与互联网时代的数码沟问题一样,大数据的应用同样存在着接入和技能的双重鸿沟。对于数据的挖掘和使用主要限于那些具有计算机开发和使用背景的专业人士,这也就意味着谁将占据优势、谁会败下阵来,以及由此而来的面对“谁更有权力”的拷问。
进入大数据时代,数据的掌握者们是否会平等地交换数据,促进数据分析的标准化,在数据公开的同时如何与知识产权的保护相结合,不仅涉及到政府的政策,也与企业的未来规划息息相关。

F. 大数据可能是一场骗局

大数据可能是一场骗局
几乎每天都能看到有人在谈论大数据,让人好生厌烦。什么是大数据(Big Data) ? 简单一点可以理解为超出传统数据管理工具处理能力的大规模、复杂的数据集合。判断是否数据大数据的范畴,要从三个维度来衡量:数据量(Volume)、处理速度( Velocity)以及数据种类(Variety)。

大数据(Big Data) 是 2012 年信息技术领域最时髦的词汇。当然,跟所有曾经的时髦技术热词一样,最后可能是一场骗局。为什么?
大数据是个相对的概念,新瓶装旧酒
有些人所说的大数据处理方式,不过是在既有的方案上包装了一下,新瓶装旧酒,只为赶时髦。今天的大数据可能到了明天算不上大数据。过去我们也曾经对「海量数据」望而生畏。但海量数据时代并没有给多少企业带来革命性的变化,在 MapRece 以及 Hadoop 出现之前,没有多少企业能够轻松的对数据进行大规模并行计算(奇怪的是,那时候没有多少人提大数据)。而 NoSQL 的出现也为处理数据的方式带来了更多可能性。我们突然发现,处理数据能力已经悄然增强。
大数据是机会,但不是所有人的机会
大数据的商业前景被过分夸大了。到目前来看,只有为数不多的企业真正拥有大数据,而且这些数据的管理、处理、分析并没有带来所谓空前大的挑战。因为新的工具、新的计算方式已经已经具备处理这些数据的能力。
大数据是机会,但只是少数人的机会,更多是巨头们的商业障眼法,比如 IBM 、Oracle、微软,他们提倡甚至夸大大数据的目的还是为了向你兜售他们的工具,兜售他们的解决方案,确切的说,从你身上赚钱。更有甚者,居然是向你兜售硬件,这不完全是扯淡么? 大硬件还差不多。
中小型公司应该绕道走,别唯大佬们马首是瞻,别总去凑热闹。你所需要的东西,通过开源社区就可以获取到,参加各种大佬们口沫横飞的会议还不如和工程师聊聊可以运用什么工具来具体操练一下。适用好比什么都重要。创业公司也应该绕着大数据走,这未必是个好方向。 大数据的确会有价值,但没有那么大
必须要承认从某些大数据中会挖掘出新的价值,但这个价值只是附加价值,没有理由去夸大他,更没有理由去无端的想象。你可以说这篇沙漠可能有金子,但并不是说沙漠中一定就能挖掘出金子。
从现在业界一些公司拿出来的所谓的大数据应用实例来看,依然只是在利用传统意义上的数据价值,只是巧妙地把这笔帐记在了大数据上而已。一个电子商务网站说什么地方的人买东西最疯狂或是什么型号手机最好卖,这会是大数据分析的结果,完全是扯淡嘛。难道数据仓库系统分析出来的结果和这个大数据出来的结果会有不同么?
不算结束的结束语
大数据不会是什么商业模式的变革,重视大数据,但没必要抱着大数据的大腿,尤其是在业界对于数据还不够重视的时候,就更别说大数据了。相信随着时间的推移,大数据这个词会和信息爆炸、网格计算、云计算等逐渐被淡忘,当然,到时候可能出现新的时髦词汇了。
没有大数据,只有数据;没有蓝海,只有大海;没有先知,只有忽悠。

G. 大数据时代信息安全隐患

大数据时代信息安全隐患

近年来,随着信息数据的爆炸式增长,数据的财富转换率也出现了大幅度的增长。这就造成了一个大数据时代的背景。很多人都把数据的增长看做了未来最重要的财富。但是数据的大幅增长,给越来越多的人敲响了警钟:大数据时代的数据安全十分的脆弱!没有安全的数据是缺乏足够财富支撑的,因此很多企业开始着手建立自己的新型数据安全模式,虽然这个过程显得是十分的残酷艰难,但是一切都势在必行,刻不容缓。 2012年很多国际IT巨头都推出了自己的云服务,许多企业都购买了公有云,或是建立了私有云。
云计算时代的到来促进了网络数据的高速发展,在过去的三年里增长的数据甚至超越了人类几百年的数据增长。这些数据的出现意味着巨大的财富,但是数据的非结构化和安全隐患不断增加,让这些数据的价值没能够得到充分的发掘。一方面由于现有技术对于信息开发的成本过大,限制了数据的价值,另一方面由于数据安全得不到足够的保证,也阻碍了数据财富化的进程。数据开发成本的优化是一个缓慢的过程,人们更希望能够得到安全保护的同时,缓慢的去开发数据价值,这也把大数据时代的数据安全问题推到了风头浪尖,这是对于数据安全开发者的一次严峻考验。 大数据时代的数据安全怎么做?对于这个问题有着不同的理解。有的人认为需要在原有安全的基础上加入新的的网络元素,继续沿用既有的数据安全思路,稳中求进;有的人认为需要重新构建全新的数据安全模式,打破原有的桎梏,重组现有技术构成,建立全新的数据安全模式。
这两种看法都可以看做一种对于大数据时代特性的适应,很难说孰优孰劣,只能说大家的发展路线不同,思路不同。 主张在原有安全基础上发展的人们认为,原有的端点数据安全模式十分的稳定,具有较长的运用经验,安全可靠高效。现在的云端技术对于数据安全的要求主要体现在网络安全的应对上。对于传统的端点安全技术来说,有多种方式可以实现最终的安全。面对现有的大数据特性,需要在一些方面做出调整。一般来说有以下的几个方面需要改进。
第一,大数据时代的数据结构化。数据结构化对于数据安全和开发有着非常重要的作用。大数据时代的数据非常的繁杂,其数量非常的惊人,对于很多企业来说,怎样保证这些信息数据在有效利用之前的安全是一个十分严肃的问题。结构化的数据便于管理和加密,更便于处理和分类,能够有效的智能分辨非法入侵数据,保证数据的安全。数据结构化虽然不能够彻底改变数据安全的格局,但是能够加快数据安全系统的处理效率。未来数据标准化,结构化是一个大趋势,不管是怎样的数据安全模式都希望自己的数据更加的标准。
第二,网络层的安全策略是端点数据安全的重点加固对象。常规的数据安全模式往往喜欢分层构建。这也是数据安全的常规做法。现有的端点安全方式对于网络层的安全防护并不完美。一方面是大数据时代的信息爆炸,导致网端的非法入侵次数急剧增长,这对于网络层的考验十分的严峻,另一方面由于云计算的大趋势,现在的网络数据威胁方式和方法越来越难以预测辨识,这给现有的端点数据安全模式造成了巨大的压力。在未来,网络层安全应当作为重点发展的一个层面。在加强网络层数据辨识智能化,结构化的基础上加上于本地系统的相互监控协调,同时杜绝非常态数据的运行,这样就能够在网络层构筑属于大数据时代的全面安全堡垒,完善自身的缺陷。
第三,本地策略的升级。对于端点数据安全来说已经具备了成熟的本地安全防护系统,但是由于思路的转化,现有的端点数据安全系统有一定认识上的偏差,需要进行及时的调整。由于大数据时代的数据财富化导致了大量的信息泄露事件,而这些泄露事件中,来自内部的威胁更大。所以在本地策略的构建上需要加入对于内部管理的监控,监管手段。用纯数据的模式来避免由于人为原因造成的数据流失,信息泄露。由这一点出发我们可以预想到在未来的数据安全模式中,管理者的角色权重逐渐分化,数据本身的自我监控和智能管理将代替一大部分人为的操作。这对于大部分企业来说都是能够减少损失和成本的大事情,值得引起大家的关注和思考。
在本地安全策略的构建过程中还要加强与各个环节的协调。由于现在的数据处理方式往往会依托与网络,所以在数据的处理过程中会出现大量的数据调用,在调用过程中就容易出现很大的安全威胁。这个时候如果能够把本地和网络的链接做的更细腻,完善缓存机制和储存规则,就能够有效保证数据源的纯洁,从根本上杜绝数据的安全威胁。本地数据安全策略还有很多需要注意的问题,也有很多还没有发现的隐患,这些都需要在完善自有系统的基础上,继续开发。
第四,数据存储的问题。在传统端点的数据安全中,数据存储作为非法入侵的最后一站,被业界人士高度的重视,对于数据存储建立了全面完善的防护措施,这些非常值得借鉴,但是还要有进一步的完善。这里的完善主要是数据存储隔离与调用之间的数据逻辑关系策划。这同样是为了适应现在的数据模式。 经过上面几个问题的针对性完善,就能够开发出相对更加适应现在大数据时代应用的数据安全模式。只是在开发力度上的不同导致了现有的端点安全专家们很难深入的调整自己的方法,导致现在市场上存在一批似是而非的数据安全方案,这应该是发展的一个过程吧! 对于想要重新建立数据大时代数据安全的人们来说,他们面对的不是细节的问题,而是整体布局的问题。
想要针对现有的大数据背景,开发出属于下一代的虚拟数据安全方案,绝对是一种创新性的变革,对于未来数据安全的发展具有革命性的作用。因为,针对大数据时代设计的安全方案应该是在虚拟化、移动化的基础上进行的深入开发,而虚拟化安全和移动化网络是未来发展的方向,这样以来,从方向上摆正了自己的位置,具有更快的发展速度和更远的发展空间。但是想要做到这一步需要花费的精力也不是每个团队都能够付出的。以泰然神州为代表的一些具有前瞻性的企业已经开始了这方面的尝试,并取得了不错的成果。泰然神州在虚拟化、移动化和信息安全上做出了杰出的贡献。他们在考虑到虚拟化数据安全问题的时候,就是从整体入手,解决现有的痼疾,打造出全新一代数据安全方案。 在未来的虚拟化数据安全方案中,需要从全面的数据安全系统入手,建立合理的逻辑监管程序,全面数据处理模型,标准化信息配置,同时加强数据的监管,人员监管与外部智能辨识,做好各个环节的相互支撑与防御。虚拟化数据安全的核心是一条贯穿整个安全体系的数据通道,这条渠道需要通过分层管理,交叉监控,实现绝对的隐蔽和安全,同时合理的逻辑关系让整条数据通道变得更加合理和快捷。虚拟化数据安全更加注重客观的数据逻辑,尽量避免由于人为操作造成的数据安全隐患,杜绝数据泄露。
在大部分人的眼中数据泄露一直是个非常难缠的项目,但是在泰然神州新开发的产品中就重点针对了这个项目。他们通过建立监控网络完成对数据流的监控和控制,更多的避免了由于内部和外部原因造成的数据泄露,同时加强了对于既定存储数据的保护措施,很好的避免了数据的泄露。 虚拟化数据安全更加注重对于智能的运用。数据智能处理一直是安全领域最钟爱的一门技术,能够强化各个环节数据智能化,加强数据的辨识智能,处理智能对于数据安全的发展具有很强的促进作用。虚拟化数据安全未来发展的核心要素就是实现纯数据监控的完美形态,让数据管理数据安全,同时为所有用户提供可靠的数据端口,实现最终的数据转换目标。结合端点数据安全发展的历程,我们看得出数据本身具有很强的适应性,如果善加疏导,就能够整合出意想不到的效果。
智能数据一直是泰然神州研发的一个重要目标,为了能够在大数据时代发挥自己的智能数据优势,泰然神州在自己的产品中加入了智能数据的元素,让泰然神州新一代数据堡机完美的呈现了各个层面的技术高度和安全高度。 不管是传统的改进,还是重新建立,对于大数据时代的数据安全发展都具有一定的促进意义,只要进一步发展下去,就能够实现预想的目标。大数据时代已经到来,数据安全行业是所有行业最先起飞的一个,对于业内人士来说,这不仅仅是一次机会,更是一次挑战。只有坚持走在最前列的人,才能够最终获得胜利。
同时,整个世界环境内都开始针对网络信息数据做出适当的调整规范,这必然使得未来的数据安全发展得到极大的支持和鼓励,这对于所有从业人士来说都是一个展示自己团队才华的舞台,一个大数据时代的舞台!

阅读全文

与大数据炸了相关的资料

热点内容
录像机的文件视频在哪里 浏览:784
书生阅读器不能打印红头文件 浏览:508
win10游戏目录是哪个文件夹里 浏览:78
手机u盘满了找不到文件 浏览:554
存储文件压缩包和文件夹哪个合适 浏览:778
看房子哪个网站比较好 浏览:817
oppoa57用什么数据线 浏览:832
一点停app真垃圾 浏览:53
移出私人空间文件找不到了 浏览:601
微信一视频切换到语音 浏览:190
电脑里我的照片放在哪个文件夹 浏览:288
iphone6s升级到128 浏览:674
移动硬盘视频文件修复 浏览:330
更新win10会不会丢失文件 浏览:21
win10会受病毒感染么 浏览:775
以及cad的存储文件的格式 浏览:45
有哪些招募网站 浏览:864
网站右侧qq客服代码 浏览:283
美国失业数据是什么 浏览:322
苹果中国利润 浏览:386

友情链接