网络舆情监测或分析系统是一种能够对互联网海量信息自动监测收集、自动分类聚类、主题检测、专题聚焦,实现用户的网络舆情监测和新闻专题追踪等信息需求,形成简报、报告、图表等分析结果,为全面掌握群众思想动态,做出正确舆论引导,提供分析依据,为管理机构的信息判断和决策提供参考数据。
像现在市面上比较好的网络舆情监测或分析系统有很多,主要要看自己需求进行选择比较好,如蚁坊软件的大数据舆情监测分析技术软件、鹰眼、鹰击等等之类的。
B. 如何在大数据时代进行网络舆论引导
一、转变观念,树立科学应对舆情和舆论引导的理念
树立高度重视、有效管理、积极应对、正确引导的理念。目前,社会正处在突发事件的高发期,各级领导干部必须增强忧患意识,强化防范意识,高度关注网络舆情。面对重大舆情,积极应对,主动回应,速报事实,利用各种媒介澄清误解,强化正面引导,满足网民的信息需求,有效化解舆情危机。
树立舆情应对处置和舆论引导同等重要的理念。在网络舆情处置过程中,舆情分析研判、媒体采访报道、权威信息发布等工作是网络舆情管理的有机组成部分。要按照“属地管理、分级负责、快速核查、主动引导、系统响应、分类施策”的原则,依据速报情况、慎报原因、缓说结论、由简入繁、增信释疑的步骤,启动应急预案,设置舆论引导议题,及时发布权威信息,组织媒体采访报道,牢牢把握舆论引导权,为舆情事件妥善处置营造有力的舆论环境。
树立及时发布权威信息引导和影响媒体,营造有利舆论环境的理念。“媒体无处不在,人人都是记者”。网民通过手机等通信工具“随时、随地、随意”转发、评论等方式关注网络舆情,快速传播信息,即使权威部门“缺位”、权威信息滞后,舆论热点照样会很快形成。一旦网络舆情发生,政府和主管部门应及时、有序发布权威信息,去引导媒体报道舆情的角度、内容和倾向,从而影响公众舆论,杜绝一些媒体捕风捉影,被谣言和猜测左右,个别舆情事件被歪曲炒作。
树立大媒体协同应对舆情和引导舆论的理念。面对媒体格局、信息传播和舆论形成方式发生深刻变革的环境,只有充分发挥传统媒体和新媒体两种媒体优势,树立大媒体协同作战的理念,才能发挥各种媒介的整体力量,营造健康向上的社会舆论大环境。对于传统媒体,借助其公信力和影响力,发挥引导和影响网络舆论的主渠道作用;对于互联网等新媒体,创新管理思路,放大网络草根言论的正能量,积极引导其疏导网民情绪,凝聚网民共识,发挥其舆论引导新平台、新渠道和新阵地等作用。
二、整合资源,提升应对舆情和引导舆论的保障能力
理顺互联网管理体制。建立“省(自治区)、市、县”三级互联网管理机构,主管互联网信息内容,指导、协调、督促互联网行业主管部门、打击网络违法犯罪主管部门及其他相关部门加强互联网信息内容管理,为舆情管理工作有序开展提供组织保障。同时,加强网络新闻发言人、网络舆情信息员和网络评论员三支队伍建设,共同负责网络舆情的应对处置和舆论引导工作,形成互联网信息内容主管部门总体协调,舆情部门主动应对,各主流媒体、网络媒体积极配合,宣传、引导、管理相结合的网络舆情管理工作新格局。
强化舆论阵地建设。树立大媒体观念,整合各媒体信息资源,打造网络宣传平台,建立网络媒体和传统媒体联合互动、协同动作的全媒体化的舆论传播阵地。创新传播方式,拓展传播渠道,丰富传播手段,强化网络媒体、自媒体管理,提高新媒体环境下政府信息公开的能力,将党委、政府的重要决策部署和政策文件等内容原汁原味发布到网络宣传平台上,及时准确地向社会公开,直接传递给网民,并与网民回帖交流,了解诉求、答疑解惑,回应求助,有效化解社会负面情绪。在突发网络舆情事件发生和演变过程中,对网上不实报道、蓄意炒作、刻意渲染和非理性等情况及时予以多渠道、多手段实时报道,强化正面引导,揭露消除谣言,公布澄清事实,稳定网民情绪,为各种舆情危机有效化解提供立体式地传播阵地。
建立高效的舆情监测分析平台。持续监测网上舆情变化,及时掌握网络舆情热点动向动态,是提高网上舆情管理质量的基本要求。舆情监测分析系统就是利用统计学理论、信息科学技术、网络搜索引擎技术和数据挖掘技术开发软件平台,自动从海量的网络信息中抓取热点、焦点话题,预测可能发展的趋势,生成网络舆情分析报告。舆情分析人员借助系统获取舆情信息和报告,及时进行分析研判,全面掌握舆情事件发展态势,为提高网络舆情信息全面掌控能力和研判水平提供技术支撑。
C. 舆情分析系统主要有哪些功能作用
通常来说,舆情分析系统的主要功能作用分为两大部分,一是舆情数据收据,二是舆情数据分析,以识微商情为例:
一、收集舆情数据
收集所有主流新闻、社交、视频等网站和App、博客、论坛等的公开提及。以企业为例,根据需求,通过关键词来设定监测主题,一般是监测品牌声誉、营销活动、竞争对手、行业动态、某个事件这几个方面。
二、舆情数据分析
1.重点统计
重点统计提供了监测主题下一些重要数据的一个概览,比如相关信息总量、负面信息量、热门传播内容等,这样可以对于当前的情况有一个基本的了解。
2.时间趋势
时间趋势,有些工具也可能叫发展趋势、舆情态势,指某个监测主题在某一段时间内的网络信息发展趋势。网络信息瞬息万变,趋势也是跟随着实时汪竖变化的。通过设定的关键词得到趋势数据后,可以直观的了解监测主题的整体舆情发展情况是上升还是下降,总结舆情传播的路径和特征,评估舆情发展阶段、预测未来趋势。
3.情感分析
情感分析,也称为意见挖掘或情感AI,指分析在线文章以确定它们所承载的情感基调的过程。该过程背后的科学基于自然语言处理和机器学习的算法,将文章分类为正面、中性、负面。情感分析有助于找出发帖者祥源对某个话题的态度。情绪分析会展现舆情整体情绪倾向,对网络上新闻媒体、网民的总态度进行正面、负面、中性(或非敏感、敏感)划分。如果监测的品牌、产品或服务的负面评价突然激增,则表明舆情危机可能正在酝酿中。
4.话题分析
话题分析,指监测主题下被被多数表达的话题内容,可能是某个事件的关键事实、也可能是主流的观点。通过话题分析,可以把握事件声量倾向性、关键词、主要观点,以及其在媒体渠道的传播情况,话题分析模块中,一般从媒体报道和网民言论两方面进行分析,概括总结不同身份视角下的不同舆论声音,全面了解舆情聚焦方向。若媒体报道和网民言论趋同,也可合并划分。
5.媒体类型
媒体类型,指信息传播媒介类型。通过媒体类型分析,可以了解到监测主题下的关注者、参与者、传播者主要分布在哪些渠道及每个渠道的传播趋势。通过对媒体类型的筛选,还可以了解到各个渠道上的情感倾向、话题倾向等多个维度数据。以此为依据,可以选择适合的渠道开展公关或者营销活动。
6.属地分析
属地即IP归属地属地。6月27日,国家互联网信息办公室发布《互联网用户账号信息管理规定》,自2022年8月1日起施行。《规定》提出,在互联网用户账号信息页面展示合理范围内的互联网用户账号的互联网协议(IP)地址归属地信息,便于公众为公共利益实施监督。属地分析将呈现信息的地域分布,进一步了解不同地域间网民对监测主体的关注热度、分析关注人群的地域特征。
7.热门网站
热门网站,即根据监测主题下产生信息较多的网站。通过对信息的分布渠道进行分析,了解舆情分布的平台情况,传播什么样的内容。企业可以结合媒体类型,为之后的活动传播渠道规划提供参困宴大考。
8.热门文章
热门文章,即监测主题下获得较多传播的内容。一般从文章标题、信息来源、内容概要进行聚合分析,加入传播时间及转发量等方面考量,展现舆情传播中的热门内容。通过热门文章,方便快速了解监测期内舆情的重点事件或媒体的发文侧重点。
9.热词分析
热词分析,即监测主题下被频繁使用的词组分析。通过热词分析,可以了解被舆论重点关注的事件关键信息、主流态度/观点等。
10.信息类型
信息类型,即人群发布内容的类型,一般分为原贴、转发和评论。通过分析发文类型的占比情况、随时间各类型信息变化趋势,可以了解到人群对于事件的参与度,在舆情传播中的不同作用。一般评论较多的代表此事有更大的争议性,原贴、转帖占比更大的的代表人们更希望此事得到传播。
D. 大数据时代网络舆情管理变革探讨
大数据时代网络舆情管理变革探讨
大数据时代的到来对人类的生活、工作与思维产生变革性影响,深刻改变着商业王国及公共管理等各个领域的面貌,“大数据”日渐成为各行业创新的助推器。当前中国网络舆情环境复杂,网络舆情危机时有发生,社会热点舆情事件和涉官涉政舆情事件不断涌现,造成社会民主生活和政治稳定间的不平衡等诸多影响。大数据背景下的网络舆情正在发生巨大的变化,网络舆情管理变得日益复杂和重要,如何抓住大数据时代为网络舆情管理变革带来的机遇,以“大数据观”变革传统网络舆情管理思维,准确把握网络舆情的内在特征及其在演变过程中的潜在规律,实现网络舆情管理在思维、模式以及技术上的创新,对于新形势下做好网络舆情引导工作,加强和改进网络内容建设,具有重要的理论意义和实践价值。
一、大数据时代必然要求网络舆情管理变革
“大数据”概念最早在20世纪80年代提出,2011年麦肯锡咨询公司发布其研究成果《大数据:下一个创新、竞争和生产率的前沿》,使这个概念得以大范围推广。2012年3月29日,奥巴马宣布将投入2亿多美元启动“大数据发展和研究计划(Big Data Research and Development Initiative)”,将“大数据战略”上升为国家战略。近两年,大数据备受学术界、产业界和政府部门的关注,成为国内外强有力的前沿词汇。大数据又称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过目前主流软件工具在合理时间内进行抓取、管理和处理的数据集合,是必须通过深度挖掘、计算、分析才能创造价值的海量信息。大数据在体量、复杂性、产生速度及价值密度四个方面都极大地超越了传统的数据形态,具有4V特征:大量(Volume)、多样(Variety)、高速(Velocity)、价值(Value)。数量庞大的网民通过论坛、微博、微信等多种途径方便快捷地发表言论观点,网络舆情的规模和复杂性急速上升,体量巨大而价值密度低,其内在特征的变化必然要求实现网络舆情管理的变革以适应大数据时代的发展,这些要求主要体现在四个“转向”上。
(一)从监测转向预测。大数据的核心和目标就是预测。复杂网络的研究专家巴拉巴西认为,“93%的人类行为是可以预测的,当我们将生活数字化、公式化以及模型化的时候,我们会发现其实大家都非常相似。生活如此抵触随机运动,渴望朝更安全、更规则的方向发展,人类行为看上去很随意、很偶然,却极其容易被预测”[1]。例如,亚马逊可以推荐我们想要的图书,淘宝知道我们的喜好,而人人网可以猜出我们认识谁。传统网络舆情管理把监测已经产生的舆情信息作为起点,这种明显的滞后性使其在网络舆情危机的应对中处于消极被动的位置。而目前留给突发事件的处理时间越来越少,从传统的“黄金24小时”变为“黄金4小时”,如此短的时间使舆情分析和决策尚未来得及参与进来,整个事件就已经造成了爆炸性的效果。在大数据时代,通过挖掘数据相关性,把数学算法运用到海量的数据上进行分析,在敏感消息进行网络传播的初期就提前开始监测,然后建立模型,模拟仿真网络舆情的演变过程,使网络舆情突发事件发生的可能性和倾向性变得可以预测。
(二)从节点转向网络。由监测舆情转向预测舆情的目标实现,最关键的大数据技术就是挖掘数据的相关性。在小数据时代,由于受到数据库和计算分析能力的限制,无论是对于因果关系还是相关关系的追寻,都耗资耗时,并且易受传统的思维模式和特定领域隐含的固有偏见的影响,无法保证舆情分析结果的准确性。因此传统的网络舆情管理只注重舆情内容的监测,通过分析单个数据节点,如网民“说什么”来抓住比较浅层的社会语义表达。大数据则在保留了原始数据的同时,记录了网民“为什么这么说”背后的社会心理和社会关系网。按照大数据思维,每一个数据都是一个节点,可无限次地与其他关联数据形成舆情链上的乘法效应——类似微博裂变传播路径,数据裂变式的关联状态蕴含着无限可能性[2]。通过对海量信息的解构与重构,充分整合政府和企业的数据资产,利用一系列飞速发展的新技术和新工具,描绘、测量、计算各节点之间的关系,深度挖掘数据的相关性,以此排除偏见和视觉盲点,掌握易被忽略的社会动态,预测舆情的发展趋势。因此大数据时代必然要求网络舆情管理变革其监测系统,由节点转向网络,把握相关性,进而分析舆情背后的社会互动,乃至网络族群之间的界限和相互勾连。
(三)从定性转向定量。舆情分析师或解读者从自身经验和视角出发,在传统网络舆情管理的过程中进行定性分析时,必然使其分析结果带有个人价值与理念的主观印记,甚至不同的舆情机构对同一舆情事件会得出相悖的结论。在大数据时代,所有元数据都可通过量化关联转化为有价值的信息,并实现多次利用,每一次利用都是一种创新,大数据成为网络舆情定量管理的力量源泉。尽管数据的相关性决定了某些数据价值的潜藏性,但新技术、新软件的出现使得通过数学分析实现数据的价值转化变为可能。而多维解读舆情和新的深刻洞见的揭示,使舆情分析结果的全面性和客观性大大超越传统的网络舆情管理。但数据的量化并不等同于简单的“数字化”,而是数据的可计算化,舍恩伯格将其称之为“数据化”,是指一种把现象转变为可制表分析的量化形式的过程[3]。“数据化”使态度和情绪转变为一种可以分析的形式,网络舆情的相关信息得以进行深入分析,一些社交媒体如Facebook、Twitter、QQ、微博、微信等坐拥大型数据的宝藏,一旦实现对其自身数据库的深度利用,就能轻易获得社会各个领域和所有用户的几乎全部动态信息。
(四)从样本转向全体。在传统的网络舆情工作模式中,所采集的舆情关联数据仅为样本信息,构建的数据库结构单一、数据量有限。其数据源一般是基于抽样或者针对重点网络站点进行的数据抓取,仅能对小规模、有结构或类结构的数据进行分析,标准不一,难以在不同领域中通用。同时,样本分析并不能保证结果的准确,即使分析方法和操作没有问题,但采样过程的任何偏误都将使舆情分析结果与事实相去甚远。大数据体量巨大,从TB级别跃升至PB乃至ZB级别,完整记录了社情民意,成为人类生存痕迹和心理变化的记录仪。采样的目的是以尽可能少的数据获得尽可能多的信息,但大数据是建立在掌握所有数据,至少是海量数据的基础上的,在数据处理技术日新月异的今天,变革传统舆情管理思维与方法,改变采样的惯性行动成为必要。通过运用大数据技术,建立网络舆情自动分析系统,全天候自动搜索并采集与目标舆情看似毫不相关实则具有内在关联的信息,在抓取和收集页面之后,对信息自动分类、自动获取关键词、自动内容分析和自动报警等。样本扩大至几乎全体,舆情分析的结果更加客观可靠。
二、大数据时代网络舆情管理变革的效应前瞻
抓住大数据时代变革网络舆情管理的新机遇,迎接大数据时代网络舆情管理的新挑战,顺应大数据时代网络舆情管理的新要求,变革与创新网络舆情管理将会产生良好的管理效应,实现新时期网络舆情管理的升级转型。
(一)实现“防火”式管理。传统的网络舆情管理因为无法把握数据相关性,不能准确预测舆情未来的发展趋势,因此采用的是“灭火”式管理模式。政府通常在舆情产生或者已形成舆情危机的情况下才开始采取措施,如发布信息、引导舆情、满足诉求等,以此达到“灭火”效果。在此种模式下,政府经常被动陷入网络舆情漩涡,由此形成视网络舆情为“敌情”的偏见。为了摆脱这一困境,政府总是试图“控制”、“引导”和“应对”网络舆情,以一种上位者的姿态去支配、主宰网民及其舆情表达的方式。然而,若网民在网络舆情中的主体地位得不到保证,网络舆情就会失去其“减压阀”的功能,网络舆情问题将会是治标不治本。大数据时代,政府转变网络舆情管理思路,变革网络舆情管理模式,应用大数据技术对网络舆情进行关联分析、级别划分、聚类分析和倾向性分析,将实现“灭火”式管理到“防火”式管理的转变。通过寻找“导火索”与“减压阀”之间的平衡点,在发挥网络“民间舆论场”作用的同时,将网络舆情危机扼杀在摇篮里。例如美国中央情报局通过抓取海量数据来追踪恐怖分子和监控社会情绪,在“阿拉伯之春”中,通过大数据分析多少人和哪些人的立场从温和变为激进,并“算出”谁有可能会采取有害行为。
(二)打捞“沉没的声音”。大数据源于互联网的分享、开放,但“数字鸿沟”的存在却使“信息穷人”与网络隔绝。尽管互联网的发展使这一部分人的比例越来越低,但发展不均衡性的扩大意味着现在和将来仍然有一个不容忽视的群体将无法提供任何数据。即使是那些能够充分利用网络的人群,也有可能因为在某种情境下成为舆论中的弱势群体,或者因其在舆情主流中的异质思维而选择不在网络上发声。当然,这种选择既可能是主动也可能是被动的。正如美国哲学家埃里克·霍弗所言,“一个国家最不活跃的人群,为占大多数的中间层次。他们是在城市工作和在乡间务农的正派老百姓,然而,他们的命运却受分据社会光谱两头的少数人——最优秀的人和最低劣的人所左右”[4]。显而易见的是,单凭技术体系构筑的大数据平台无法真正获取“全部数据”,通过改革网络舆情管理去打捞那些可能代表某一个群体或一定数量级的“沉没的声音”十分必要。因此,全面思考和理清大数据时代网络舆情管理面临的机遇和挑战,通过“大舆情”观念的构建,变革网络舆情管理的工作理念和模式,将有利于打捞“沉没的声音”。例如,将舆情服务与社会调查相结合,重视实地调研与第一手材料的采集,而不是把网络舆情管理捆绑在技术上,将避免得到不全面的舆情或做出误导性决策。
(三)识破“伪舆情”。当前备受关注的网络舆情,越来越成为依存于影星式的学者、影星式的记者、影星式的商人和影星式的政客为中心的“伪舆情”[5]。重大敏感事件发生后,部分网管和有影响力的舆情机构快速封堵其主观上认为的“有害信息”,选择性地编撰舆情报告,以片面、虚假的“伪舆情”影响决策层对形势的研判,使其做出符合自身利益诉求的决策。有些利益集团则精心扶植和培育自己的网络发言人,引导网民思考的内容和方向。结果,这些舆论领袖对关键事件和问题的看法在网络上大行其道,并淹没其他异质言论,使群众对真相的认知产生巨大偏差。当舆情被各方利益集团的政治力量和经济力量操纵时,它便丧失了独立性,一旦“伪舆情”被识破,舆情机构就可能失去其公信力。基于全网的完整、准确和极速的信息抓取有利于为舆情分析报告提供一手的材料、纯粹的事实,从而获得真实全面的舆情,使网民在不知道“为什么”的情况下,依然能获得对“是什么”的比较公正客观的认知,并以此助力网络舆情的引导。同时,通过变革网络舆情管理的体制机制,保持舆情管理的独立性将有力识破“伪舆情”,剔除“杂音”与“噪音”,使大数据时代的网络舆情真正成为现实世界的“镜像”。
(四)克服“盲人摸象”和“信息孤岛”。海量信息无限增长与网民关注、分析能力有限之间的矛盾,造成了“数据爆炸”与“知识贫乏”的怪象,加剧了社会舆论的“盲人摸象”效应。大数据时代下,网络媒体促进了信息的开放和沟通的便捷,人们对公共事件的参与达到了一个前所未有的高度,但是分众传播、个性化传播的凸显以及信息的碎片化,使得全面、深刻地关注和分析事件变得越来越困难。网民非理性、易激动的特点导致网络舆情的偏激和情绪化,网络的“群体极化”被放大。大数据时代的舆情监测是建立在传统人工和软件无法进行的全网舆情信息采集的基础上,样本扩大到全体。通过运用大数据技术,建立网络舆情自动分析系统,避免因数据源不全面而造成的重要信息监测缺失,将有利于消弭“盲人摸象”现象。与此同时,由于信息化应用水平参差不齐,政府和企业不同的部门之间都存在“信息孤岛”问题:有多少个部门就有多少个信息系统,每个系统都有自己的数据库、应用软件和用户界面,完全是独立的体系,阻碍了数据的互通互联[6]。变革大数据时代网络舆情管理的工作模式,统一舆情行业的技术标准,共享数据,建立网络舆情服务联盟,统筹政府、企业、媒体及社会力量,实现网络舆情的多元共治将有利于解决“信息孤岛”问题。
三、大数据时代网络舆情管理的变革路径
当大数据给各行各业带来变革性影响时,全世界都没做好迎接这场产业革命的准备。但与英美等发达国家相比,中国更像是处在大数据时代的前夜。而中国的人口和经济规模决定了中国大数据的规模为全球最大,为中国抓住时代的脉搏进行改革提供了难得的机遇。在这种大背景下,大数据对传统舆情管理也产生了深刻的影响,要使网络舆情管理变革产生应有的预期效应,适应时代的发展要求,须从思维观念、方法手段、体制机制、技术保障、人才建设等路径着手。
(一)树立大舆情观念。大数据时代网络舆情管理的变革,首要在于树立大舆情观念。这里的大舆情,包括两层含义。第一,强调“大数据观”,即充分实现网络数据平台的开放共享。按照“一切皆可量化”的大数据逻辑,一个新增的相关性数据的产生,通常会带来一个新的分析结果。因此只有形成“大数据观”,实现数据的动态分享,才能有效防止信息“碎片化”,最大限度地消除“盲人摸象”和“信息孤岛”现象。第二,强调网上和网下数据的整合。网络舆情与社会调查结合不足,可能降低舆情的真实性,误导决策。例如,对于假期调整方案的选择,各舆情机构组织的网络投票的结果各不相同,其做出的舆情分析报告也和真实民意相左。因此只有真正掌握“大舆情”,打捞“沉没的声音”,才能正确决策,打造一个更安全、更高效的社会。树立大舆情观念,首先,必须实现数据分析的动态化,打破数据垄断,统一标准,共享数据,预防孤立的舆情机构闭门造车,制定片面或错误的舆情分析报告。其次,应把网上网下各方面数据整合起来,挖掘网络舆情与社会动态背后的深层次关系,实现网络舆情管理和社会治理的紧密联动、同步推进[7]。最后,完善和创新包括舆情抓取、预警、研判到决策、评估等在内的网络舆情管理的各个环节,使舆情管理功能不仅仅限于危机处理,更能发挥辅助决策的作用。
(二)变革网络舆情的引导战略。做好舆论引导工作,应把握好时、度、效。但是目前许多地方和部门对如何进行网络舆情的引导仍然缺乏正确认识,于“时”不能把握好“黄金4小时”,于“度”不能掌握火候,拿捏分寸,于“效”不能保证网络舆情引导的实效质量。大数据由于自身具有的特点,使其利于变革网络舆情的引导战略,变“封改删”、“鸵鸟战术”为“网上引导,网下落地”,使“伪舆情”失去生存的土壤。因此,我们要充分发挥大数据的优势来提高舆情引导工作的能力。其一,利用大数据提升网络舆情引导的预见性和目的性。通过数据抓取和相关性分析,构建网民意见倾向分析模型,了解网民的偏好和特点,建设和完善政府网站、官方微博,扶植和借助意见领袖,做到“善说话、说对话、接地气、办实事”。其二,通过数据的价值转化,实现网络舆情的价值引导。在充分收集相关数据的基础上,运用图表等数据可视化技术揭示事件的前因后果,让数据“发声”,使网民既“知其然”也“知其所以然”,从而全方位360度无死角了解事件的来龙去脉,消除“盲人摸象”现象。其三,提升舆情引导的公信力。一方面加强新老媒体间的互动,发挥各自的优势与公众沟通,破解谣言和流言,达到时效性和权威性的双重保障;另一方面要避免舆情分析师在处理数据的过程中受经验偏好的影响,并防止大数据沦为某些机构和个人更便捷地操纵舆论的手段。
(三)健全大数据舆情管理体制机制。当前,网络舆情管理的体制机制尚不完善,很多地区尚不具备系统规范的舆情应对与处理的管理体系。舆情分析和预测手段落后,危机应对系统缺失,舆情管理组织机构不健全、不稳定,以及多头管理等问题非常普遍。健全大数据舆情管理的体制机制,对于从源头上解决网络舆情管理过程中出现的问题和困难,实现标本兼治,具有决定性作用。因此,为使网络舆情管理取得实效,提升网络舆情工作的规范化和科学化水平,我国应加快建立健全大数据舆情管理的体制机制。首先,建立网络舆情多元管理的互动机制,由国家出台大数据发展战略规划,产学研相结合,统筹政府、企业、社会和公民的力量,形成合力,实现共治。其次,变革网络舆情管理的机构设置,改变以往通过临时组建领导小组或临时办公室等机构,或者以宣传部门为“消防队”等方式被动应对舆情危机的模式,通过常态化机构的设置和专业人员的配备,使网络舆情管理专门化、精细化。再次,建立权责明确的责任机制,通过加快数据立法进程明确各级各部门包括政府部门、企业媒体、人民团体等的权利义务;通过建立由网信部门牵头的大数据舆情管理体制,改变多头管理的局面,并设立政府首席信息官责任制度等。最后,健全大数据网络舆情管理的资源保障机制,大数据时代变革网络舆情管理面临初期成本高、短期效益不明显等问题,需要加大资金、技术、物资、人力等资源的投入。
(四)创新大数据网络舆情管理的方法与技术。大数据时代的到来,要求网络舆情管理必须采用更为先进的技术,这主要表现在对各种相关软件的大量应用以及对大数据技术支撑平台的依托。目前中国网络舆情监测采集软件中较具代表性的有TRS互联网舆情信息监控系统、北大方正智思舆情监控系统、军犬网络舆情监控系统、乐思网络舆情监测系统等。此外,还应完善和创新大数据技术支撑平台的五大基石——数据监测技术、数据挖掘技术、数据存储技术、数据分析技术、数据安全技术,使大数据为网络舆情管理服务的同时又不超出我们的控制。同时,我们也不能陷入“技术是万能的”误区而盲目迷信和依赖技术,更不能因相信大数据强大的预测功能而导致“数据独裁”,变成数据的奴隶。因此,网络舆情管理还需要依靠其他方法和手段相辅相成,共同作用。法律因其具备最大的强制性和权威性,成为最有效的管理控制的手段。法律与道德相互联系,在极具复杂性和特殊性的虚拟空间里,教育和自律被摆在重要的位置上。例如,欧美发达国家如美国、英国、加拿大等都通过倡导用户自律和自我管理来提高网民的媒介素养,加强自我把关能力。此外,还可以效仿韩国、新加坡等运用行政手段,要求网络用户在获得国家有关部门颁发的许可证的情况下,才能访问政府严格控制的信息等。
(五)培育大数据时代的网络舆情管理人才。大数据时代的网络舆情将会形成多向度的研究,例如对社会话语表达、社会心理描绘、社会关系呈现、社会诉求预测等的分析研究。网络舆情将真正成为一门与多学科交叉的社会显学,对人才的全面性要求很高。中国教育的学科划分和培养体系,客观导致培养出来的人才很难跨界。换句话说,真正进入这个行业的门槛是很高的。正因如此,各国越来越重视对数据科学家的培养,如美国在大学专门开设研究大数据技术的课程,通过严格的业务培训和职业资格认证,培养下一代的数据科学家。2013年9月,我国人社部联合人民网启动“网络舆情分析师职业培训计划”,“网络舆情分析师”成为一项被正式认可的职业。但是我国现有舆情工作人员的水平仍然严重滞后,很多舆情机构尤其是地方政府并没有专业的数据处理、分析团队和专门的网络舆情管理部门。为突破大数据时代变革网络舆情管理的人才瓶颈,从短期看,可以通过招考、录用等方式引进数据挖掘、分析人才,通过委托培养、网络培训等方式强化已有专业人才力量,通过购买服务的方式短期租赁大数据舆情管理的高素质人才。从长远看,则要系统梳理网络舆情管理所需人才目录,培养和壮大既精通数据挖掘、数学建模,又拥有较高学习能力、分析能力和知识水平,横跨统计学、社会学、计算机学、传播学、管理学等学科的复合型人才,打造一支大数据网络舆情管理的专业人才队伍。
以上是小编为大家分享的关于大数据时代网络舆情管理变革探讨的相关内容,更多信息可以关注环球青藤分享更多干货
E. 大数据时代,如何全面做好大数据网络舆情引导与分析
关于大数据时代网络舆情引导与分析方法如下:
一、通过相关样本库,把需要监测的网页进行模板匹配,并设定为监测数据源;
二、应用 爬虫程序抓取数据,存储到本地,再进行数据的净化和简略的分析;
三、利用简单的图表模板和文字描述,呈现监测和分析的结果。早期的网络舆情引导监测方式有一些原生的问题,譬如:一、由于处理能力有限,只能抽取部分样本进行监测,无法避免偶然误差;二、文本分析算法的准确度、 监测对象和系统模板匹配的程度、对数据的净化,以及分析的算法等因素对于最后监测结果的准确度都有决定性的影响,无法避免系统误差;
四、舆情引导与分析主体应学会充分利用大数据挖掘系统,蚁坊软件方面的大数据舆情监测管理系统,实现了从网络舆情信息的采集与提取,到话题的发现与追踪、态度倾向性分析,再到多文档自动摘要的生成,为网络舆情的安全评估提供了有效的舆情信息获取和分析方法。不过,由于“舆情”本身具有“社会”特性,数字和代码等信息背后的实体是生存在现实社会中的芸芸众生。除了纯技术角度对舆情进行量化考察,传统的社会民意调查方式对实现全面、立体、动态透析社会综合舆情亦有一定帮助。
数据分析—数据的核心是发现价值,而驾驭数据的核心是分析,分析是大数据实践研究的最关键环节,尤其对于传统难以应对的非结构化数据。运营商利用自身在运营网络平台的优势,发展大数据在网络优化中的应用,可提高运营商在企业和个人用户中的影响力。
F. 大数据舆情分析工具有哪些
大数据舆情分析工具有:识微商情监测系统、鹰眼速读网系统、新浪舆情通。
1、识微商情监测系统
拥有自主研发的网络爬虫技术,在对全网舆情进行实时监测的同时,能够自动对全网舆情进行分析,包括舆情溯源分析、舆情传播转载媒体类型分析、舆情演变发展趋势分析、舆情情感分析等,舆情分析图表以及舆情分析简报等同步生成。
三大舆情大数据公司:
1、湖南识微科技有限公司
旗下代表产品识微商情监测系统,基于大数据服务云——蚁工厂(Antfact),专注于为企业提供互联网信息挖掘分析服务,拥有一支专业技术团队,确保后续的产品售后服务。
2、湖南蚁坊软件股份有限公司
旗下代表产品鹰眼速读网系统,专业从事互联网大数据分析,具有日处理10亿多条实时数据、毫秒级的实时数据处理、PB级的批量数据处理以及3万QPS查询处理能力。
3、上海蜜度信息技术有限公司
旗下代表产品新浪舆情通,公司专注于舆情和大数据分析,在互联网信息采集、大数据处理和移态携册动互联网领域拥有核心技术和知帆宏识产权,建立了完整的运营队伍,有着完善的内部作业流程和管理规范。
G. 大数据时代下的舆情监控应如何做
舆情监测专员日常工作是什么?工作主要职责是什么? 一般来说,为了有效监测网络舆情,一些相关部门单位都会设有舆情监测专员,每天进行实时信息监测收集的工作。可能有的对于网络舆情监测意识不够,不太清楚舆情监测专员是做什么的?也不太清楚其日常工作职责是什么,针对这些问题总结出一下几点。 舆情监测专员日常工作任务:
1. 综合监测 综合监测网络上(包括微信、微博、自媒体等各渠道)传递的与工作单位相关的舆情,一旦发现负面舆论,能够在事情发生初期及时处理。避免舆论爆发产生负面的影响。 由于互联网信息量大,网络舆情监测员需利用舆情监测系统进行实时监测,从新闻、微博、论坛、贴吧等渠道获取相关的信息,储存到数据库。
2. 舆情分析研判 信息获取后,需要对数据库的信息进行处理。运用舆情监测系统对时间、热度、强度、内容等方面的信息进行筛选,剔除不必要的垃圾信息,然后自动过滤分类,最终获取有价值的信息。在舆情处理过程中,首先需要对舆情进行分析研判,判定是否能在短期内调查清楚舆情的真相和过程,并对外公布。 在舆情处理中重视“黄金4小时”和“黄金24小时”的重要节点,尽量在节点前还原真相并用官方或主流媒体对外公布,避免事态扩大,使舆情危机进入高潮阶段而造成极大的影响。 如无法短期内完成,则要立即告知事情正在处理中,有时候态度比真 相更重要。而后也要尽快查清事情的真相和舆情的传递过程,并形成舆情报告对外公布。
3. 制作舆情分析报告 舆情反馈包括舆情发生初期的表态公告、处理过程中的及时反馈以及处理完成后的舆情报告公布。当网络舆情已经发生,网民已经重点关注,若是不及时反馈舆情处理进展,只会加剧网友对事件的各种揣测,而使舆情越走越偏。 将筛选出的精准信息进行分析,判断舆情事件的走向以及事件的影响力,制作成舆情分析报告。舆情分析报告应包括对当下舆情监测工作的汇报总结和舆情处置行动的提示与指导。 由于互联网信息量大,网络舆情监测员需利用舆情监测系统进行实时监测,从新闻、微博、论坛、贴吧等渠道获取相关的信息,储存到数据库。 信息获取后,需要对数据库的信息进行处理。运用舆情监测系统对时间、热度、强度、内容等方面的信息进行筛选,剔除不必要的垃圾信息,然后自动过滤分类,最终获取有价值的信息。
● 舆情监测专员基本素养:
1. 把握媒体环境的变化 新媒体时代极大地提高了民众的参与性,网络舆情的广泛传播,使其影响力日渐提高,甚至成为政府单位、企业公司和名人个体决策的重要因素。网络舆情管理人员必须要随时监测媒体环境的动向,以便随时整合媒体传播在舆情处理中的重要作用。
2. 具有强烈的新闻敏感性 网络舆情管理人员要善于通过媒体渠道及时把握社会的变动和舆论走向。最大限度地接触与单位相关的信息,并对信息合理地筛选、评价和传播,保证提供的信息能够被媒体和公众接受。
3. 善与媒体沟通合作 在网络舆情处理的工作中,管理人员接触最多的就是各类媒体。网络舆情处理中,需要通过各类媒体随时公布处理的过程。因此与媒体达成友好良性的沟通合作,是网络舆情管理人员最重要的专业素养之一。
4. 能有效引导舆情的走向 工作中,能对负面以及者虚假的舆情及时处理,发布正面、正确的观点,鞭挞虚假丑陋,打击谣言,向民众传递正能量,引导舆情的正面走向。 蚁坊软件认为网络舆情管理人员在处理舆情时,要把握温情比冷漠好,面对比回避好,主动比被动好,越早比越迟好,公开比掩盖好,负责比推卸好的基本原则。
H. 大数据舆情监测与分析的系统有何作用
互联网舆情监测分析系统可实现对新闻、论坛、博客、评论、微博、微信、移版动客户端权等的全面监测,通过系统预警通知功能,使用户在第一时间掌握网络舆论动态,并能够对关注事件或线索进行持续追踪和多维度分析,辅助用户全面掌握舆情动态,从而为用户进行正确舆论引导提供基础支撑,对应对突发公共事件、全面掌握社情民意起着关键作用。I. 大数据舆情监测平台的作用有哪些呢
互联网舆情监测分析系统可实现对新闻、论坛、博客、评论、微博、微信、移回动客户端等的全面监测,答通过系统预警通知功能,使用户在第一时间掌握网络舆论动态,并能够对关注事件或线索进行持续追踪和多维度分析,辅助用户全面掌握舆情动态,从而为用户进行正确舆论引导提供基础支撑,对应对突发公共事件、全面掌握社情民意起着关键作用。J. 使用大数据舆情系统能够干些什么
网络舆论常常会引导舆论的走向,颠倒是非黑白,如果被有心人士利用,可能内会造成很严重的容后果。所以,需要对网上上的一些不正确的言论进行及时的屏蔽处理等,防止行成不实言论,所以这个时候就需要大数据舆情监控系统了,通过大数据分析不当言论,及时高效的处理不良言论,很有价值意义。