导航:首页 > 网络数据 > 大数据量mysql查询

大数据量mysql查询

发布时间:2023-03-27 08:57:36

① mysql 大数据量查询如何优化,没办法去掉<>和like

其实你这个需要程序数据库有一致的设计。可考虑分区。
通过电话前缀来分区,以下只是一个形式,不推荐用中文命名,
这样,只要用户不填写电话,那么前三字符就是xxx,自动会放入 ZFU区。

CREATE TABLE Customer
(
ID INT NOT NULL,
Mobile_PerNO CHAR(3) DEFAULT 'xxx',
Mobile VARCHAR(30)
)
PARTITION BY LIST(Mobile_PerNO)
PARTITION 联通186 VALUES IN (133),
PARTITION 移动139 VALUES IN (139),
PARTITION 电信133 VALUES IN (133),
PARTITION ZFU VALUES IN (xxx)
);

其次你过于依赖数据库而成形的程序,用点不客气的话说,那就是耦合极高的设计。
你其实完全可以在注册时,写入验证,一个手机号就能注册一次。左右打掉空格,这样手机上就能建立唯一索引。 使用LIKE ‘133%’ 至少性能上有一定的飞跃。

至于你的第二个SQL, 在时间和发送号码上可以建立索引,然后条件上写入时间。
也可以使用hash方式按照年季度分区。

理论上 性能提升百倍还是一点问题都没有的。

分区资料 看官方文档。

② MySQL大数据量分页查询方法及其优化

使用子查询优化大数据量分页查询

这种方式的做法是先定位偏移位置的id,然后再往后查询,适用于id递增的情况。

使用id限定优化大数据量分页查询
使用这种方式需要先假设数据表的id是连续递增的,我们根据查询的页数和查询的记录数可以算出查询的id的范围,可以使用 id between and 来查询:

当然了,也可以使用in的方式来进行查询,这种方式经常用在多表关联的情况下,使用其他表查询的id集合来进行查询:

但是使用这种in查询方式的时候要注意的是,某些MySQL版本并不支持在in子句中使用limit子句。

参考 sql优化之大数据量分页查询(mysql) - yanggb - 博客园 (cnblogs.com)

③ mysql 数据量大的表如何做分页查询

直接用limit start, count分页语句, 也是我程序中用的方法:
select * from proct limit start, count
当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下:
select * from proct limit 10, 20 0.016秒
select * from proct limit 100, 20 0.016秒
select * from proct limit 1000, 20 0.047秒
select * from proct limit 10000, 20 0.094秒
我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下(也就是记录的一般左右) select * from proct limit 400000, 20 3.229秒
再看我们取最后一页记录的时间
select * from proct limit 866613, 20 37.44秒
难怪搜索引擎抓取我们页面的时候经常会报超时,像这种分页最大的页码页显然这种时
间是无法忍受的。
从中我们也能总结出两件事情:
1)limit语句的查询时间与起始记录的位置成正比
2)mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。

④ 如何提高上百万级记录MySQL数据库查询速度

关于mysql处理百万级以上的数据时如何提高其查询速度的方法

最近一段时间由于工作需要,开始关注针对Mysql数据库的select查询语句的相关优化方法。

由于在参与的实际项目中发现当mysql表的数据量达到百万级时,普通SQL查询效率呈直线下降,而且如果where中的查询条件较多时,其查询速度简直无法容忍。曾经测试对一个包含400多万条记录(有索引)的表执行一条条件查询,其查询时间竟然高达40几秒,相信这么高的查询延时,任何用户都会抓狂。因此如何提高sql语句查询效率,显得十分重要。以下是网上流传比较广泛的30种SQL查询语句优化方法:
1、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

2、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

3、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0

4、尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20

5、下面的查询也将导致全表扫描:(不能前置百分号)
select id from t where name like ‘%c%’
若要提高效率,可以考虑全文检索。

6、in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3

7、如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num

8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2

9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=’abc’–name以abc开头的id
select id from t where datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id
应改为:
select id from t where name like ‘abc%’
select id from t where createdate>=’2005-11-30′ and createdate<’2005-12-1′

10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使 用,并且应尽可能的让字段顺序与索引顺序相一致。

12、不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(…)

13、很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)

14、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

15、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

20、尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21、避免频繁创建和删除临时表,以减少系统表资源的消耗。

22、临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使 用导出表。

23、在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24、如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26、使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27、与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

30、尽量避免大事务操作,提高系统并发能力。

⑤ Mysql 数据量级大的情况下,使用 多线程 查询

思路:

    1.按着汪启自己需要的条件分给不同者空的线程进行查询,查询首陵瞎结束后,将返回的结果add到全局的List中。例:时间段查询,将时间进行分块,然后拼装成List集合

⑥ 数据量大的时候,怎么优化mysql查询

查询的时候通过建索引解决。
举例说明:
create table datasources
(
year_id smallint unsigned not null,
month_id tinyint unsigned not null,
datasource_id tinyint unsigned not null,
id int unsigned not null, -- needed for uniqueness
data int unsigned not null default 0,
primary key (year_id, month_id, datasource_id, id)
)
engine=innodb;
使用year_id,month_id,datasource_id, id这几个组合查询key就可以明显提高查询速度
记住:year_id是不要要带上的,否则后面的几个查询key不会生效
select * from datasources where year_id = 2011 and month_id between 1 and 3;

select * from datasources where year_id = 2011 and month_id = 4 and datasouce_id = 100;

⑦ mysql 大数据量查询

查询大量数据的,如果出现如下情仔老蠢况,就说明最大内存已经耗尽:

可含昌临时修改脚本使用内存大小进行处理:

注意:
当使用libmysqlclient作为库时,PHP的内存限制将不会计算用于结果集的内存,除非将数据读入PHP变量。与mysqlnd的内存占用将包括完整的结果集。

由于缓冲查询是默认的,下面的示例将演示如何使用每个念陪API执行无缓冲的查询。

⑧ mysql大数据量查询

表的结构再简单,也架不住数据量庞大啊。只有2个字段的表,查询语句上好像也做版不出什么优化。个人想权法是,防伪码不会经常被查。一般一个防伪码被查个两三次就差不多了吧,是否可以考虑把建立时间较久远的防伪码去除,只保留一段时间以内的。或者按序列号创建时间分表存储数据,时间较为久远的数据单独放一张表;近期的新序列号放在另一张表,增加序列号生成时间字段。但凡在一定的创建时间之前的老序列号,就去查老表老数据,否则就查新表新数据。序列号的生成应该是有规律的吧,大数据只能分表来提升查询效率。

阅读全文

与大数据量mysql查询相关的资料

热点内容
录像机的文件视频在哪里 浏览:784
书生阅读器不能打印红头文件 浏览:508
win10游戏目录是哪个文件夹里 浏览:78
手机u盘满了找不到文件 浏览:554
存储文件压缩包和文件夹哪个合适 浏览:778
看房子哪个网站比较好 浏览:817
oppoa57用什么数据线 浏览:832
一点停app真垃圾 浏览:53
移出私人空间文件找不到了 浏览:601
微信一视频切换到语音 浏览:190
电脑里我的照片放在哪个文件夹 浏览:288
iphone6s升级到128 浏览:674
移动硬盘视频文件修复 浏览:330
更新win10会不会丢失文件 浏览:21
win10会受病毒感染么 浏览:775
以及cad的存储文件的格式 浏览:45
有哪些招募网站 浏览:864
网站右侧qq客服代码 浏览:283
美国失业数据是什么 浏览:322
苹果中国利润 浏览:386

友情链接