『壹』 大数据培训要学什么
大数据工程师培训课程有哪些?目前大数据基础课程需要学习Web标准化网页制作,必备的HTML标记和属性、HTML表格、表单的设计与制作、学习CSS、丰富HTML网页的样式、通过CSS布局和定位的学习、让HTML页面布局更加美观、 ...
大数据工程师培训课程有哪些?目前大数据基础课程需要学习Web标准化网页制作,必备的HTML标记和属性、HTML表格、表单的设计与制作、学习CSS、丰富HTML网页的样式、通过CSS布局和定位的学习、让HTML页面布局更加美观、复习所有知识、完成项目布置等。
除此之外大数据工程师培训课程有哪些?
大数据工程师培训课程第一部分:大数据基础——java语言基础方面
1、Java语言基础
Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类
2、 HTML、CSS与Java
PC端网站布局、HTML5+CSS3基础、WebApp页面布局、原生Java交互功能开发、Ajax异步交互、jQuery应用
3、JavaWeb和数据库
数据库、JavaWeb开发核心、JavaWeb开发内幕
大数据工程师培训课程第二部分: linux&Hadoop生态体系
Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架
大数据工程师培训课程第三部分:分布式计算框架和Spark&Strom生态体系
1、分布式计算框架
Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网(www.sina.com.cn)
2、storm技术架构体系
Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战
大数据工程师培训课程第四部分:大数据项目实战(一线公司真实项目)
数据获取、数据处理、数据分析、数据展现、数据应用
大数据工程师培训课程第五部分:大数据分析 —AI(人工智能)
Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习
1、Python机器学习2、图像识别&神经网络、自然语言处理&社交网络处理、实战项目:户外设备识别分析
『贰』 大数据培训都学什么课程,需要数学和统计学基础吗
需要,尤其是大数据分析与挖掘方向。
大数据应用的一个核心就是通过内算法来对数据进容行整理分析,需要一定的数学基础,建议学习线性代数、概率、离散数学、微积分等。
注意,并不是所有大数据岗位都需要数学,比如大数据开发岗位,建设和优化系统,主要工作在后端,数学用得比较少。网页链接
『叁』 大数据培训一般都将些什么内容
大数据是嵌入式脚本语言,国信安学习的时候一般都是先基础在结合项目学习。什么Linux基础啊,搭建运行环境各种内容,这些都是需要学习的。
『肆』 大数据培训课程都包含哪些内容
老男孩教育的大数据培训课程内容包括:Java、Linux、内Hadoop、Hive、Avro与Protobuf、ZooKeeper、HBase、Phoenix、Redis、Flume、SSM、Kafka、Scala、Spark、azkaban、Python与大数据容分析等
『伍』 大数据培训的内容是什么有哪些方式
大数据开发工程师课程体系——Java部分。
第一阶段:静态网页基础
1、学习Web标准化网页制作,必备的HTML标记和属性
2、学习HTML表格、表单的设计与制作
3、学习CSS、丰富HTML网页的样式
4、通过CSS布局和定位的学习、让HTML页面布局更加美观
5、复习所有知识、完成项目布置
第二阶段:JavaSE+JavaWeb
1、掌握JAVASE基础语法
2、掌握JAVASE面向对象使用
3、掌握JAVASEAPI常见操作类使用并灵活应用
4、熟练掌握MYSQL数据库的基本操作,SQL语句
5、熟练使用JDBC完成数据库的数据操作
6、掌握线程,网络编程,反射基本原理以及使用
7、项目实战 + 扩充知识:人事管理系统
第三阶段:前端UI框架
1、JAVASCRIPT
2、掌握Jquery基本操作和使用
3、掌握注解基本概念和使用
4、掌握版本控制工具使用
5、掌握easyui基本使用
6、项目实战+扩充知识:项目案例实战
POI基本使用和通过注解封装Excel、druid连接池数据库监听,日志Log4j/Slf4j
第四阶段:企业级开发框架
1、熟练掌握spring、spring mvc、mybatis/
2、熟悉struts2
3、熟悉Shiro、redis等
4、项目实战:内容管理系统系统、项目管理平台流程引擎activity,爬虫技术nutch,lucene,webService CXF、Tomcat集群 热备 MySQL读写分离
以上Java课程共计384课时,合计48天!
大数据开发工程师课程体系——大数据部分
第五阶段:大数据前传
大数据前篇、大数据课程体系、计划介绍、大数据环境准备&搭建
第六阶段:CentOS课程体系
CentOS介绍与安装部署、CentOS常用管理命令解析、CentOS常用Shell编程命令、CentOS阶段作业与实战训练
第七阶段:Maven课程体系
Maven初识:安装部署基础概念、Maven精讲:依赖聚合与继承、Maven私服:搭建管理与应用、Maven应用:案列分析、Maven阶段作业与实战训练
第八阶段:HDFS课程体系
Hdfs入门:为什么要HDFS与概念、Hdfs深入剖析:内部结构与读写原理、Hdfs深入剖析:故障读写容错与备份机制、HdfsHA高可用与Federation联邦、Hdfs访问API接口详解、HDFS实战训练、HDFS阶段作业与实战训练
第九阶段:MapRece课程体系
MapRece深入剖析:执行过程详解、MapRece深入剖析:MR原理解析、MapRece深入剖析:分片混洗详解、MapRece编程基础、MapRece编程进阶、MapRec阶段作业与实战训练
第十阶段:Yarn课程体系
Yarn原理介绍:框架组件流程调度
第十一阶段:Hbase课程体系
Yarn原理介绍:框架组件流程调度、HBase入门:模型坐标结构访问场景、HBase深入剖析:合并分裂数据定位、Hbase访问Shell接口、Hbase访问API接口、HbaseRowkey设计、Hbase实战训练
第十二阶段:MongoDB课程体系
MongoDB精讲:原理概念模型场景、MongoDB精讲:安全与用户管理、MongoDB实战训练、MongoDB阶段作业与实战训练
第十三阶段:Redis课程体系
Redis快速入门、Redis配置解析、Redis持久化RDB与AOF、Redis操作解析、Redis分页与排序、Redis阶段作业与实战训练
第十四阶段:Scala课程体系
Scala入门:介绍环境搭建第1个Scala程序、Scala流程控制、异常处理、Scala数据类型、运算符、Scala函数基础、Scala常规函数、Scala集合类、Scala类、Scala对象、Scala特征、Scala模式匹配、Scala阶段作业与实战训练
第十五阶段:Kafka课程体系
Kafka初窥门径:主题分区读写原理分布式、Kafka生产&消费API、Kafka阶段作业与实战训练
第十六阶段:Spark课程体系
Spark快速入门、Spark编程模型、Spark深入剖析、Spark深入剖析、SparkSQL简介、SparkSQL程序开发光速入门、SparkSQL程序开发数据源、SparkSQL程序开DataFrame、SparkSQL程序开发DataSet、SparkSQL程序开发数据类型、SparkStreaming入门、SparkStreaming程序开发如何开始、SparkStreaming程序开发DStream的输入源、SparkStreaming程序开发Dstream的操作、SparkStreaming程序开发程序开发--性能优化、SparkStreaming程序开发容错容灾、SparkMllib 解析与实战、SparkGraphX 解析与实战
第十七阶段:Hive课程提体系
体系结构机制场景、HiveDDL操作、HiveDML操作、HiveDQL操作、Hive阶段作业与实战训练
第十八阶段:企业级项目实战
1、基于美团网的大型离线电商数据分析平台
2、移动基站信号监测大数据
3、大规模设备运维大数据分析挖掘平台
4、基 于互联网海量数据的舆情大数据平台项目
以上大数据部分共计学习656课时,合计82天!
0基础大数据培训课程共计学习130天。
以上是大数据开发培训内容,加米谷是线下面授小班教学!
『陆』 大数据培训课程都学什么
我正在用着
『柒』 大数据培训课程有哪些
大数据的培训课程有很多的!
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据有五大特点,即大量(Volume)、高速(Velocity)、多样(Variety)、低价值密度(Value)、真实性(Veracity)。它并没有统计学的抽样方法,只是观察和追踪发生的事情。 大数据的用法倾向于预测分析、用户行为分析或某些其他高级数据分析方法的使用。
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。[6]大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
其次,想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
所以,综上所述,大数据的培训课程主要是针对以上内容进行培训的!
『捌』 大数据培训课程介绍,大数据学习课程要学习哪些
《大数据实训课程资料》网络网盘资源免费下载
链接:https://pan..com/s/1RiGvjn2DlL5pPISCG_O0Sw
大数据实训课程资料|云计算与虚拟化课程资源|课程实验指导书综合版|机器学习与算法分析课程资源|Spark课程资源|Python课程资源|Hadoop技术课程资源|云计算课程资料.zip|微课.zip|算法建模与程序示例.zip|spark课程资源.zip|hadoop课程资源.zip|实验指导书|教学视频|教学PPT
『玖』 大数据培训内容,大数据要学哪些课程
java
数据结构、关系型数据库、linux系统操作
hadoop离线分析、Storm实时计算、spark内存计算
『拾』 大数据培训课程有哪些
1、Hadoop入门,了解什么是hadoop
2、分布式文件系统HDFS,是数据库管理员的基础课版程
3、初级MapRece,成为权Hadoop开发人员的基础课程
4、高级MapRece,高级Hadoop开发人员的关键课程
5、Hadoop集群与管理,是数据库管理员的高级课程
6、ZooKeeper基础知识,构建分布式系统的基础框架
7、HBase基础知识,面向列的实时分布式数据库
8、HBase集群及其管理等。