Ⅰ 建设纪检大数据监督平台的目的
一、建设背景
“数字监督”已然成为大数据时代权力监督体系不可或缺的一种新形态。此前,中央纪委国家监委也印发了《信息化工作规划(2018-2022年)》,明确要求为依规依纪依法履行好纪检、监察职能提供有力的科技辅助和技术支持。数字赋能权力监督是提升综合治理能力与时俱进的现实需要,是创新监督方式推动监督的工作理念,也是纪检监察高质量发展的必然要求。
二、解决问题
虽然利用大数羡橡据技术解决传统的干部权力监督问题是一种新型的有益的尝试,且随着互联网技术的发展在社会各个领域的迅速延伸,越来越多明明的政府部门开始去探索如何利用这一技术在权力监督工作中去发挥作用。但不能否认的是,在实践中权力监督的成效还有待进一步加强,仍存在一些亟待解决的突出问题。
例如监督部门对监管内容不明确、数据采集方式不全面,信息收集困难且效率低;各级纪委监委数据量较大,在信息化过程中缺乏平台整合,纪检监察相关数据未互联互通,使得业务数据“孤岛化”;传统的监督模式激派告效率低、时间周期长,整体问题统计起来较为困难并且精准度不够,相关领导无法掌握全区各级部门权力运行的整体情况,以及问题的趋势频率,难以决策。
Ⅱ 大数据的产生背景是什么
大数据有两种含义:
一种是大批量的数据。量级有多大?比如通常读一本几百万字的电子小说,每天专注地快速地阅读,少说用时也需7-15天,而文档在手机、电脑上存储占用空间有多大呢?10MB而已,也就是说如果按照7天处理10MB文字,推算1GB的内容需耗时710+天,相当于两年时间,而当下互联网企业每天产生的数据量是10GB-10000GB不等,这样的数据量,如果用一个人去处理的话,每天的数据量得花20年到20000年,在时间长度和成本上而言几乎是不可能实现的,因为这才是一天的数据量。同样可以感受一下存储成本:大家手机、电脑都有存储空间,手机256GB应该为主流了,电脑2TB(2048GB)左右,即便存储空间应景很大,而实际企业生产中用不了几天就存储不下了。大家想象一下,如果打开一个1GB大小的EXCEL或者TXT文本文档会发生什么现象呢?有兴趣的小伙伴可以试一试,你会发现电脑变得超级慢超级卡,而且你甚至都打不开这个文档。
第二种就是大数据处理技术,简称大数据。对企业而言企业绝对不能接受上述现象的发生,因为数据处理不了,相当于干再多活都不知道哪些赚了哪些赔了,企业是要靠赚钱来存活的,如果为了处理数据再购买更高性能的机器作为服务器去处理这些信息,那成本将会极其高昂,企业负担不起,于是乎就有人发出这样的疑问:
有没有一种可以让很多台廉价的机器组建成一台牛逼的机器的技术?就好比合体技能一样?
有需求就有大牛,很快,一项新的计算机计算技术框架——分布式数据处理框架诞生了,目的很明确,就是解决了上面提到的疑问——让很多台廉价的机器组合起来变成了一个牛逼的、专门针对短时间内处理大量数据的系统,这就叫大数据处理技术。
如果你还是觉得理解不透彻,可以去多易教育的官网看看带有图片和讲解视频的专栏,通俗易懂的让你迅速了解什么是大数据,毕竟多易是大数据培训行业的领头羊嘛!
Ⅲ 大数据产生的背景哪些
“大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,近年来互联网和信息行业的发展而引起人们关注。
随着计算机和信息技术的迅猛发展和普及应用,行业应用系统的规模迅速扩大,行业应用所产生的数据呈爆炸性增长。
动辄达到数百TB甚至数十至数百PB规模的行业,企业大数据已远远超出了现有传统的计算技术和信息系统的处理能力,因此,寻求有效的大数据处理技术、方法和手段已经成为现实世界的迫切需求。
人们将越来越多的意识到数据对企业的重要性。大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
(3)大数据项目建设背景扩展阅读:
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。
随着云时代的来临,大数据(Big
data)也吸引了越来越多的关注。大数据(Big
data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、O2O、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。
“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量。
Ⅳ 中国大数据的提出的时间和背景是什么发展情况和现状分别是什么样的
大数据在中国的发展相对比较年轻。2012年,中国政府在美国提出《大数据研究和发展计划内》并且批复了“十容二五国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。我国的开放、共享和智能的大数据的时代才真正大面积的开始
发展和现状是:(一)市场规模快速增长,供给结构初步形成 市场规模快速增长。十二五以来,我国大数据产业从无到有,全国各地发展大数据积极性较高,行业应用得到快速推广,市场规模增速明显。易观国际数据显示,2011-2014年,我国大数据市场规模分别为37.4亿元、47.3亿元、59亿元和75.7亿元,年平均复合增长约为27%。易观国际同时预测,2015、2016年我国大数据市场规模将保持约30%的增长速度,在十二五末市场规模接近100亿元。
Ⅳ 浅谈大数据时代的IT建设
浅谈大数据时代的IT建设
现在已经进入大数据时代,大数据既能促进信息消费,又能带动社会管理创新。当然,大多数企业早已认识到大数据对产业的影响,只是面临着大数据落地的难题。在商业应用层面,维克托·迈尔·舍恩伯格在其所着的《大数据时代》一书中通过大量的实例进行阐释;而在技术层面,互联网巨头有着得天独厚的优势。比如这次的讲解人李彦宏所代表的网络,其搜索技术应用于大数据就是顺理成章的事情。
在互联网和IT行业之外的传统行业也在关注大数据,传统企业希望通过大数据技术指导企业战略,了解产业发展、商业模式、市场竞争中成功的关键要素,进而提高企业核心能力。然而,传统企业不具备互联网企业对数据信息的敏感度,它们产生海量的数据却不能有效利用数据,或者说数据产生、收集、存储都可能是数据链条的末端,有关数据的进程便完全停止。所以,传统企业需要在大数据背景下实现转型。在今天,新技术不断地颠覆传统产业,企业深知“慢一拍”会是什么后果——柯达被数码时代抛弃,诺基亚被智能机时代抛弃,苏宁在电商时代匆忙追赶,电信在互联网时代寻求突破??各行各业的企业都可能在大数据时代掉队,反过来也有机会得以焕发青春。
大数据时代,所有的企业都将由数据驱动,数据将成为企业和公共组织越来越重要的资产。同时,企业更需要高效的大数据工具,让数据资产产生真正的价值。在这个时候,人们首先会朝着互联网企业看过去。互联网产业是信息产业,是数据产业,它们生产、交换、再次加工以及最终呈现到用户面前的“产品”都是数据。因此,在大数据时代,有学者提出“泛互联网化”的思路,以实践收集数据资产、发挥大数据商业价值。这正是广义上的物联网的概念,数据产生、收集、传输、存储、处理都实现互联网化,各行各业都互联网化。
在这个大背景下,企业实现大数据的步骤变得明朗起来。在企业明确自己的大数据项目计划之后,下一步便是实施满足大数据要求的IT建设。
面向云计算的企业IT建设
大数据离不开云计算的支持,云计算是大数据诞生的前提和必要条件。
目前,已经发展成熟的云计算拥有强大的计算、存储能力,可以作为大数据集中采集和存储数据的基础。云计算和大数据的关系可以理解为:云计算为大数据提供了计算能力、存储空间和访问通道,而大数据则是云计算的终极应用。
大数据时代的第一定律是“样本即全体”。随着数据获取、整理、挖掘的成本伴随着摩尔定律不断降低,借助于IT公司提供的数据分析工具,企业将有可能获得产业链上下游的全部数据,从而将企业的市场决策、供应链管控、内部管理的效率提高到前所未有的程度。在IT系统的建设过程中,企业首先面临的最大困难是在内部解决数据的产生、收集以及存储问题。当然,此时的数据也可能不够大,但面临的问题没有本质区别。很明显,能够建设完整大数据IT系统的企业凤毛麟角,大多数企业(特别是传统企业)也没有这个必要,因为大数据对于它们来说是辅助而非核心业务。企业可以选择将部分业务外包出去,再将生成的数据传输回来,但这时又要面临数据的传输问题。总之,大数据IT建设之前,要考虑哪一部分是本地建设,哪一部分置之云端。
模式一旦确定,平台的选择便成为关键,选择哪一种数据分析工具,哪一种数据库,哪一类云服务等等。不同的行业、不同的企业建设大数据IT系统的方案不尽相同,这里不作展开讨论。不过,对大数据IT系统在软硬件方面的一些发展趋势,企业需要重点关注。因为IT技术的发展日新月异,选择一个具有竞争力和强大生命力的平台,企业才能少走弯路,才能真正从投资中获益。
数据仓库特殊性尤为重要
对于大多数企业而言,大数据意味着为长年维护且尘封已久的数据仓库配备一道可访问的大门。
数据仓库过去一直是、未来也将仍然是企业级机构所不可或缺的关键性组成部分。这类系统的作用是将企业方方面面产生的数据汇聚起来,然后分门别类加以划分,最终让这些纷繁复杂的信息成为业务分析师深入了解企业运营状况的宝贵资料。一套针对可扩展性而精心设计出的基础设施正是大数据能否真正发挥作用的关键所在。
Ⅵ 大数据发展背景及研究现状
2015年左右,大数据相关政策规划密集出台,同期为大数据企业新增数量顶峰时期。近年来,我国大数据产业迎来新的发展机遇期,产业规模日趋成熟。大数据产业主体从“硬”设施向“软”服务转变的态势将更加明显,面向金融、政务、电信、医疗等领域的大数据服务将实现倍增创新。
大数据企业数量持续增长,增速与政策出台密切相关
根据IT桔子统计,大数据企业的快速增长阶段出现在2013-2015年,增长速度在2015年达到最高峰。2015年后,市场日趋成熟,企业新增开始趋于放缓,大数据产业逐渐走向成熟。
—— 以上数据及分析均来自于前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。
Ⅶ 大数据时代是什么意思大数据是在什么背景下提出的
大数据时代:
最早提出大数据时代到来的是全球知名咨询公司麦肯锡, 大数据在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
大数据提出的背景:
进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。
它已经上过《纽约时报》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。
数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。
正如《纽约时报》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。
哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
(7)大数据项目建设背景扩展阅读
大数据影响
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。
大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、O2O、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。
有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。
“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量。
大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量)。
发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万……
截止到2012年,数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)
EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。国际数据公司(IDC)的研究结果表明,2008年全球产生的数据量为0.49ZB,2009年的数据量为0.8ZB,2010年增长为1.2ZB,2011年的数量更是高达1.82ZB,相当于全球每人产生200GB以上的数据。
而到2012年为止,人类生产的所有印刷材料的数据量是200PB,全人类历史上说过的所有话的数据量大约是5EB。IBM的研究称,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。而到了2020年,全世界所产生的数据规模将达到今天的44倍。
每一天,全世界会上传超过5亿张图片,每分钟就有20小时时长的视频被分享。然而,即使是人们每天创造的全部信息——包括语音通话、电子邮件和信息在内的各种通信,以及上传的全部图片、视频与音乐,其信息量也无法匹及每一天所创造出的关于人们自身的数字信息量。
这样的趋势会持续下去。我们现在还处于所谓“物联网”的最初级阶段,而随着技术成熟,我们的设备、交通工具和迅速发展的“可穿戴”科技将能互相连接与沟通。
科技的进步已经使创造、捕捉和管理信息的成本降至2005年的六分之一,而从2005年起,用在硬件、软件、人才及服务之上的商业投资也增长了整整50%,达到了4000亿美元。
大数据的精髓
大数据带给我们的三个颠覆性观念转变:是全部数据,而不是随机采样;是大体方向,而不是精确制导;是相关关系,而不是因果关系。
A.不是随机样本,而是全体数据:在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(随机采样,以前我们通常把这看成是理所应当的限制,但高性能的数字技术让我们意识到,这其实是一种人为限制);
B.不是精确性,而是混杂性:研究数据如此之多,以至于我们不再热衷于追求精确度;之前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记录,随着规模的扩大,对精确度的痴迷将减弱;拥有了大数据,我们不再需要对一个现象刨根问底,只要掌握了大体的发展方向即可。
适当忽略微观层面上的精确度,会让我们在宏观层面拥有更好的洞察力;
C.不是因果关系,而是相关关系:我们不再热衷于找因果关系,寻找因果关系是人类长久以来的习惯,在大数据时代,我们无须再紧盯事物之间的因果关系,而应该寻找事物之间的相关关系;相关关系也许不能准确地告诉我们某件事情为何会发生,但是它会提醒我们这件事情正在发生。
Ⅷ 大数据时代的产生背景
一、大数据时代城市管理的机遇:
首先,有利于数字化城市建设。城市化过程中出现的管理问题,传统的城市管理方式早已对我国出现的城市问题束手无策,在大数据时代到来的背景下,数字化城市建设就呼之欲出。
其次,有利于电子政务建设。长期以来,我国政府在处理公共事务时都基本采用了传统的处理方式,纸质化的模式占据了主要地位。随着信息技术的不断更新以及大数据时代的到来,电子政务也随之应运而生。由于大数据时代的特点以及不断更新发展,电子政务的形式也不断得到更新。
最后,有利于智慧城市建设。智慧城市建设则是在大数据技术上产生的城市建设和管理方案。可见,大数据时代的到来更加有利于我国的智慧城市建设,为智慧城市的最终建成提供真实可靠的信息基础。会在一定程度上难以实现真正共享。另外,因为信息化很不平衡,各地各部门使用的信息技术标准很难统一,最后导致数据孤岛的现象也并非个例。
二、大数据时代城市管理的挑战 :
大数据时代,机遇存在的同时也不可避免会遇到许多挑战,数据开放不足、数据共享不足、数据质量不优等等都面临着严峻的挑战。
首先,数据开放不足。数据是信息的重要载体,信息的公开在一定意义上就是数据的公开。在所有的数据公开中,政府相关数据公开尤为引人瞩目。国外早就对数据公开确立了“公开为原则,不公开为例外”的原则,我国也有类似规定,但是真实执行情况令人堪忧。
其次,数据共享不足。就目前来看,谁掌握了大量真实可靠的信息,谁就掌握了主动权,信息在一定程度上就是权威的象征,权力和利益的象征。再者,政府各部门大部分存在利己倾向, 信息就会在一定程度上难以实现真正共享。另外,因为信息化很不平衡,各地各部门使用的信息技术标准很难统一,最后导致数据孤岛的现象也并非个例。
然后,数据质量不优。数据质量问题直接影响依靠数据获得的信息的真实有效性,最终影响整体决策的有效性。数据质量主要包括数据的真实性、完整性和有效性。数据在收集、整合、存储和使用四个阶段当中,每个阶段都极有可能出现数据质量问题。在我国城市管理中,各级各部门每天都会面对大量繁琐的数据,数据收集渠道主要有下级单位上报数据、调查统计、普查等等,每一个渠道也同样会有很多因素影响数据质量。