『壹』 大数据的内容是什么
问题一:大数据都包括什么内容? 你好,
第一,你可以直接网络搜索。
第二,根据我的理解,所有你在互联网上留下的痕迹就是大数据。
比如很多购物网站,会根据你以前的购买记录,在你再次到该网站的时候,在页面底部出现“猜你喜欢”,推荐几个你可能喜欢的东西。比如淘宝、天猫、京东这些购物网站。
有时候,还会定期发邮件给你,推荐你一些商品,比如做的比较好的,像亚马逊。
希望能对你有所帮助,有什么问题我们可以继续交流
问题二:什么是大数据?大数据是什么意思? “大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,大数据时代怎么理解呢,一起来看看吧。
大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。
大 数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、 GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到 其内在规律。
大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
大 数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关 的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对, 挖掘主效基因。例子还有很多。
大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运 用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本 质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。
商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。
数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据 *** ,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。
在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。
数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。
商业智能的应用范围
1.采购管理
2.财务管理
3.人力资源管理
4.客户服务
5.配销管......>>
问题三:什么是大数据 大数据是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 大数据首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取:关系数据库、NOSQL、SQL等。
基础架构:云存储、分布式文件存储等。
数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机理解自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(putational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测:预测模型、机器学习、建模仿真。
结果呈现:云计算、标签云、关系图等。
要理解大数据这一概念,首先要从大入手,大是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
第一,数据体量巨大。从TB级别,跃升到PB级别。
第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快。1秒定律。最后这一点也是和传统的......>>
问题四:什么是大数据 大数据是什么意思 “大数据”不是“数据分析”的另一种说法!大数据具有规模性、高速性、多样性、而且无处不在等全新特点,具体地说,是指需要通过快速获取、处理、分析和提取有价值的、海量、多样化的交易数据、交互数据为基础,针对企业的运作模式提出有针对性的方案。由于物联网和智能可穿戴的普及带来的,生产线上普通的蓝领员工,前台电话员,等企业内的低阶员工也成为产生大数据的数据内容的一部分,数据的产生除了来自社交网络,网站,电子商务网站,邮箱外,智能手机,各种传感器,和物联网,智能可穿戴设备。
大数据营销与传统营销最显著的区别是大数据可以深入到营销的各个环节,使营销无处不在。如用户的偏好?上网的时间段?上网主要浏览页?对页面和产品的点击次数?网站上的用户评价对他的影响?他会在哪些地方分享对产品和购物过程的体验?这些都是对用户网上消费和品牌关注度的深入分析,可以直接影响用户消费的倾向等商业效果。
大数据彻底改变企业内部运作模式,以往的管理是“领导怎么说?”现在变成“大数据的分析结果”,这是对传统领导力的挑战,也推动企业管理岗位人才的定义。不仅懂企业的业务流程,还要成为数据专家,跨专业的要求改变过去领导力主要体现在经验和过往业绩上,如今熟练掌握大数据分析工具,善于运用大数据分析结果结合企业的销售和运营管理实践是新的要求。
当然大数据对企业的作用一个不可回避的关键因素是数据的质量,有句话叫“垃圾进,垃圾出”指的是如果采集的是大量垃圾数据会导致出来的分析结果也是毫无意义的垃圾。此外,企业内部是否会形成一个个孤立的数据孤岛,数据是否会成就企业内某些人或团队新的权力,导致数据不能得到实时有效地分享,这些都会是阻碍大数据在企业中有效应用的因素。
而随着大数据时代的到来,对大数据商业价值的挖掘和利用逐渐成为行业人士争相追捧的利润焦点。业内人士称,电商企业通过大数据应用,可以探索个人化、个性 化、精确化和智能化地进行广告推送和推广服务,创立比现有广告和产品推广形式性价比更高的全新商业模式。同时,电商企业也可以通过对大数据的把握,寻找更 多更好地增加用户粘性,开发新产品和新服务,降低运营成本的方法和途径。
问题五:大数据到底是什么东西? 基于大数据→企业网上支付与结算
基于大数据→银行的融资参考依据
基于大数据→优化库存周转
基于大数据→按需按量按地定产,高效自营
问题六:大数据时代:大数据是什么? 大数据是什么?是一种运营模式,是一种能力,还是一种技术,或是一种数据 *** 的统称?今天我们所说的“大数据”和过去传统意义上的“数据”的区别又在哪里?大数据的来源又有哪些?等等。当然,我不是专家学者,我无法给出一个权威的,让所有人信服的定义,以下所谈只是我根据自己的理解进行小结归纳,只求表达出我个人的理解,并不求全面权威。先从“大数据”与“数据”的区别说起吧,过去我们说的“数据”很大程度上是指“数字”,如我们所说的客户量,业务量,营业收入额,利润额等等,都是一个个数字或者是可以进行编码的简单文本,这些数据分析起来相对简单,过去传统的数据解决方案(如数据库或商业智能技术)就能轻松应对;而今天我们所说的“大数据”则不单纯指“数字”,可能还包括“文本,图片,音频,视频……”等多种格式,其涵括的内容十分丰富,如我们的博客,微博,轻博客,我们的音频视频分享,我们的通话录音,我们位置信息,我们的点评信息,我们的交易信息,互动信息等等,包罗万象。用正规的语句来概括就是,“数据”是结构化的,而“大数据”则包括了“结构化数据”“半结构化数据”和“非结构化数据”。关于“结构化”“半结构化”“非结构化”可能从字面上比较难理解,在此我试着用我的语言看能否形象点地表达出来:由于数据是结构化的,数据分析可以遵循一定现有规律的,如通过简单的线性相关,数据分析可以大致预测下个月的营业收入额;而大数据是半结构化和非结构化的,其在分析过程中遵循的规律则是未知的,它通过综合方方面面的信息进行模拟,它以分析形式评估证据,假设应答结果,并计算每种可能性的可信度,通过大数据分析我们可以准确找到下一个市场热点。 基于此,或许我们可以给“大数据”这样一个定义,“大数据”指的是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面,目的在于从复杂的数据里找到过去不容易昭示的规律。相比“数据”,“大数据”有两个明显的特征:第一,上文已经提到,数据的属性是包括结构化、非结构化和半结构化数据;第二,数据之间频繁产生交互,大规模进行数据分析,并实时与业务结合进行数据挖掘。解决了大数据是什么,接下来还有一个问题,大数据的来源有哪些?或者这个问题这样来表达会更清晰“大数据的数据来源有哪些?”对于企业而言,大数据的数据来源主要有两部分,一部分来自于企业内部自身的信息系统中产生的运营数据,这些数据大多是标准化、结构化的。(若继续细化,企业内部信息系统又可分两类,一类是“基干类系统”,用来提高人事、财会处理、接发订单等日常业务的效率;另一类是“信息类系统”,用于支持经营战略、开展市场分析、开拓客户等。)传统的商业智能系统中所用到的数据基本上数据该部分。而另外一部分则来自于外部,包括广泛存在于社交网络、物联网、电子商务等之中的非结构化数据。这些非结构化数据由源于 Facebook、Twitter、LinkedIn 及其它来源的社交媒体数据构成,其产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。具体包括了:如,呼叫详细记录、设备和传感器信息、GPS 和地理定位映射数据、通过管理文件传输协议传送的海量图像文件、Web 文本和点击流数据、科学信息、电子邮件等等。由于来源不同,类型不同的数据透视的是同一个事物的不同的方面,以消费客户为例,消费记录信息能透视客户的消费能力,消费频率,消费兴趣点等,渠道信息能透视客户的渠道偏好,消费支付信息能透视客户的支付渠道情况,还有很多,如,客户会否在社交网站上分享消费情况,消费前后有否在搜索引擎上搜索过相关的关键词等等,这些信息(或说数据)......>>
问题七:大数据是什么,干什么用的?包含哪些内容?哪些技术?解决什么问题? 大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。通过大数据分析,可以预测交通路况实况,比如网络地图的实时公交,了解客户信用,比如支付宝实名认证大数据背后的花呗借呗信用积累大数据研究显示,我国的数据总量正在以年均50%以上的速度持续增长,预计到2020年在全球的占比将达到21%。产业新形态不断出现,催生了个性化定制、智慧医疗、智能交通等一大批新技术新应用新业态。大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
问题八:大数据可以做什么 用处太多了
首先,精准化定制。
主要是针对供需两方的,获取需方的个性化需求,帮助供方定准定位目标,然后依据需求提 *** 品,最终实现供需双方的最佳匹配。
具体应用举例,也可以归纳为三类。
一是个性化产品,比如智能化的搜索引擎,搜索同样的内容,每个人的结果都不同。或者是一些定制化的新闻服务,或者是网游等。
第二种是精准营销,现在已经比较常见的互联网营销,网络的推广,淘宝的网页推广等,或者是基于地理位置的信息推送,当我到达某个地方,会自动推送周边的消费设施等。
第三种是选址定位,包括零售店面的选址,或者是公共基础设施的选址。
这些全都是通过对用户需求的大数据分析,然后供方提供相对定制化的服务。
应用的第二个方向,预测。
预测主要是围绕目标对象,基于它过去、未来的一些相关因素和数据分析,从而提前做出预警,或者是实时动态的优化。
从具体的应用上,也大概可以分为三类。
一是决策支持类的,小到企业的运营决策,证券投资决策,医疗行业的临床诊疗支持,以及电子政务等。
二是风险预警类的,比如疫情预测,日常健康管理的疾病预测,设备设施的运营维护,公共安全,以及金融业的信用风险管理等。
第三种是实时优化类的,比如智能线路规划,实时定价等。
问题九:大数据的内容和基本含义? “大数据”是近年来IT行业的热词,大数据在各个行业的应用逐渐变得广泛起来,如2014年的两会,我们听得最多的也是大数据分析,那么,什么是大数据呢,什么是大数据概念呢,大数据概念怎么理解呢,一起来看看吧。
1、大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
2、大数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到其内在规律。
3、大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。
4、大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。
5、大数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对,挖掘主效基因。例子还有很多。
6、大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。
问题十:大数据具体学习内容是啥? HADOOPP 是一个能够对大量数据进行分布式处理的软件框架。但是HADOOPP 是以一种可靠、高效、可伸缩的方式进行处理的。HADOOPP 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。HPCC高性能计算与 通信”的报告。开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理HADOOPP的批量数据。为了帮助企业用户寻找更为有效、加快HADOOPP数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。Pentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。IT JOB
『贰』 大数据怎么分析变码的情况
⼤数据如何分析?如何进⾏数据处理及分析
当今社会,数据已成为某些企业的“根”。近年来越来越多的公司意识到数据分析可以带来的价值,并搭上了⼤数据这
趟“旅⾏车”。现实⽣活中现在所有事情都受到监视及测试,从⽽创建了许多数据流,其数据量通常⽐公司处理的速度还快。因此问题就来了,按照定义,在⼤数据很⼤的情况下,数据收集中的细微差异或错误会导致重⼤问题。
如何分析⼤数据?从以下六个⽅⾯考虑
1.可视化分析
不管是数据分析专家还是普通⽤户,数据可视化都是数据分析⼯具的基本要求。可视化可以直观地显⽰数据,让数据⾃⼰说话,让⽤户看到结果。
2.数据挖掘算法
可视化适⽤于⼈,⽽数据挖掘适⽤于机器。聚类,细分,离群值分析和其他算法使我们能够深⼊挖掘数据并挖掘价值。这些算法不仅需要处理⼤数据的量,还需要处理⼤数据的速度。
3.预测分析能⼒
数据挖掘使分析师可以更好地理解数据,⽽预测分析则可以使分析师基于视觉分析和数据挖掘的结果做出⼀些预测性判断。
4.语义引擎
我们知道,⾮结构化数据的多样性给数据分析带来了新的挑战。我们需要⼀系列⼯具来解析,提取和分析数据。需要将语义引擎设计为可以从“⽂档”中智能地提取信息。
5.数据质量和主数据管理
数据质量和数据管理是管理⽅⾯的最佳实践。通过标准化流程和⼯具处理数据可以确保预先定义的⾼质量分析结果。如果⼤数据确实是下⼀个重要的技术创新,那么我们将更好地关注⼤数据可以为我们带来的好处,⽽不仅仅是挑战。
6.数据存储,数据仓库
数据仓库是⼀个关系数据库,旨在促进以特定模式存储的数据的多维分析和多⾓度显⽰。在商业智能系统的设计中,数据仓库的建设是商业智能系统的关键和基础。它承担着集成业务系统数据的任务,为业务智能系统提供数据提取,转换和加载(ETL)。查询和访问数据以提供⽤于在线数据分析和数据挖掘的数据平台。
如何进⾏数据处理和分析?
步骤1:收集资料
对于企业来说,⽆论是新实施的系统还是旧的系统,要实施⼤数据分析平台,⾸先都需要了解需要收集哪些数据。考虑到数据收集的难度和成本,⼤数据分析平台并不收集企业的所有数据,⽽是直接或间接相关的数据。企业应该知道哪些数据可⽤于战略决策或某些详细的决策,并且分析后的数据的结果是有价值的,这也是考验⼀个数据分析师的能⼒。例如,⼀家企业只想了解⽣产线设备的运⾏状态。此时,仅需要收集影响⽣产线设备性能的关键参数。再例如,在产品售后服务中,公司需要了解产品使⽤状态,购买组别和其他信息,这些数据对于⽀持新产品开发和市场预测⾮常重要。因此,建议公司在执⾏⼤数据分析计划时对项⽬⽬标进⾏准确的分析,这更容易实现业务⽬标。
⼤数据收集过程的困难主要是由于并发数量⾼,因为可能有成千上万的⽤户同时访问和操作,例如12306⽹和淘宝⽹,他们的并发访问量在2007年达到了数百⼈。因此您需要在集合端部署⼤量数据库以提供⽀持。⽽如何在这些数据库之间执⾏负载蠢缺平衡和分⽚也需要深⼊思考。
步骤2:导⼊和预处理数据
收集过程只是构建⼤数据平台的第⼀步。在确定需要收集哪些数据之后,下⼀步需要统⼀处理不同来源的数据。例如,在智能⼯⼚中,可能存在视频监控数据,设备操作数据,材料消耗数据等。这些数据可以是结构化的或⾮结构化的。⽬前,企业需要使⽤ETL⼯具从分布式和异构数据源(例如关系数据和平⾯数据⽂件)中提取数据到临时中间层进⾏清理,转换和集成,并将这些数据从前端导⼊到集中式⼤型分布式数据库或分布式存储集群最终被加载到数据仓库或数据集市中,并成为在线分析处理和数据挖陵物掘的基础。对于数据源的导⼊和预处理,最⼤的挑战主要是导⼊的数据量,每秒的导⼊量通常达到100万亿甚⾄千兆位。
步骤3:统计分析
统计和分析主要使⽤分布式数据库或分布式计算集群对存储在其中的海量数据进⾏常规分析和分类,以满⾜最常见的分析需求。在这⽅⾯,⼀些实时需求将使⽤EMC的GreenPlum,Oracle的Exadata和基于MySQL的列式存储Infobright 等,⽽⼀些批处理或基于半结构化数据的需求则可以使⽤hadoop。数据的统计分析⽅法很多,例如假设检验,显着意义检验,差异分析,相关分析,T检验,⽅差分析,卡⽅分析,偏相关分析,距离分析,回归分析,简单回归分析,多元回归分析,逐步回归,回归预测和残差分析,带汪辩岭回归,逻辑回归分析,曲线估计,因⼦分析,聚类分析,主成分分析,因⼦分析,快速聚类和聚类⽅法,判别分析,对应分析,多元对应分析(最佳规模分析),⾃举技术等。在统计和分析部分,主要特征和挑战是分析中涉及的⼤量数据,这将⼤⼤占⽤系统资源,尤其是I / O。
步骤4:价值挖掘
与以前的统计和分析过程不同,数据挖掘通常没有任何预设的主题,主要是基于对现有数据的各种算法的计算,从⽽达到预测的效果,以实现⼀些⾼级的数据分析需求⽬的。典型的算法包括⽤于聚类的Kmeans,⽤于统计学习的SVM和⽤于分类的NaiveBayes。使⽤的主要⼯具是Mahout for Hadoop。该过程的特点和挑战主要在于⽤于挖掘的算法⾮常复杂,并且计算中涉及的数据量和计算量⾮常⼤。常⽤的数据挖掘算法主要是单线程的。
以上信息均由亿信华⾠⼩编整理发布,如若转载,请标明出处!
¥
5.9
网络文库VIP限时优惠现在开通,立享6亿+VIP内容
立即获取
大数据如何分析?如何进行数据处理及分析
⼤数据如何分析?如何进⾏数据处理及分析
当今社会,数据已成为某些企业的“根”。近年来越来越多的公司意识到数据分析可以带来的价值,并搭上了⼤数据这
趟“旅⾏车”。现实⽣活中现在所有事情都受到监视及测试,从⽽创建了许多数据流,其数据量通常⽐公司处理的速度还快。因此问题就来了,按照定义,在⼤数据很⼤的情况下,数据收集中的细微差异或错误会导致重⼤问题。
第 1 页
如何分析⼤数据?从以下六个⽅⾯考虑
1.可视化分析
不管是数据分析专家还是普通⽤户,数据可视化都是数据分析⼯具的基本要求。可视化可以直观地显⽰数据,让数据⾃⼰说话,让⽤户看到结果。
2.数据挖掘算法
可视化适⽤于⼈,⽽数据挖掘适⽤于机器。聚类,细分,离群值分析和其他算法使我们能够深⼊挖掘数据并挖掘价值。这些算法不仅需要处理⼤数据的量,还需要处理⼤数据的速度。
第 2 页
3.预测分析能⼒
数据挖掘使分析师可以更好地理解数据,⽽预测分析则可以使分析师基于视觉分析和数据挖掘的结果做出⼀些预测性判断。
4.语义引擎
我们知道,⾮结构化数据的多样性给数据分析带来了新的挑战。我们需要⼀系列⼯具来解析,提取和分析数据。需要将语义引擎设计为可以从“⽂档”中智能地提取信息。
5.数据质量和主数据管理
第 3 页
数据质量和数据管理是管理⽅⾯的最佳实践。通过标准化流程和⼯具处理数据可以确保预先定义的⾼质量分析结果。如果⼤数据确实是下⼀个重要的技术创新,那么我们将更好地关注⼤数据可以为我们带来的好处,⽽不仅仅是挑战。
6.数据存储,数据仓库
数据仓库是⼀个关系数据库,旨在促进以特定模式存储的数据的多维分析和多⾓度显⽰。在商业智能系统的设计中,数据仓库的建设是商业智能系统的关键和基础。它承担着集成业务系统数据的任务,为业务智能系统提供数据提取,转换和加载(ETL)。查询和访问数据以提供⽤于在线数据分析和数据挖掘的数据平台。
『叁』 大数据中有什么比较好用的知识
大数据技术学习前的准备知识
(1)英语基础
对于大数据技术文章,比较先进的是外文较多,必须要有一定的英语能力。
(2)统计学
主要是大数据分析、数据挖掘方向的工作需要。可以重点学习:
基本的统计量:均值、中位数、众数、方差、标准差、百分位数等
概率分布:几何分布、二项分布、泊松分布、正态分布等
总体和样如隐本:了解基本概念,抽样的概念
置信区间与假设检验:如何进行验证分析
相关性与回归分析:一般数据分析的基本模型等等。
推荐书籍:
《赤裸裸的统计学》、渣迹厅《深入浅出统计学》
(3)数学
和数据打交道,数学知识是有很大帮助的,尤其是数据分析这个方向。需要的数学知识如下:
概率论与数理统计
线性代数
优化理论:线性优化、最优化、凸优化等
离散数学等
推荐学习资源:
《高等数学》、《概率论及其应用》、《线性代数及其应用》等
(4)计算机知识
网络体系结构
网络协议
数据传输过程
网络安全
多媒体数据传输等
推荐书籍:
《计算机基州亮础知识入门》、《计算机组成原理》、《计算机系统》、《编译原理》、《语言与计算机》
2、linux操作系统
要了解操作系统体系结构、任务调度、内存管理、存储管理、命令解释、界面管理、文件管理等基本内容。
Linux基础
Linux系统管理
基础网络服务
系统管理进阶及运维自动化工具
推荐学习资源:
Linux 基金会关于 Linux 的介绍、《Linux 介绍》、《Linux 新手终极指南》、《Linux 基础》、《Linux 命令行》
3、javaSE
Java经过二十多年的发展,目前应用十分广泛,具有健全的生态体系,网络上的学习资源很多,且相当一部分系统清楚。Java和大数据有直接的关系,学习大数据之前,需要先学习这门编程语言,尤其是大数据开发方向。
变量、循环、if等等;面向对象;I/O输入和输出(HDFS会用到);反射、泛型,MR查询等
JavaSE书籍推荐:
《Java编程思想》、《Java核心技术卷一》、《Effective Java》、《深入理解Java虚拟机》、《Java8实战》、《Java高并发编程实战》
『肆』 大数据分析是指的什么
大数据分析是指对规模巨大的数据进行分析。对大数据bigdata进行采集、清洗、挖掘、分析等,大数据主要有数据采集、数据存储、数据管理和数据分析与挖掘技术等。
大数据分析目标:语义引擎处理大数据的时候,经常会使用很多时间和花费,所以每次生成的报告后,应该支持语音引擎功能。产生可视化报告,便于人工分析通过软件,对大量的数据进行处理,将结果可视化。通过大数据分析算法,应该对于数据进行一定的推断,这样的数据才更有指导性。
统计分析:假设检验、显著性检验、差异分析、相关分析、多元回归分析、逐步回归、回归预测与残差分析等。
数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)。建立模型,采集数据可以通过网络爬虫,或者历年的数据资料,建立对应的数据挖掘模型,然后采集数据,获取到大量的原始数据。导入并准备数据在通过工具或者脚本,将原始转换成可以处理的数据,
大数据分析算法:机器学习通过使用机器学习的方法,处理采集到的数据。根据具体的问题来定。这里的方法就特别多。
『伍』 大数据分析应该掌握哪些基础知识呢
前言,学大数据要先换电脑:
保证电脑4核8G内存64位操作系统,尽量有ssd做系统盘,否则卡到你丧失信心。硬盘越大越好。
1,语言要求
java刚入门的时候要求javase。
scala是学习spark要用的基本使用即可。
后期深入要求:
java NIO,netty,多线程,ClassLoader,jvm底层及调优等,rpc。
2,操作系统要求
linux 基本的shell脚本的使用。
crontab的使用,最多。
cpu,内存,网络,磁盘等瓶颈分析及状态查看的工具。
scp,ssh,hosts的配置使用。
telnet,ping等网络排查命令的使用
3,sql基本使用
sql是基础,hive,sparksql等都需要用到,况且大部分企业也还是以数据仓库为中心,少不了sql。
sql统计,排序,join,group等,然后就是sql语句调优,表设计等。
4,大数据基本了解
Zookeeper,hadoop,hbase,hive,sqoop,flume,kafka,spark,storm等这些框架的作用及基本环境的搭建,要熟练,要会运维,瓶颈分析。
5,maprece及相关框架hive,sqoop
深入了解maprece的核心思想。尤其是shuffle,join,文件输入格式,map数目,rece数目,调优等。
6,hive和hbase等仓库
hive和hbase基本是大数据仓库的标配。要回用,懂调优,故障排查。
hbase看浪尖hbase系列文章。hive后期更新。
7,消息队列的使用
kafka基本概念,使用,瓶颈分析。看浪尖kafka系列文章。
8,实时处理系统
storm和spark Streaming
9,spark core和sparksql
spark用于离线分析的两个重要功能。
10,最终方向决策
a),运维。(精通整套系统及故障排查,会写运维脚本啥的。)
b),数据分析。(算法精通)
c),平台开发。(源码精通)
自学还是培训?
无基础的同学,培训之前先搞到视频通学一遍,防止盲目培训跟不上讲师节奏,浪费时间,精力,金钱。
有基础的尽量搞点视频学基础,然后跟群里大牛交流,前提是人家愿意,
想办法跟大牛做朋友才是王道。
『陆』 如何让Hadoop结合R语言做大数据分析
R语言和Hadoop让我们体会到了,两种技术在各自领域的强大。很多开发人员在计算机的角度,都会提出下面2个问题。问题1: Hadoop的家族如此之强大,为什么还要结合R语言?x0dx0a问题2: Mahout同样可以做数据挖掘和机器学习,和R语言的区别是什么?下面我尝试着做一个解答:问题1: Hadoop的家族如此之强大,为什么还要结合R语言?x0dx0ax0dx0aa. Hadoop家族的强大之处,在于对大数据的处理,让原来的不可能(TB,PB数据量计算),成为了可能。x0dx0ab. R语言的强大之处,在于统计分析,在没有Hadoop之前,我们对于大数据的处理,要取样本,假设检验,做回归,长久以来R语言都是统计学家专属的工具。x0dx0ac. 从a和b两点,我们可以看出,hadoop重点是全量数据分析,而R语言重点是样本数据分析。 两种技术放在一起,刚好是最长补短!x0dx0ad. 模拟场景:对1PB的新闻网站访问日志做分析,预测未来流量变化x0dx0ad1:用R语言,通过分析少量数据,对业务目标建回归建模,并定义指标d2:用Hadoop从海量日志数据中,提取指标数据d3:用R语言模型,对指标数据进行测试和调优d4:用Hadoop分步式算法,重写R语言的模型,部署上线这个场景中,R和Hadoop分别都起着非常重要的作用。以计算机开发人员的思路,所有有事情都用Hadoop去做,没有数据建模和证明,”预测的结果”一定是有问题的。以统计人员的思路,所有的事情都用R去做,以抽样方式,得到的“预测的结果”也一定是有问题的。所以让二者结合,是产界业的必然的导向,也是产界业和学术界的交集,同时也为交叉学科的人才提供了无限广阔的想象空间。问题2: Mahout同样可以做数据挖掘和机器学习,和R语言的区别是什么?x0dx0ax0dx0aa. Mahout是基于Hadoop的数据挖掘和机器学习的算法框架,Mahout的重点同样是解决大数据的计算的问题。x0dx0ab. Mahout目前已支持的算法包括,协同过滤,推荐算法,聚类算法,分类算法,LDA, 朴素bayes,随机森林。上面的算法中,大部分都是距离的算法,可以通过矩阵分解后,充分利用MapRece的并行计算框架,高效地完成计算任务。x0dx0ac. Mahout的空白点,还有很多的数据挖掘算法,很难实现MapRece并行化。Mahout的现有模型,都是通用模型,直接用到的项目中,计算结果只会比随机结果好一点点。Mahout二次开发,要求有深厚的JAVA和Hadoop的技术基础,最好兼有 “线性代数”,“概率统计”,“算法导论” 等的基础知识。所以想玩转Mahout真的不是一件容易的事情。x0dx0ad. R语言同样提供了Mahout支持的约大多数算法(除专有算法),并且还支持大量的Mahout不支持的算法,算法的增长速度比mahout快N倍。并且开发简单,参数配置灵活,对小型数据集运算速度非常快。x0dx0a虽然,Mahout同样可以做数据挖掘和机器学习,但是和R语言的擅长领域并不重合。集百家之长,在适合的领域选择合适的技术,才能真正地“保质保量”做软件。x0dx0ax0dx0a如何让Hadoop结合R语言?x0dx0ax0dx0a从上一节我们看到,Hadoop和R语言是可以互补的,但所介绍的场景都是Hadoop和R语言的分别处理各自的数据。一旦市场有需求,自然会有商家填补这个空白。x0dx0ax0dx0a1). RHadoopx0dx0ax0dx0aRHadoop是一款Hadoop和R语言的结合的产品,由RevolutionAnalytics公司开发,并将代码开源到github社区上面。RHadoop包含三个R包 (rmr,rhdfs,rhbase),分别是对应Hadoop系统架构中的,MapRece, HDFS, HBase 三个部分。x0dx0ax0dx0a2). RHiveRHive是一款通过R语言直接访问Hive的工具包,是由NexR一个韩国公司研发的。x0dx0ax0dx0a3). 重写Mahout用R语言重写Mahout的实现也是一种结合的思路,我也做过相关的尝试。x0dx0ax0dx0a4).Hadoop调用Rx0dx0ax0dx0a上面说的都是R如何调用Hadoop,当然我们也可以反相操作,打通JAVA和R的连接通道,让Hadoop调用R的函数。但是,这部分还没有商家做出成形的产品。x0dx0ax0dx0a5. R和Hadoop在实际中的案例x0dx0ax0dx0aR和Hadoop的结合,技术门槛还是有点高的。对于一个人来说,不仅要掌握Linux, Java, Hadoop, R的技术,还要具备 软件开发,算法,概率统计,线性代数,数据可视化,行业背景 的一些基本素质。在公司部署这套环境,同样需要多个部门,多种人才的的配合。Hadoop运维,Hadoop算法研发,R语言建模,R语言MapRece化,软件开发,测试等等。所以,这样的案例并不太多。
『柒』 在大数据环境下,非参数方法有意义吗
有意义。在大数据环境下,非参数方法可以咐判祥不依赖总体分布的衡搏具体形式,不是对分布参数进冲陵行估计或者假设检验,而是对总体的分布位置/形状进行估计或者假设检验。
『捌』 # 大数据的统计学基础
概率论是统计学的基础,统计学冲锋在应用第一线,概率论提供武器。
我们在学习R的时候,会做过假设检验。做假设检验的时候会有一个基本的技术就是构造出统计量,这些统计量要满足一定的概率密度分布,然后我算这个统计量的值,来判定它在这个密度分布里面,分布在哪个区域,出现在这个区域内的可能性有多高,如果可能性太低,我们就判定我们的假设检验是不成立的。 那么如何构造这个统计量,这是一个很有技术的东西,同时也是由数学家来完成的,那这个工作就是概率论所作的事情。
古典概率论: 扔硬币,正面1/2反面1/2,扔的次数之间是相互独立的。 但是这个等概率事件确实是一个不是很严谨的事情。仔细想一想其实是很有趣的。 柯尔莫哥洛夫创建现代概率论 他将概率论提出了许多公理,因此将概率论变成了非常严谨的一门学科。
学会和运用概率,会使人变得聪明,决策更准确。
统计学 : 统计学可以分为:描述统计学与推断统计学 描述统计学 :使用特定的数字或者图表来体现数据的集中程度和离散程度。比如:每次考试算的平均分,最高分,各个分数段的人数分布等,也是属于描述统计学的范围。 推断统计学 :根据样本数据推断总体数据特征。比如:产品质量检查,一般采用抽样检测,根据所抽样本的质量合格率作为总体的质量合格率的一个估计。 统计学的应用十分广泛,可以说,只要有数据,就有统计学的用武之地。目前比较热门的应用:经济学,医学,心理学,IT行业大数据方面等。
例如:对于 1 2 3 4 5 这组数据,你会使用哪个数字作为代表呢? 答案是3。 因为3是这组数据的中心。 对于一组数据,如果只容许使用一个数字去代表这组数据,那么这个数字应该如何选择???-----选择数据的中心,即反映数据集中趋势的统计量。 集中趋势:在统计学里面的意思是任意种数据向 中心值靠拢 的程度。它可以反映出数据中心点所在的位置。 我们经常用到的能够反映出集中趋势的统计量: 均值:算数平均数,描述 平均水平 。 中位数:将数据按大小排列后位于正中间的数描述,描述 中等水平 。 众数:数据种出现最多的数,描述 一般水平 。
均值:算数平均数 例如:某次数学考试种,小组A与小组B的成员成绩分别如下: A:70,85,62,98,92 B:82,87,95,80,83 分别求出两组的平均数,并比较两组的成绩。
组B的平均分比组A的高,就是组B的总体成绩比组A高。
中位数:将数据按大小顺序(从大到小或者从小到大)排列后处于 中间位置 的数。 例如:58,32,46,92,73,88,23 1.先排序:23,32,46,58,73,88,92 2.找出中间位置的数23,32,46, 58 ,73,88,92 如果数据中是偶数个数,那么结果会发生什么改变? 例如:58,32,46,92,73,88,23,63 1.先排序:23,32,46,58,63,73,88,92 2.找出处于中间位置的数:23,32,46, 58 , 63 ,73,88,92 3.若处于中间位置的数据有两个(也就是数据的总个数为偶数时),中位数为中间两个数的算数平均数:(58+63)/2=60.5 在原数据中,四个数字比60.5小,四个数字比60.5大。
众数:数据中出现次数最多的数(所占比例最大的数) 一组数据中,可能会存在多个众数,也可能不存在众数。 1 2 2 3 3 中,众数是2 和 3 1 2 3 4 5 中,没有众数 1 1 2 2 3 3 4 4 中,也没有众数 只要出现的频率是一样的,那么就不存在众数 众数不仅适用于数值型数据,对于非数值型数据也同样适合 {苹果,苹果,香蕉,橙子,橙子,橙子,橙子,桃子}这一组数据,没有什么均值中位数科研,但是存在众数---橙子。 但是在R语言里面没有直接计算众数的内置函数,不过可以通过统计数据出现的频率变相的去求众数。
下面比较一下均值,中位数,众数三个统计量有什么优点和缺点 [图片上传失败...(image-57f18-1586015539906)]
例子: 两个公司的员工及薪资构成如下: A:经理1名,月薪100000;高级员工15名,月薪10000;普通员工20名,月薪7500 B:经理1名,月薪20000;高级员工20名,月薪11000;普通员工15名,月薪9000 请比较两家公司的薪资水平。若只考虑薪资,你会选择哪一家公司?
A 7500 B 11000
A 7500 B 11000</pre>
若从均值的角度考虑,明显地A公司的平均月薪比B公司的高,但是A公司存在一个极端值,大大地拉高了A公司的均值,这时只从均值考虑明显不太科学。从中位数和众数来看,B公司的薪资水平比较高,若是一般员工,选择B公司显得更加合理。
比较下面两组数据: A: 1 2 5 8 9 B: 3 4 5 6 7 两组数据的均值都是5,但是你可以看出B组的数据与5更加接近。但是有描述集中趋势的统计量不够,需要有描述数据的离散程度的统计量。
极差 :最大值 - 最小值,简单地描述数据的范围大小。 A: 9 - 1 = 8 B: 7 - 3 = 4 同样的5个数,A的极差比B的极差要大,所以也比B的要分散 但是只用极差这个衡量离散程度也存在不足 比如: A: 1 2 5 8 9 B: 1 4 5 6 9 两组数据虽然极差都是相同的,但是B组数据整体分布上更加靠近5。
方差 :在统计学上,更常地是使用方差来描述数据的 离散程度 :数据离中心越远,越离散。 方差越大,就代表这组数据越离散。
对于前面的数据 1 2 5 8 9,前面求的一组数据的方差是12.5。 将12.5于原始数据进行比较,可以看出12.5比原数据都大,这是否就能说明这一组数据十分离散呢? 其实方差与元数据的单位是不一样的,这样比较也是毫无意义的。如果原始数据的单位是m的话,那么方差的单位就是m^2 为了保持单位的一致性,我们引入一个新的统计量:标准差 标准差:sqrt(var()), 有效地避免了因为单位的平方而引起的度量问题。 与方差一样,标准差的值越大,表示数据越分散。 A: 1 2 5 8 9 B: 3 4 5 6 7
某班40个学生某次数学检测的成绩如下:
63,84,91,53,69,81,61,69,78,75,81,67,76,81,79,94,61,69,89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77 对于这一组数字,你能看出什么呢? 或许先算一算平均值,中位数,或者众数
或许算一算这组数据的方差或者标准差
但是即便是统计了上述的数据,我们还是对全班同学的分数分布,没有一个全面的了解。 原始数据太杂乱无章,难以看出规律性,只依赖数字来描述集中趋势与离散程度让人难以对数据产生直观地印象,这是我们就需要用到图标来展示这些数字。
1.找出上面数据中的最大值和最小是,确定数据的范围。
将成绩排序后很容易得到最大值是95,最小值是53
2.整理数据,将数据按照成绩分为几个组。成绩按照一般50-60,60-70,70-80,80-90,90-100这几个分段来划分(一般都分为5-10组),然后统计这几个分段内部的频数。 可以看到80-90这个分段的人数是最多的。 注意在绘制直方图的时候,一定要知道是左闭右开还是左开右闭。 因为这个可能会直接影响到频数的统计。
上图就是:频数直方图。频数作为纵坐标,成绩作为横坐标。通过直方图我们可以对成绩有一个非常直观的印象。 除了频数直方图,还有一种直方图:频率直方图。与频数直方图相比,频率直方图的纵坐标有所改变,使用了频率/组距。 频率=频数/总数;组距就是分组的极差,这里的组距是10.
除了直方图外,画一个简单的箱线图也可以大致看出数据的分布。
想要看懂箱线图,必须要学习一些箱线图专业的名词: 下四分位数:Q1,将所有的数据按照从小到大的顺序排序,排在第25%位置的数字。 上四分位数:Q3,将所有的数据按照从小到大的顺序排序,排在第75%位置的数字。 四分距:IQR,等于Q3-Q1,衡量数据离散程度的一个统计量。 异常点:小于Q1-1.5IQR或者大于Q3+1.5IQR的值。 (注意是1.5倍的IQR) 上边缘:除异常点以外的数据中的最大值 下边缘:除异常点以外的数据种的最小值
茎叶图可以在保留全部数据信息的情况下,直观地显示出数据的分布情况。 左边是茎,右边是叶。 若将茎叶图旋转90度,则可以得到一个类似于直方图的图。跟直方图一样,也可以直观地知道数据的分布情况。 并且可以保留所有的数据信息。 茎叶图的画法也非常的简单: 将数据分为茎和叶两部分,这里的茎是指十位上的数字,叶是指给上的数字。 将茎部份(十位)从小到大,从上到下写出来 相对于各自的茎,将同一茎(十位)从小到大,从左往右写出来。
但是茎叶图也有缺陷,因为百位和十位同时画在茎叶图的时候,容易区分不开。同时也可能出现却叶的情况。
以时间作为横坐标,变量作为纵坐标,反映变量随时间推移的变化趋势。
显示一段时间内的数据变化或者显示各项之间的比较情况。
根据各项所占百分比决定在饼图中扇形的面积。简单易懂,通俗明了。可以更加形象地看出各个项目所占的比例大小。 适当的运用一些统计图表,可以更生动形象的说明,不再只是纯数字的枯燥描述。
学习链接: https://www.bilibili.com/video/BV1Ut411r7RG
『玖』 如何进行大数据分析及处理
1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计 学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。
另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如 果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。
语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。
数据处理: 自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。
处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解也称为计算语言学。
一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析: 假设检验、显著性检验、差异分析、相关分析、T检验、 方差分析 、 卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、 因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘: 分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。
大数据的处理
1. 大数据处理之一:采集
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。
比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户 来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。
并且如何在这些数据库之间 进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这 些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。
也有一些用户会在导入时使 用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通 的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于 MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数 据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。
比较典型算法有用于聚类的Kmeans、用于 统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。
该过程的特点和挑战主要是用于挖掘的算法很复杂,并 且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
『拾』 深入解读SPC在质量分析中的应用,附demo演示
统计工具在质量控制和生产质量分析中有广泛的用途。通过统计工具,能深入分析质量现象,得到很多有用的信息。图表有着很直观的表达能力,能简洁直观的表达意思,也容易得到共识灶镇岩。
本文将为大家演示SPC统计工具,在制造业质量分析中隐御的重要应用:
一、质量异常追溯分析
在对不良品的生产质旅并量分析,要找到质量异常产品在生产过程中各工序的生产时间、工序的工艺参数,机台记录的备注(生产异常说明)、交接班的备注(生产异常说明)、各工序的评审记录、品检信息、工器具信息、辅材信息、停机记录、班厂量、设备运维状况等信息,并判断是否出现异常。
二、质量缺陷关键因子及根因分析
分析产线上的工艺参数和传感器数据(一共大约400个左右)与产出产品质量的关联影响关系,找出关键影响参数(特征选取),然后结合相应的标签数据作为数据集,通过多种模型训练(包括LDA+Knn分类器、人工神经网络ANN、SVM等),最后使用“留一法交叉验证”评估验证集上的准确率,最终构建相应产品的质量缺陷及优化模型。
三、SPC与大数据质量分析--相关性分析
系统具备分析因子间关联关系的重要统计方法,相关性分析,它通过相关系数来度量各因素间的关联关系方向及强度,主要实现如下功能:
1、找出对过程输出(因变量y)有影响的因子(自变量x);
2、分析对的影响重要程度及影响方向;
3、相关系数r及其解释。
四、SPC与生产质量分析--方差分析
具有强大方差分析能力,并能生成专业化的、易于解读的方差分析报告。支持的方差分析模型有:单因子方差分析、多因素方差分析设计、混合效应模型、分级嵌套模型、失衡数据。
五、SPC与质量大数据分析--假设检验
假设检验在质量可靠性数据分析中的主要作用如下:
1、改善效果的验证;
2、潜在原因的确认;
3、不同过程的对比;
4、不同供应商的质量可靠性水平的对比等。
系统支持常用的统计假设检验方法,包括参数方法与非参数方法,如:单样本均值检验、双样本均值检验、配对样本均值检验、方差检验、比例检验等等。