导航:首页 > 网络数据 > 大数据借力

大数据借力

发布时间:2023-03-21 19:39:03

1. 互联网金融借力大数据玩转风险控制

互联网金融借力大数据玩转风险控制
近两年,金融行业内竞争在网络平台上全面展开。大数据时代,这种竞争说到底就是“数据为王”。为什么大数据在互联网金融领域扮演着如此重要的角色?业内人士认为,“互联网+金融”具有共享性,提供了“大数据”和更充分的信息,即通过更完善的价格信号,帮助协调不同经济部门非集中化决策。
信息占据核心地位
信息占金融市场核心地位。金融市场是进行资本配置和监管的一种制度安排,而资本配置及其监管从本质上来说是信息问题。因此,金融市场即进行信息的生产、传递、扩散和利用的市场。
在“互联网+金融”时代,信息的传递和扩散更加便捷,信息的生产成本更为低廉,信息的利用渠道和方式也愈发多元化,从而越来越容易实现信息共享。这种共享不仅包含着各类不同金融机构之间的信息共享,而且包含着金融机构与其他行业之间的信息共享、金融机构和监管机构及企业间的共享等。
信息共享并由此形成的“大数据”,降低了单个金融机构获得信息、甄别信息的成本,提高了信息利用的效率,使信息的生产和传播充分而顺畅,从而极大地降低了信息的不完备和不对称程度。“大数据”不仅使投资者可以获取各种投资品种的价格及影响这些价格的因素的信息,而且筹资者也能获取不同的融资方式的成本的信息,管理部门能够获取金融交易是否正常进行、各种规则是否得到遵守的信息,使金融体系的不同参与者都能作出各自的决策。
正确看待大数据征信
互联网金融的发展带火了P2P市场,也折射出风控体系建设的缺失。P2P跑路现象主要原因就是风控缺失,体现在“重担保、轻风控”和“重线上风控、轻线下调查”。
当前,多数P2P平台“重担保、轻风控”的思路是不正确的,担保是外界因素,风控是内在因素,一味强调用外在的因素而不解决自身的问题,不可能实现良好运转。互联网金融的风险管理不在规则之中,而在互联网和金融双重叠加的对象之中,其最基本的风险边界应是保证投资者的资产安全。守住了安全底线,这些平台才能健康成长。所以,P2P平台根本的安全底线还在于加强自身对象的风控。
另一方面,风控分为贷前、贷中、贷后风控。目前有些P2P平台从最开始的贷前风控就缺失,贷前风控最重要的是要实现“线下调查”,即通过线下实地走访和考察,对客户信息进行交叉验证和真实性验证,包括对借款人银行流水、征信报告、财产证明、工作证明等的审查,通过审查评估借款人还款能力。这些线下风控是不可或缺的,不能迷信或过分夸大“互联网+”的效率和普惠,线上的大数据和线下的实地考察必须结合。
基于大数据、个人征信的风控手段已有很多,大数据征信是实现P2P风控的创新路径。但是也需要正确看待,既不能要求大数据征信一步登天,一下子带来质的改变;也不能风声鹤唳,一有创新就以各种名义围追堵截,而需要给予更多理性的包容和试错的空间,在渐进创新中不断完善大数据征信体系。
目前存在的困难:
一是数据的虚拟性和“信息噪音”。虽然大数据及其分析提高了信息获取的数量和精度,但由于虚拟世界中信息大爆炸造成的“信息噪音”,导致交易者身份、交易真实性、信用评价的验证难度更大,反而可能在另一层面更强化信息不对称程度,也更容易存在信息垄断。
二是信用数据关联的不确定性。信用数据是多样化的,包括朋友信用、爱情信用、事业信用等。所谓忠孝不能两全,一个对朋友忠诚的人不一定对事业忠诚。对事业或工作忠诚,也不一定能说明他的金融信用好。大数据通过日常信用来判断金融信用会出现偏差。
三是“数据孤岛”不能实现数据共享。互联网平台具有强烈的规模效应,平台越大越容易产生数据,越容易使用数据。例如,阿里小贷主要通过卖家累计的海量交易信息及资金流水,也可通过大数据的分析在几秒内完成对商家的授信。但是,阿里小贷的数据,不可能提供给其他公司使用。因此,下一步应推动数据的整合和共享。
玩转大数据风控系统
传统的风控模式更多关注的是静态风险,对风险进行预判。而P2P市场让越来越多的传统金融企业转型互联网金融,大数据技术要对风险进行实时把握,要做到两点:大数据和云计算结合以及大数据的流处理模式。
大数据和云计算结合,实现了实时监控。云计算为大数据实时把握提供了硬件基础,可以实现秒级的数据采集、分析和挖掘。流处理模式实现了静态风险和动态风险的有效结合。一种人习惯先把信息存下来,然后一次性地处理掉,也叫批处理,如定期处理过期邮件;另一种人喜欢信息来一点处理一点,无用信息直接过滤掉,有用的存起来。后者就是流处理的基本范式,实现了实时监控。
怎样才能针对企业自身的发展和业务方向,玩转大数据风控系统,使其发挥到最大作用?我认为,要关注“大众数据”。要意识到互联网“长尾效应”的作用,互联网环境下“得大众者得天下”,关注大众数据,要了解大众心态,在归属感、成就感和参与感上下功夫。
还要将业务驱动转向数据驱动。理解数据的价值,通过数据处理创造商业价值,看似零散的数据背后寻找消费逻辑。此外,还应改造公司数据相关的IT部门,将其从“成本中心”转化为“利润中心”,充分认识大数据是核心竞争力,重视其挖掘和预测的能力。
当然,实时大数据风控还需要很多方面的探索,如何借助大数据建立全生命风控体系,形成贷前、贷中、贷后流程管理系统和决策系统。另外,还需加强信用数据相关性研究和量化模型的开发,金融信用(主要指借贷数据)可获得性比日常信用数据难,以金融信用为中心,通过日常信用,构建个人信用评估体系。

2. 中小企业大数据应用之道:思维在借力

中小企业大数据应用之道:思维在借力

大数据思维

要想大数据落地,特别是中小企业,首先得有大数据思维,否则大数据的案例不能直接借鉴,自己摸索又怕不专业、坑太多。

何谓大数据思维,个人认为不是什么决策都参考数据,也不是什么问题都要足够精准,更不是我要花巨资打造大数据系统或平台。个人以为是“数据借力”

为啥这么说呢,因为任何企业都有不足的地方,只是供需平衡问题,导致有的方强势,有的方弱势退让,就如BAT的大数据,如果大家都不用他们的大数据,市值马上爆降,反之我们也需要巨头的超级大数据,其核心无非是有需求的更迫切,所以你会显得弱势些。

如何借力大数据

做任何事情都要考虑成本,假设你要去搜集这些大数据然后自己用,得养一个团队来服务,成本太高。而借用,是一个非常好的,特别适合中小微企业的方法,大概有这么几种借力方法:

1. 你花钱买大数据服务,例如搜索关键字投放,投放DSP广告等。这种就要参考行业内是否有较多的成功案例,如果有,就尝试,没有什么成功案例的,肯定有一些不容易迈过去的湾,例如用户行为很难定位和你的行业匹配。

2. 用虚拟人脉换取,就是自媒体的操作方式,除了最早的互粉、互相介绍外,还有一种模式就是自媒体的人脉互相交换,各取所需,可以2个方式,一是大号带小号方式,一是同等级号的资源互换。注意,交换的时候最好你们是不同行业领域,效果更好

3. 其他借力方式,例如通过不断转发优质内容来获得自己的粉丝,或者通过线下人脉,找到优质的高端群体用户,虽然人数少,但你通过收集其详细资料、行为爱好,然后存储到自己的系统,就是优质的大数据资源。

总结

如果仅仅是口头上的大数据思维,做营销只借概念,没借到数据,很可能就做亏本的买卖,做大数据应用和创业一样,先去掉不可靠谱的Idea尤为重要。

以上是小编为大家分享的关于中小企业大数据应用之道:思维在借力的相关内容,更多信息可以关注环球青藤分享更多干货

3. 大数据如何助力人力资源管理

大数据如何助力人力资源管理

挖掘数据价值的利器

“啤酒与尿布”的故事,在这个时代已经人尽皆知。

作为最经典的营销案例之一,“啤酒”和“尿布”这两个看上去并无关系的商品,摆放在一起进行销售却获得了很好的收益,其奥秘就在于巧妙地利用了商品之间的关联性。

而如今能够有效挖掘这种关联性及其价值的工具,就是大数据。

马云说:“当我们还没有弄清什么是个人计算机的时候,互联网就到来了;当我们还没有弄清什么是互联网的时候,大数据时代已经到来了。”

大数据时代,各行各业都在经受着大数据浪潮的洗礼,他们开始重新审视自己的行业定位,将数据资源和数据价值逐渐提升到核心战略之中,唯恐落于时代的后端,人力资源行业也不例外。

在9月16日北京才源国际文化交流公司举办的“大数据应用研讨会上”,中国人事科学研究院研究员王通讯教授、美国摩根大通副总裁李翔博士、北京才源国际文化交流有限公司总经理谭灿玉女士等具有丰富大数据经验的专家学者出席了此次会议,就大数据在人力资源方面如何进行建设的话题为与会嘉宾进行了分享。

大数据人力资源管理

作为中央人才工作协调小组《国家中长期人才规划纲要(2010-2020年)》专家顾问、中国人才研究会副会长,王通讯教授对9月5日国家发布的《促进大数据发展行动纲要》进行了深度解读。

王教授认为,大数据是以容量大、类型多、存取速度快、应用价值高为主要特点的数据集合,具有充足、抓取力强、刷新及时的神通力量,本质是用来洞察关系、需求和趋势,是人类认识新世界的工具。所谓“大数据促进热力资源管理升级”,就是向精细化、及时化、人性化、智能化方向转型升级。

王教授表示,大数据人力资源管理大致可从以下7个环节来解读:

1. 大数据育人

基于互联网、大数据、云计算的人才培育,能够大大提升人才培育的质量和效率,而且人们可以在任何时间、任何地点、随时进行学习活动。

大数据育人,可以利用云课本、云学堂、云考试等。北大通过基于互联网与大数据的幕课,使北大对社会人才的培养贡献翻了一番,两千多年前孔夫子所谓的“有教无类”,到了今天真正得以实现。

2.大数据招聘

以往由于缺少对招聘对象的准确描述,对合适的人选到底是谁很难把握;再加上不公开透明,很容易产生不公平、不公正的招聘,乃至于“萝卜招聘”。在大数据方法的支持下,国外已经改进了这一过程,明显提升招聘质量。

招聘者可以从各个维度给出求职者一个分值,如职业背景、专业影响力、能力状况、性格特征、职业倾向等,这样的好处在于,以数据作为衡量人才的前提,以模型作为评价人才的标准,能够迅速有效地进行筛选,保证招聘质量。

3.大数据管人

大数据管人能做到精细而准确。企业员工的日常管理,比如考勤状况、勤奋状况,都可以借助大数据进行。

4.大数据用人

每家企业都会产生大量的数据踪迹,通过分析员工之间的数据沟通,不仅能够了解员工的个人表现,还可以掌握员工的合作状况,从而能够采取有效地措施提高企业内团队的合作效率,甚至在团队组成之前就能预测出队员间的合作情况以及可能出现的问题,让公司长期收益。

5.大数据考核

考核是人力资源管理的重要环节。在大数据思想的指导下,组织可以通过软件记录员工每天的工作量、具体工作内容、工作业绩,仁厚使用云计算处理,分析这些数据,了解到员工的工作态度、忠诚度、进取心等等。

6、大数据薪酬

为了获得国内外同行之间的竞争力,需要参考大数据提供的数据来调控企业薪酬水准。云计算技术使你能够快速解决此类问题。

7、大数据评测

大数据能够评测人才,这个一个新的思路。

王通讯教授认为,在大数据时代来到之前,没有人能把一个人的“社会关系综合”搞清楚,但如今社会上已经出现“搜索引擎”,信息仓库里的信息越来越多,不良分子难以遁形藏身,而优秀的人才也能依次进行挖掘,因此他认为大数据方法是人才研究的利器。

此外,他还特别向与会者解读了纲要传达了什么:

(1)大数据成为推动经济发展转型的新动力;

(2)大数据成为提升政府治理能力的新途径;

(3)大数据能够建设以人为本、惠及全民的民生服务新体系;

(4)大数据应率先在就业保障、教育培训领域推广应用,激发大众创业、万众创新;

(5)大数据发展,要求加强信息采集、保存和分析建设能力;

(6)大数据能够推动政府治理精准化;

(7)政府要与社会合作开发大数据试点,包括劳动就业与收入分配领域;

(8)发展大数据科学,积极培育大数据技术与应用人才。

《纲要》明确要求抓紧建立七个方面政策机制:

1、建立国家大数据发展和应用统筹协调机制。

2、加快法规制度建设,积极研究数据开发、保护等方面制度。

3、健全市场发展机制,鼓励政府与企业、社会机构开展合作。

4、建立标准规范体系,积极参与相关国际标准制定工作。

5、加大财政金融支持,推动建设一批国际领先的重大示范工程。

6、加强专业人才培养,建立健全多层次、多类型的大数据人才培养体系。

7、促进国际交流合作,建设完善国际合作机制。

从商业视角看大数据

在此次上,美国摩根大通副总裁李翔以“从商业视角看大数据”为主题对大数据的特征、技术基础、应用心得进行了诠释。

李翔认为,大数据仍面临不堪重负的任务,需要正确的人来解决问题。日益增加的成本也让人无法做到捕捉100%的数据。除此之外,隐私权的问题和数据质量不均等都是目前大数据缩面临的困难。

当然,大数据的的益处也显而易见,它让企业拥有更好的竞争优势,做出趋势预估和预测,从而做出更好的商业决策。有效的营销能让顾客满意度增加,大数据也能增加创新和下一代产品的开发。

大数据助力人才培养

作为一家与国家相关部委研究机构及高校合作开展项目的专业机构,北京才源国际文化交流有限公司主要业务包括大数据相关的培训、合作、咨询等,也会进行礼仪项目的培训与企业管理咨询。

对于此次会议的圆满举办,北京才源国际文化交流有限公司总经理谭灿玉给予了高度肯定,并表示在各位专家学者的通力合作下,公司将借力政策东风,为大数据产业健康发展贡献出自己的力量,为产业培养和输送更多优良人才。

以上是小编为大家分享的关于大数据如何助力人力资源管理的相关内容,更多信息可以关注环球青藤分享更多干货

4. 大数据对网络营销的影响

大数据对网络营销的影响

在这股大数据时代背景下,消费者行为的变迁也越来越趋于不确定,移动互联网更是加速了这种不确定因素,那么,大数据对网络营销有何影响呢?

大数据对网络营销的影响 篇1

[摘要] 互联网时代的发展推动了数据和信息加速传播。大数据在这种大背景下应运而生,并逐步渗入到各行各业。而互联网企业通过大数据,促进信息的实效转化,为网络营销的精准决策和整个营销行业的发展提供了数据来源与支撑。文章主要通过阐述了大数据的定义、大数据的处理,进而总结大数据下网络营销管理优化措施及有效的网络营销策略,力求为各互联网企业的网络营销决策提供参考与借鉴。

[关键词] 大数据;网络营销;互联网

1前言

21世纪是一个信息大爆炸的时代,各种各样杂乱无章数据的出现,一方面给企业以及人们的日常生活造成了一定程度的困扰;另一方面人们也想从这繁杂的数据中找出规律,发现商机,从而抓住商机,开拓新的市场。大数据的出现恰恰能妥善地解决这一问题,大数据分析技术是通过对海量的数据信息进行系统的筛选与分析,力求寻求其中的规律,从而为企业的经营决策提供有力依据与支撑,使企业的经营决策变得更加准确且高效。现今,社会上人们之间的交流越来越密切,科技在高速发展,大数据就应运而生。阿里巴巴创办人马云曾经在演讲中提到,未来的时代将是DT的时代,DT即DataTechnology数据科技,对大数据的分析是阿里巴巴的重点工作之一。[1]互联网在改变人们生活方式的同时也在改变企业的运作模式,这是信息技术发展的必然。然而随着大数据的来临,网络营销也在不断地进行营销模式与管理模式的创新,试图寻求企业与消费者的利益最大化。现在越来越多的企业通过互联网平台抓取到的消费者的各种数据进行分析整理,获取消费者的消费趋向及特征,以此为依据来制定相应营销策略,不仅可以提高市场决策的准确性,还能大大缩短市场调查与决策分析的时间,提高了企业的经济效益,促进企业各个环节的高效运作。因此大数据与网络营销的结合将是必然的,它将为企业开创全新局面,带来前所未有的.机遇,同时也带来了挑战。

2大数据概述

麦肯锡全球研究对大数据的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合。[2]大数据技术在互联网时代的战略意义,不是在于掌握海量的数据信息,而在于对收集到的数据进行高度专业化处理,力求找出其中的规律与价值,为企业经营决策服务。[3]简而言之,大数据技术关键在于提高对数据的“加工处理能力”,通过“高加工”实现数据的“高增值”。它具有以下四大特征:分别为海量的数据规模、多样的数据类型、快速的数据流转和价值密度低,具体分析如下:

(1)海量的数据。从互联网或传统渠道收集到的海量数据,涉及面更广、种类繁多,只有运用大数据技术对数据进行分类,才能够满足企业的需求。

(2)多样的数据类型。大数据容纳的信息量大,信息种类也繁多,容量也比传统的数据仓库更大,通常有用户的查询信息、浏览信息、消费记录、消费周期等数据。

(3)快速的数据流转。大数据技术要求在短时间内对海量的数据进行高速处理,对庞大的数据进行分析、处理,从中找出有价值的数据资料,因此对数据的处理速度有很高的要求。(4)商业价值高,价值密度低。大数据需要从海量的数据当中提取出有价值的信息,对技术的要求很高,往往数据的价值密度低而商业价值高。

3大数据处理与网络营销

3.1大数据时代下的网络营销

网络营销是借助网络、通信和数字媒体技术实现营销目标的商务活动。其中可以利用多种手段,如微信营销、微博及博客营销、E-mail营销、视频营销等。大数据技术为网络营销带来了技术创新,也为企业带来了前所未有的机遇与挑战。网络营销的发展主要依赖于对消费者消费信息的了解,掌握了消费者消费信息相关的数据,就能够以此来制定合理化的营销策略,能够提前预测市场的发展方向,提高企业的生产效率,降低了企业的运营成本。同时也为企业开发新产品提供数据来源与支撑,有利于提高企业产品在市场的占有率。

3.2网络营销需要借力大数据

(1)科技的发展。互联网时代的到来,收集海量的数据信息显得更加简单可行,人们可以通过互联网平台收集到各种数据,还可以对数据进行反复的使用与共享,实现数据的循环利用,使数据创造出更多的价值。

(2)个性化需求的增加。社会的发展使人们的消费习惯与心理发生了显著的变化,不再希望自己所使用的产品与别人一样,希望自己是独特的,与众不同的,而企业恰恰能通过对消费者的消费偏好进行大数据分析,来为其制定个性化消费方案。

(3)用户数据易获取。互联网企业与传统的企业相比,其不同点之一就是数据的获取方式不同。传统企业能知道客户当时的需求和购买意向,但是无法获得更多与客户有关的信息与资料;而互联网企业通过用户的访问记录和消费行为

3.3商业定位的转变

大数据时代背景下,消费者对品牌的忠诚度不断下降,使得大数据时代商业模式必须从以品牌为中心向以消费者为中心转变。[3]阿里巴巴于2016年提出了以“消费者的生命周期”来做销售。充分体现了现在商业社会对品牌的转变逐步增加到了以消费者为中心的转变。在工业时代,我们无法获知消费者的翔实数据,但是在大数据时代下数据的原始积累和获取变得容易,借助于智能手机和穿戴设备等科技的发展,数据变得越来越翔实,因此让商家更容易全方位了解消费者,能够针对消费者做到千人千面。从而增加产品的依赖性和忠诚度。所以未来企业的竞争力逐步转变为:谁能提供专业化的产品和服务,谁能全面了解和分析信息,谁就会站在商业的浪潮上。

3.4商业理念

从以商品为主向服务转型大数据时代,消费者的知识水平越来越高,消费者会从已有的大量数据中全面了解商品的功能、价值等,如果仅仅是在商场或互联网简单的介绍商品品牌、包装及使用方法已经远远不能满足消费者的需求了。消费者依据大量的数据,对产品的了解程度甚至比营业员还要充分,因此企业不仅要非常精准地把商品构架、各种性能指标等解剖出来外,还必须向消费者提供大量的解决方案,即大数据时代企业卖出的不仅仅是简单的商品,而是方案的系统集成和商品的服务。所以转型势在必行,从以商品为主转向以服务为主,增加顾客对商品的忠诚度和依赖度,迎接新一轮的商业变革。

4结论

2016年是大数据的发展年,据保守估计,未来大数据的市场规模至少达到万亿元以上。在这股大数据时代背景下,消费者行为的变迁也越来越趋于不确定,移动互联网更是加速了这种不确定因素,电商和传统企业变得越来越离不开数据,数据即将成为未来企业的核心竞争力,企业要不断完善自己的企业治理结构,抓住市场潮流的变化,让不确定的消费者变得确定,这样才能有针对性地做到千人千面,提供个性化的商品和服务,在未来竞争格局中占据一席之地。

参考文献:

[1]AllisonCerra,KevinEasterwood,JerryPower.商业模式重构:大数据、移动化和全球化[M].北京:人民邮电出版社,2014:29-43.

[2]蔡承秉.掘金大数据数据驱动商业变革[M].北京:时代华文书局,2013:103-110.

[3]黄升民,刘珊.“大数据”背景下营销体系的解构与重构[J].现代传播: 中国传媒大学学报,2012 ( 11) : 13 - 20.

大数据对网络营销的影响 篇2

[摘要]

文章对当前有关大数据时代网络营销模式的相关概述进行了梳理和分析,进而对大数据时代网络营销模式的创新、精准性以及效果性研究作以归纳,最后进行了总结与展望。

[关键词]

大数据;网络营销模式;综述

1引言

大数据对时展产生了深远影响,网络营销模式如何充分发挥数据带来的机遇,从而促进其发展成为当前热门话题。数据具有的四大特点能为企业网络营销模式发展提供更加精准、个性化的信息,此外,大数据时代下的网络营销模式不仅重视创新性、精准性,也重视效果性。

2大数据与网络营销模式相关概述

2.1大数据的定义

20世纪80年代大数据被提出,到2008年才广泛传播。麦肯锡定义其为在一定时间内使用传统数据库软件无法对数据内容进行搜集、存储等的数据集合;《Science》将其定义为数据集规模无法在可容忍的时间内用目前的技术、方法等去获取、管理的数据;[3]维基网络将大数据定义为运用当前主流软件工具难以在合理时间内为企业经营决策提供完整分析过程的资源。比较有影响力的是Gartner的定义,其认为大数据通过新的处理模式能增强决策力、洞察力以及流程能力,并具备多样、快速增长性以及数据量大的信息资产。本文将大数据定义为以其主要特征为基础,通过运用科学的大数据处理技术能够增强其精准性、效果性等价值的信息资产。

2.2网络营销模式的定义

Rafi-AMohammed和RobertFisher等将网络营销定义为在线维护客户和公司在产品、服务等方面的关系;孙志宏认为网络营销是通过计算机网络、通信技术等为实现营销目标的市场营销方式;芦文娟、韩德昌认为其是以网络通信技术以及数字交互式为基础的营销活动;徐艳旻将网络营销定义为借助网络开展市场服务的营销活动。阎斌认为网络营销模式是企业通过有效运用互联网信息技术平台力求实现企业经营目标的营销活动。本文认为网络营销模式是借助网络、通信技术以及数字交互式媒体等进行的市场营销活动。

2.3网络营销模式主要类别

芦文娟、韩德昌认为网络营销模式主要有创建企业网站、参与网络社区、博客营销、网上广告投放;张在宏将其分为广告商、网上商店和服务、价值链服务提供商、网络渠道和虚拟社区;玄文启认为其可分为电子邮件、微博营销、病毒性营销、搜索引擎营销和博客营销;本文认为较有影响力的是周曙东等将其分为在线商店模式、中立交易平台模式、企业间网络营销模式、网上采购模式、网络拍卖模式、电子邮件营销模式、电子报关模式等的观点。

2.4大数据时代网络营销模式的特征

陈慧、王明宇认为大数据网络营销具有性价比高、时效性强、互动性强和个性化营销的特点。胡江涛研究认为关联性紧也是其主要的特点。

3大数据时代网络营销模式创新研究

张冠凤认为大数据时代网络营销模式主要包括商品关联挖掘营销、现代通信的大数据分析、大数据的用户行为分析营销和个性化推荐营销模式。张艳红认为大数据时代网络营销模式的革新还包括基于大数据的搜索引擎营销和DSP网络广告模式。高源、张桂刚认为其还包括基于大数据的商品地理营销模式。吴英鹰认为大数据背景下旅游企业网络营销新模式主要包括关联推荐和精准网络营销模式;王雯研究了大数据下电影整合营销和O2O营销模式。以上学者对大数据时代下网络营销模式创新研究较为全面,但总体上相关理论研究较少。

4大数据时代网络营销模式精准性研究

李晓龙、冯俊文提出了大数据环境下电商精准网络营销策略。牛艳红、王春国认为大数据时代网络营销模式精准性策略主要有搜索引擎、再锁定精准营销和博客营销。樊永梅发现了全数据精确制导、汽车销售整合信息对于汽车精确营销实现的重要性。倪宁、金韶认为其主要有精准定位目标消费群、精准挖掘消费需求、精准可控广告投放和精准评估广告效果。林燕提出了传播和广告精准营销策略。以上研究丰富了理论成果,但没系统分析大数据时代网络营销模式精准性营销的基本原理。

5大数据时代网络营销模式效果性研究

胡江涛发现了大数据时代网络营销实现从精准营销到效果营销的转变的关键问题,张艳红提出从政府层面、企业层面实现网络营销的效果性,目前学者对大数据时代网络营销模式效果性研究不多,还处在逐步认识的阶段。

6总结与展望

本文认为大数据时代下网络营销模式的研究还处在积极探索阶段,具体体现在缺乏成熟的网络营销模式划分标准;大数据时代下网络营销模式研究视角较单一和对其精准性和效果性缺乏深入研究,对于两者的交叉研究更是缺乏。本文认为未来研究可以结合大数据时代下网络营销模式的精准性和效果性进行综合研究;从多视角和结合具体的实际加强对其效果性研究;加强网络营销模式的系统性研究,实现大数据时代网络营销模式时效精准、效果统一。

;

5. 制造企业如何借力工业大数据

制造企业如何借力工业大数据
工业大数据和原来的信息化有何区别?
简单来说,1990年代以前,大部分企业都在做企业内部信息化,这被称为第一次浪潮。1990年代以后,互联网开始席卷全球,企业相继进行互联网化。而随着信息化与工业化的深度融合,工业大数据悄然兴起,这也将成为下一个提升制造业生产力的技术前沿。在清华大学工业大数据研究中心主任王建民看来,工业大数据即第三次工业变革,它以智能互联的产品为核心载体,而不单纯只是通过互联网增值。
王建民认为,在制造业的利润越来越低的情况下,工业大数据可以帮助中国企业提高产品在使用维护阶段的利润。最重要的是,利用数据进行跨界运营,能够为企业带来新的生存空间。
利用大数据抢占价值高地
为什么工业大数据对当下的中国企业来说,有着如此深远的意义?
事实上,在王建民看来,一个复杂装备的生命周期分三个阶段,即:开发制造阶段(Beginning of Life,简称BOL)、使用维护阶段(Middle of Life,简称MOL)、回收利用阶段(即End of Life,简称EOL)。
原来,制造企业将重心放在开发制造阶段,企业的核心目标就是将装备设计制造出来。而产品售卖给消费者后,就和企业没有关系或者变得无关紧要了。所以生命周期的第二、三阶段,常常被企业忽略。但装备的价值真正体现在用户的使用体验上,而不在于制造,尽管制造由质量决定。但消费者在使用阶段的流畅程度,才能反映出产品的最终功效。
加工制造环节的确能够产生很多利润,但在当前环境下,生产制造的利润越来越薄,使企业越来越难以为继。而中国是一个制造大国,更是一个使用大国,制造业的兴衰事关重大。王建民认为,只有利用大数据抢占价值高地,实现产品智能化,才能实现从“中国制造”到“中国创造”的转变,从“生产型制造”到“服务型制造”转变,这也是“中国制造2025”战略的应有之义。
跨界运营是工业互联网转型的核心
和之前很多技术一样,工业大数据并非横空出世,而是一脉相承。但又有新的变化,这种新的变化,在王建民看来,其核心在于连接,将原来孤立的机器连接起来,将人和机器连接起来,将不同的企业、行业连接起来。
事实上,这种连接已经产生了巨大的价值,有很多企业已经开始实践了。
例如:将人和产品联系起来,可以实现产品创新。日本科研人员设计出一种新型汽车座椅,根据驾驶者的体重、压力值等数据识别主人,以判断驾驶者是否为主人,从而决定是否启动。
又例如:将两个不同领域连接起来,可以实现销售模式的创新。欧洲人可以做到今天卖明天的风电,怎么卖?他们根据一系列数据,对明天的风力精准地进行测算,从而实现当天交易。这是风电装备在整个大气环境下进行的跨界运营的绝佳案例。
还有一个例子,《哈佛商业评论》曾经发表过一篇文章叫《智慧的互联产品》。美国人认为未来的工业产品应该分为五个阶段,到第四个阶段的时候,装备、产品会进入到一个产品的系统阶段,机器和机器之间可以对话和合作。比如在农业领域,播种器械、收获器械会联合起来到一个农场去作业。而终极阶段是:农业机器的集群和天气的数据,会和种子的数据、灌溉系统的数据联合起来,通过全方位的连接来解决农业生产中的绿色节能问题。
王建民说,通过跨界运营来创新是工业互联网转型的核心。在使用阶段做一个简单的维修、更换配件,不管是预防性维修还是主动维修,都还处于工业互联网的初级阶段。只有通过数据进行跨界运营,才抓住了整个装备制造业在服务阶段转型升级的核心。
工业大数据应避免的三个误区
听上去很美好的工业大数据,如何实践呢?王建民梳理了三大误区,以供企业参考:
一、维修=运行
在工业领域,维修和运行基本不会分开。但是在工业大数据里,二者是分开的。维修指的是,当产品性能下降的时候,通过更换零件或者其他手段,恢复其产品性能。而运行是指如何使用机器,使它产生价值。
二、产业大数据等同于消费大数据
工业大数据最核心的问题在于分析结果的可靠性。在消费大数据上,如果产品的广告推荐能达到20‰的可靠性,就是搜索引擎的最好水平。但这一数据在工业领域,显然远远不够。因为在工业领域,往往是失之毫厘,差之千里。工业的应用场景对数据准确率的要求达到99.9%,甚至更高,否则就会造成严重的经济损失乃至安全事故的发生。所以,王建民建议,从人员结构上来讲,工业大数据需要数据和产业的人才一起来做。
三、采集的数据越多越好
对于企业而言,机器采集的数据有时候是一个灾难,不是企业采集的所有数据都是有用的。不产生价值的数据就是垃圾信息,对于企业而言就是负担。企业在收集数据之前,首要任务是给数据画像,弄明白自己到底需要什么样的数据。
王建民认为,无论如何,大数据仍然要围绕装备增值服务的业务逻辑,在达到这个目的的过程中,让数据发挥作用,而非简单地只看到数据,而忽略了根本的逻辑。

6. 如何治理大数据杀熟现象

治理“大数据杀熟”现象,不是要“杀死”大数据,而是要善于借力,形成监管和治理的合力。监管部门应建立和完善大数据网上监管平台,提高对各种隐性“大数据利用”违法行为的查处能力。要将消费评价权保障、旅游者信息使用等纳入重点监管和治理范畴,与时俱进升级监管手段,打造让消费者“说走就走”、安全旅游的法治环境。

国庆节将至,一条与在线旅游相关的话题——“大数据杀熟行为10月1日起明令禁止”登上微博热搜榜。该话题缘于文化和旅游部印发的《在线旅游经营服务管理暂行规定》(简称《规定》)今年10月1日起正式施行,《规定》第十五条明确,在线旅游经营者不得滥用大数据分析等技术手段,基于旅游者消费记录、旅游偏好等设置不公平的交易条件,侵犯旅游者合法权益。这条规定针对的,就是近年来饱受诟病的“大数据杀熟”行为。

“大数据时代”到来,给人们带来了诸多便利,同时也带来了一些负面影响,“大数据杀熟”便是其中之一。去年10月文化和旅游部发布的《在线旅游经营服务管理暂行规定》(征求意见稿)中,禁止“大数据杀熟”被定义为“在线旅游经营者不得利用大数据等技术手段,针对不同消费特征的旅游者,对同一产品或服务在相同条件下设置差异化的价格”。

综合《规定》(征求意见稿)和《规定》的这两条规定,“大数据杀熟”可以简单理解为:在线旅游经营者滥用大数据分析手段,利用自身掌握的信息优势,对老客户设置比新客户更高的价格,造成老客户吃亏。去年3月,北京市消协发布的一项调查结果显示,近九成被调查者认为“大数据杀熟”现象普遍存在,56.92%的被调查者表示有过被“大数据杀熟”的经历,其中网购、在线旅游、酒店住宿、网约车、外卖、影视等消费场景最容易被“大数据杀熟”。

7. 借力大数据提升公共服务质量

借力大数据提升公共服务质量_数据分析师考试

大数据时代,公共管理领域的决策将日益基于数据分析而作出,大数据在政府公共服务领域必将发挥重要的决策支撑作用,甚至能够为公共服务提供方式带来革命性影响。可以说,大数据不仅是技术变革,更是一场社会治理方式的变革,政府应当因势利导,借力大数据优化公共服务方式,提升公共服务质量。

准确把握公共服务需求

公共服务本质上属于以服务形式提供的公共产品。由于服务具有不可分割性,服务的生产过程同时也是消费过程,因此,对于作为服务提供者的政府来讲,要想让自己提供的公共服务“合口味”、进而提升公共服务质量,必须在提供服务之前掌握大量的决策支撑信息,特别是准确把握服务对象对于公共服务种类以及质和量等方面的需求。这其中就涉及如何高效地将社会成员的真实需求收集起来并进行有效的整合。

在收集和获取公共服务需求信息时,传统的入户调查式方法不仅费时费力,而且还得“一事一查”,效率极差;而运用大数据技术则可以轻而易举地解决这个问题。我们只需要将多部门建立的信息数据库加以归集、整合、转化,并进行挖掘、处理和分析,就可以很快地准确把握服务对象的公共服务需求。当中可能的困难是需要将不同部门数据格式、采集标准、显示规范都不同的海量数据读取、转换并统一呈现出来,数据清理的工作量和难度还是很大的。对此,政府可以设立或指定专司大数据归集、处理、挖掘和分析的部门来专门负责,并借助最新数据处理技术来解决,政府其他业务部门有数据使用需要时只须“按需下单”即可,省时省力、效率倍增。

精确核算公共服务成本

现代政府在每出台一项公共政策的时候,都需要进行成本核算。同样,在开展公共服务时,政府也需要进行成本——效益分析,将成本费用分析法运用于政府部门的计划决策中,以寻求在公共服务决策上如何以最小的成本获取最大的收益。这是公共决策科学性以及经济性原则所要求的。

以往,政府在开展公共决策可行性论证以及编制公共服务预算时,往往只能依靠已有的零散信息直接进行成本概算,或者依靠外部专家进行所谓的“充分”论证。事实上,这两种常见的成本核算方式所能掌握的数据信息都是不完全的,一般业务部门和外部专家所能掌握的信息处理能力也相对有限,据此得出的成本核算结论往往距离真实情况较远。因此,这些传统的公共决策成本核算方式都不可避免地存在很大缺陷。主要表现在:政府在进行公共服务决策时,如果将成本和困难估计大了,可能导致该提供的公共服务没能提供,影响服务需求的满足和社会问题的解决;反之,如果将成本和困难估计小了,则可能导致公共服务的财务可持续性存疑,影响政府公信力。政府在编制公共服务预算时,如果将成本概算多了,可能导致公共服务项目经费结余过多、出现年底“突击花钱”等非正常现象,影响公共资金使用效率;如果将成本概算少了,则可能导致公共服务项目经费短缺,致使原本应该提供的公共服务项目无法提供、原本能够达到的服务水准也无法达到。

大数据时代,政府在进行公共决策或进行编制公共服务预算时,可以借助大数据技术在海量数据处理和挖掘方面的优势,对分散在政府各个部门的数据进行有效整合,剔除无效和干扰信息,进行深度挖掘,寻找数据间的关联性,既考虑当前情况,也预测未来变化,从而能够基于相对完全信息得出成本核算结论,提高决策科学性和预算准确性。

合理配置公共服务资源

政府提供公共服务,不可避免地会碰到一个可及性问题,也就是如何准确高效地将公共服务资源配置和递送给有需要的社会成员。从社会成员的角度来讲,就是他们能否更便捷、以更低的成本享受到政府提供的公共服务。公共服务的可及性问题不仅直接影响公共服务的供给效率,也关系到公共服务项目能否最终“落地”、满足社会成员的服务需求。从理论和实践两个方面来看,民生服务可及性主要受到公共服务资源配置均等化水平、公共服务管理服务体系及具体服务流程完善程度这两个方面的制约和影响。大数据时代,政府完全可以借力大数据技术优化公共服务资源配置,并对公共服务管理服务体系及具体服务流程进行再造。这一点不仅对于公共服务资源配置顶层设计重要,而且对处在公共服务“最后一公里”的基层末梢也是至关重要。

具体而言,在优化公共服务资源配置方面,大数据技术能够在以人口为核心的关键数据、各种类型构成数据以及公共服务机构和设施分布数据的支撑下,很清楚地提示公共决策者哪个地方公共服务资源过于集中,哪个地方相对缺乏。这样就能够有效防止政府部门在进行公共服务资源配置时将“均等”标准变成“平均”指标,搞平均主义、“撒胡椒面”,有助于政府将公共服务资源向欠发达区域、乡村地区以及困难群体重点倾斜。

在公共服务管理服务体系及具体服务流程再造方面,大数据技术能够帮助政府部门在公共服务供给过程中实时定位公共服务的重点对象,迅速找到管理服务体系中的薄弱环节及具体服务流程中的遗漏缺憾与服务盲区,并据此提出再造公共服务体系及具体服务流程的合理化建议,使得政府提供的公共服务能够靠前接近最有需要的重点人群。

以上是小编为大家分享的关于借力大数据提升公共服务质量的相关内容,更多信息可以关注环球青藤分享更多干货

8. 浅谈计算机与大数据的相关论文

在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!

计算机与大数据的相关论文篇一
浅谈“大数据”时代的计算机信息处理技术

[摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。

[关键词]大数据时代;计算机;信息处理技术

在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。

一、大数据时代信息及其传播特点

自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。

大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。

二、大数据时代的计算机信息处理技术

(一)数据收集和传播技术

现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。

(二)信息存储技术

在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。

(三)信息安全技术

大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。

(四)信息加工、传输技术

在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。

结语:

在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。

参考文献

[1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107.

[2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50.

[3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI

[4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110
计算机与大数据的相关论文篇二
试谈计算机软件技术在大数据时代的应用

摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。

关键词:计算机 大数据时代 容量 准确 价值 影响 方案

1 概述

自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。

大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。

2 大数据时代的数据整合应用

自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。

企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本2.0系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。

2.1 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。

2.2 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。

3 企业信息解决方案在大数据时代的应用

企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA:

3.1 Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。

3.2 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。

3.3 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。

3.4 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。

3.5 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。

在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。

如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。

在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。

4 结束语

在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。

参考文献:

[1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009.

[2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007.

[3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994.

[4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999.

[5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000.

[6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊.

[7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02).

[8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01).
计算机与大数据的相关论文篇三
浅谈利用大数据推进计算机审计的策略

[摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。

[关键词]大数据 计算机审计 影响

前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。

一、初探大数据于CAT影响

1.1影响之机遇

大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。

1.2影响之挑战

大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。

二、探析依托于大数据良好推进CAT措施

2.1数据质量的有效保障

依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。

2.2公共数据平台的建立

依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。

2.3审计人员的强化培训

依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。

三、结论

综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。

猜你喜欢:

1. 人工智能与大数据论文

2. 大数据和人工智能论文

3. 计算机大数据论文参考

4. 计算机有关大数据的应用论文

5. 有关大数据应用的论文

阅读全文

与大数据借力相关的资料

热点内容
java获取上传文件名 浏览:156
网站添加微博 浏览:593
flash播放mp4代码 浏览:766
word页脚奇偶页不同 浏览:728
backboxlinux安装 浏览:67
会声会影卸载文件损坏 浏览:283
word文件怎么修改自然段 浏览:94
华兴数控系统车孔g81循环怎么编程 浏览:244
word怎么查看删减之前的文件 浏览:58
word标题1标题2规范 浏览:691
java反射详细 浏览:801
年vip怎么升级年svip 浏览:434
win10安全更新失败怎么解决 浏览:538
mac虚拟机共享网络 浏览:483
录像机的文件视频在哪里 浏览:784
书生阅读器不能打印红头文件 浏览:508
win10游戏目录是哪个文件夹里 浏览:78
手机u盘满了找不到文件 浏览:554
存储文件压缩包和文件夹哪个合适 浏览:778
看房子哪个网站比较好 浏览:817

友情链接